As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy δ-connectedness and θ-connectedness: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
New page: {{PAGENAME}} {{PAGENAME}} {{PAGENAME}} {{issue/title...
 
m Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume"
 
Line 22: Line 22:
{{issue/data
{{issue/data
  | conference      =  
  | conference      =  
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/17/1|"Notes on IFS", Volume 17 (2010) Number 1]], pages 48—57
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/17/1|"Notes on Intuitionistic Fuzzy Sets", Volume 17 (2010) Number 1]], pages 48—57
  | file            = NIFS-17-1-48-57.pdf
  | file            = NIFS-17-1-48-57.pdf
  | format          = PDF
  | format          = PDF

Latest revision as of 18:11, 28 August 2024

shortcut
http://ifigenia.org/wiki/issue:nifs/17/1/48-57
Title of paper: Intuitionistic fuzzy δ-connectedness and θ-connectedness
Author(s):
Salah Abbas
Department of Mathematics, Faculty of Science, Sohag University, sohag 82524, Egypt
Biljana Krsteska
Faculty of Mathematics and Natural Science, Univ. St. Cyril and Methodius Gazi, Baba b.b. P.O.162,1000 Skopje, Macedonia
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 17 (2010) Number 1, pages 48—57
Download:  PDF (104  Kb, File info)
Abstract: We introduce and study the concepts of (r,s)-fuzzy δ-connected and (r,s)-fuzzy θ-connected for fuzzy sets in an intuitionistic fuzzy topological spaces in Šostak sense as a weaker version of (r,s)-fuzzy connected.
Keywords: Intuitionistic fuzzy topology, (r,s)-fuzzy δ-connected, (r,s)-fuzzy θ-connected
References:
  1. S. E. Abbas, (r,s)-generalized intuitionistic fuzzy closed sets, J. Egypt Math. Soc. vol 14(2), 2006, 283-297
  2. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol 20(1), 1986, 87-96
  3. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., vol 24, 1968, 182-190
  4. K. C. Chattopadhyay, R. N. Hazra, S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems, vol 49, 1992, 237-242
  5. D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, vol 88, 1997, 81-89
  6. D. Çoker and M. Dimirci, An introduction to intuitionistic fuzzy topological spaces in Šostak sense, Busefal, vol 67, 1996, 67-76
  7. U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anall. Appl., vol 78, 1980, 659-673
  8. U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, vol 73, 1995, 131-149
  9. U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, Dordrecht (Chapter 3), 1999
  10. T. Kubiak, On fuzzy topologies, Ph. D. Thesis, A. Mickiewicz, Poznan, 1985
  11. T. Kubiak and A. P. Šostak, Lower set-valued fuzzy topologies, Questions Math., vol 20(3), 1997, 423-429
  12. E. P. Le and Y. B. Im, Mated fuzzy topological spaces, J. Korea Fuzzy Logic Intell. Sys. Soc., vol 11(2), 2001, 161-165
  13. S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, vol 131, 2002, 323-336
  14. A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palerms ser II, vol 11, 1985, 89-103
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.