As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Modifications of the Goguen's intuitionistic fuzzy implication: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}}..."
 
m fix links
 
(2 intermediate revisions by the same user not shown)
Line 28: Line 28:
}}
}}
{{issue/author
{{issue/author
  | author          = Krassimir T. Atanassov
  | author          = Krassimir Atanassov
  | institution    = Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
  | institution    = Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
  | address        = 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
  | address        = 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
Line 44: Line 44:
  | ams            = 03E72.
  | ams            = 03E72.
  | references      =  
  | references      =  
# Angelova, N., & Stoenchev, M. (2015/2016). Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
# Angelova, N., & Stoenchev, M. (2015/2016). [https://old.usb-bg.org/Bg/Annual_Informatics/2015-2016/SUB-Informatics-2015-2016-8-001-017.pdf Intuitionistic fuzzy conjunctions and disjunctions from first type]. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
# Angelova, N., Stoenchev, M., & Todorov, V. (2017). Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 13, 143–170.
# Angelova, N., Stoenchev, M., & Todorov, V. (2017). [[Issue:Intuitionistic fuzzy conjunctions and disjunctions from second type|Intuitionistic fuzzy conjunctions and disjunctions from second type]]. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 13, 143–170.
#  Angelova, N., & Stoenchev, M. (2017). Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
#  Angelova, N., & Stoenchev, M. (2017). [[Issue:Intuitionistic fuzzy conjunctions and disjunctions from third type|Intuitionistic fuzzy conjunctions and disjunctions from third type]]. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
#  Atanassov, K. (2006). A new intuitionistic fuzzy implication from a modal type. Advanced Studies on Contemporary Mathematics, 12(1), 117–122.
#  Atanassov, K. (2006). A new intuitionistic fuzzy implication from a modal type. Advanced Studies on Contemporary Mathematics, 12(1), 117–122.
#  Atanassov, K. (2017). Intuitionistic Fuzzy Logics, Springer, Cham.
#  Atanassov, K. (2017). [[Intuitionistic Fuzzy Logics]], Springer, Cham.
# Atanassov, K., Angelova, N., & Atanassova, V. (2021). On an Intuitionistic Fuzzy Form of the Goguen’s Implication. Mathematics, 9(6), Article No. 676.
# Atanassov, K., Angelova, N., & Atanassova, V. (2021). [https://www.mdpi.com/2227-7390/9/6/676 On an Intuitionistic Fuzzy Form of the Goguen’s Implication]. Mathematics, 9(6), Article No. 676.
#  Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
#  Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). [[Issue:On intuitionistic fuzzy pairs|On intuitionistic fuzzy pairs]]. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
#  Feys, R. (1965). Modal Logics. Gauthier-Villars, Paris.
#  Feys, R. (1965). Modal Logics. Gauthier-Villars, Paris.
#  Klir, G., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey.
#  Klir, G., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey.
#  Mendelson, E. (1964). Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand.
#  Mendelson, E. (1964). Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand.
Michal´ıkov´a, A., Szmidt, E., & Vassilev, P. (2021). Modifications of Lukasiewicz’s intuitionistic fuzzy implication. Notes on Intuitionistic Fuzzy Sets, 27(3), 32–39.
Michalíková, A., Szmidt, E., & Vassilev, P. (2021). [[Issue:Modifications of Łukasiewicz's intuitionistic fuzzy implication|Modifications of Łukasiewicz's intuitionistic fuzzy implication]]. Notes on Intuitionistic Fuzzy Sets, 27(3), 32–39.


  | citations      =  
  | citations      =  
  | see-also        =  
  | see-also        =  
}}
}}

Latest revision as of 12:56, 29 August 2024

shortcut
http://ifigenia.org/wiki/issue:nifs/27/4/20-29
Title of paper: Modifications of the Goguen's intuitionistic fuzzy implication
Author(s):
Janusz Kacprzyk
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzyk@ibspan.waw.pl
Katarína Čunderlíková
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
cunderlikova.lendelova@gmail.com
Nora Angelova
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
noraa@fmi.uni-sofia.bg
Krassimir Atanassov
Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
krat@bas.bg
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 4, pages 20-29
DOI: https://doi.org/10.7546/nifs.2021.27.4.20-29
Download:  PDF (170  Kb, File info)
Abstract: On the basis of the Goguen’s intuitionistic fuzzy implication, seven of its modifications are constructed. Some of their basic properties are studied. The negations, generated by these implications are introduced and some of their properties are also described.
Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy pair, Goguen’s fuzzy implication.
AMS Classification: 03E72.
References:
  1. Angelova, N., & Stoenchev, M. (2015/2016). Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
  2. Angelova, N., Stoenchev, M., & Todorov, V. (2017). Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 13, 143–170.
  3. Angelova, N., & Stoenchev, M. (2017). Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
  4. Atanassov, K. (2006). A new intuitionistic fuzzy implication from a modal type. Advanced Studies on Contemporary Mathematics, 12(1), 117–122.
  5. Atanassov, K. (2017). Intuitionistic Fuzzy Logics, Springer, Cham.
  6. Atanassov, K., Angelova, N., & Atanassova, V. (2021). On an Intuitionistic Fuzzy Form of the Goguen’s Implication. Mathematics, 9(6), Article No. 676.
  7. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  8. Feys, R. (1965). Modal Logics. Gauthier-Villars, Paris.
  9. Klir, G., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey.
  10. Mendelson, E. (1964). Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand.
  11. Michalíková, A., Szmidt, E., & Vassilev, P. (2021). Modifications of Łukasiewicz's intuitionistic fuzzy implication. Notes on Intuitionistic Fuzzy Sets, 27(3), 32–39.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.