As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:About the Lp space of intuitionistic fuzzy observables: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 20: Line 20:
  | format          = PDF
  | format          = PDF
  | size            = 220
  | size            = 220
  | abstract        = The aim of this paper is to define an <math>L^p</math> space of intuitionistic fuzzy observables. We work in an intuitionistic fuzzy space <math>({\mathcal F}, {\bf m})<math> with product, where <math>\mathcal F</math> is a family of intuitionistic fuzzy events and <math>{\bf m}</math> is an intuitionistic fuzzy state. We prove that the space <math>L^p</math> with corresponding intuitionistic fuzzy pseudometric <math>\rho_{IF}</math> is a pseudometric space.
  | abstract        = The aim of this paper is to define an <math>L^p</math> space of intuitionistic fuzzy observables. We work in an intuitionistic fuzzy space <math>({\mathcal F}, {\bf m})</math> with product, where <math>\mathcal F</math> is a family of intuitionistic fuzzy events and <math>{\bf m}</math> is an intuitionistic fuzzy state. We prove that the space <math>L^p</math> with corresponding intuitionistic fuzzy pseudometric <math>\rho_{IF}</math> is a pseudometric space.
  | keywords        = Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Joint intuitionistic fuzzy observable, Function of several intuitionistic fuzzy observables, Product, ''L<sup>p</sup>'' space, Pseudometric space, Intuitionistic fuzzy pseudometric.
  | keywords        = Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Joint intuitionistic fuzzy observable, Function of several intuitionistic fuzzy observables, Product, ''L<sup>p</sup>'' space, Pseudometric space, Intuitionistic fuzzy pseudometric.
  | ams            = 03B52, 60A86.
  | ams            = 03B52, 60A86.
Line 30: Line 30:
# Čunderlíková, K. (2019). [[Issue:m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function|'''m'''-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function]]. Notes on Intuitionistic Fuzzy Sets, 25(2), 29–40.
# Čunderlíková, K. (2019). [[Issue:m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function|'''m'''-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function]]. Notes on Intuitionistic Fuzzy Sets, 25(2), 29–40.
# Lendelová, K. (2006). Conditional IF-probability.  ''Lawry, J. et al. (Eds.). Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing'', Vol. 37, Springer-Verlag Berlag Heidelberg, 275–283.
# Lendelová, K. (2006). Conditional IF-probability.  ''Lawry, J. et al. (Eds.). Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing'', Vol. 37, Springer-Verlag Berlag Heidelberg, 275–283.
# Riečan, B. (1999). On the $L^p$ space of observables. Fuzzy Sets and Systems, 105(2), 299–306.
# Riečan, B. (1999). On the <math>L^p</math> space of observables. Fuzzy Sets and Systems, 105(2), 299–306.
# Riečan, B. (2000). On the $L^p$ space of observables on product MV algebras. International Journal of Theoretical Physics, 39(3), 851–858.
# Riečan, B. (2000). On the <math>L^p</math> space of observables on product MV algebras. International Journal of Theoretical Physics, 39(3), 851–858.
# Riečan, B. (2006). On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 157(11), 1485–1490.
# Riečan, B. (2006). On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 157(11), 1485–1490.
# Riečan, B. (2006). On the probability and random variables on IF events. In: Ruan, D. et al.  (Eds.). Applied Artificial Intelligence, Proceedings of the 7th FLINS Conference, Genova, 138–145.
# Riečan, B. (2006). On the probability and random variables on IF events. In: Ruan, D. et al.  (Eds.). Applied Artificial Intelligence, Proceedings of the 7th FLINS Conference, Genova, 138–145.

Latest revision as of 14:37, 3 July 2023

shortcut
http://ifigenia.org/wiki/issue:nifs/29/2/90-98
Title of paper: About the Lp space of intuitionistic fuzzy observables
Author(s):
Katarína Čunderlíková
Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
cunderlikova.lendelova@gmail.com
Presented at: 26th International Conference on Intuitionistic Fuzzy Sets, Sofia, 26—27 June 2023
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 2, pages 90–98
DOI: https://doi.org/10.7546/nifs.2023.29.2.90-98
Download:  PDF (220  Kb, File info)
Abstract: The aim of this paper is to define an [math]\displaystyle{ L^p }[/math] space of intuitionistic fuzzy observables. We work in an intuitionistic fuzzy space [math]\displaystyle{ ({\mathcal F}, {\bf m}) }[/math] with product, where [math]\displaystyle{ \mathcal F }[/math] is a family of intuitionistic fuzzy events and [math]\displaystyle{ {\bf m} }[/math] is an intuitionistic fuzzy state. We prove that the space [math]\displaystyle{ L^p }[/math] with corresponding intuitionistic fuzzy pseudometric [math]\displaystyle{ \rho_{IF} }[/math] is a pseudometric space.
Keywords: Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Joint intuitionistic fuzzy observable, Function of several intuitionistic fuzzy observables, Product, Lp space, Pseudometric space, Intuitionistic fuzzy pseudometric.
AMS Classification: 03B52, 60A86.
References:
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Physica Verlag, New York.
  3. Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets, Springer, Berlin.
  4. Bartková, R., & Čunderlíková, K. (2018). About Fisher–Tippett–Gnedenko Theorem for Intuitionistic Fuzzy Events. In: Kacprzyk, J., et al. (eds) Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Vol. 641, Springer, Cham, 125–135.
  5. Čunderlíková, K. (2019). m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function. Notes on Intuitionistic Fuzzy Sets, 25(2), 29–40.
  6. Lendelová, K. (2006). Conditional IF-probability. Lawry, J. et al. (Eds.). Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing, Vol. 37, Springer-Verlag Berlag Heidelberg, 275–283.
  7. Riečan, B. (1999). On the [math]\displaystyle{ L^p }[/math] space of observables. Fuzzy Sets and Systems, 105(2), 299–306.
  8. Riečan, B. (2000). On the [math]\displaystyle{ L^p }[/math] space of observables on product MV algebras. International Journal of Theoretical Physics, 39(3), 851–858.
  9. Riečan, B. (2006). On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 157(11), 1485–1490.
  10. Riečan, B. (2006). On the probability and random variables on IF events. In: Ruan, D. et al. (Eds.). Applied Artificial Intelligence, Proceedings of the 7th FLINS Conference, Genova, 138–145.
  11. Riečan, B. (2007). Probability theory on intuitionistic fuzzy events. In: Aguzzoli, D. et al. (eds) A volume in honour of Daniele Mundici’s 60th birthday. Lecture Notes in Computer Science, Springer, 290–308.
  12. Riečan, B. (2012). Analysis of fuzzy logic models. In: Koleshko, V. (Ed.). Intelligent Systems, INTECH, 219–244.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.