Issue:On intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/3/4/14-20
Title of paper: On intuitionistic fuzzy sets
Author(s):
Supriya Kumar De
Department of Mathematics, Indian Institute of Technology, Kharagpur - 721302, West Bengal, India
Ranjit Biswas
Department of Mathematics, Indian Institute of Technology, Kharagpur - 721302, West Bengal, India
Akhil Ranjan Roy
Department of Mathematics, Indian Institute of Technology, Kharagpur - 721302, West Bengal, India
Presented at: 1st ICIFS, Sofia, 18—19 Oct. 1997
Published in: Conference proceedings, "Notes on IFS", Volume 3 (1997) Number 4, pages 14—20
Mistakenly republished in the conference proceedings of the 2nd ICIFS, Sofia, 3—4 Oct. 1998 in "Notes on IFS", Volume 4 (1998) Number 2, pages 28—33
Download: Download-icon.png PDF (209  Kb, Info) Download-icon.png
Abstract: In this paper we define α-cut of an IFS, nearest ordinary set of an IFS, distance between two IFSs, index of intuitionistic fuzziness and study their properties with examples.
Keywords: Fuzzy set, Intuitionistic fuzzy set, α-cut, Nearest ordinary set, Index of intuitionistic fuzziness
References:
  1. Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems. 20 (1986) 87-96.
  2. Atanassov, K., Two operators on intuitionistic fuzzy sets, Comptes Rendus de l'Academic Bulgare des Sciences 41(5) (1988) 35-38.
  3. Atanassov, K., More on intuitionistic fuzzy sets, Fuzzy sets and Systems. 33 (1989) 37-46.
  4. Atanassov, K., A universal operator over intuitionistic fuzzy sets, Comptes Rendus de l'Academic Bulgare des Sciences. 46 (1) 1993 13-15.
  5. Atanassov, K., New operations defined over intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1994) 137-142.
  6. Atanassov, K. and Georgiev, C., Intuitionistic fuzzy Prolog, Fuzzy Sets and Systems. 53 (1993) 121-128.
  7. Bassu, K., Deb, R. and Pattanaik, P.K., Soft sets: An ordinal formulation of vagueness with some applications to the theory of choice, 45 (1992) 45-88.
  8. Biswas, R., Square zero (2): reducing vagueness in zero (0), to appear in Bull. Pour. Sous. Ens. Flous. Appl. (BUSEFAL).
  9. Biswas, R., Similarity measurements in IFSs, Notes on IFSs, 2(3) (1996) 5-14.
  10. Biswas, R., Intuitionistic fuzzy relations, in Bull. Sous. Ens. Flous. Appl. (BUSEFAL) 70 (1997).
  11. Burillo, P. and Bustince, H., Construction theorems for intuitionistic fuzzy sets, Fuzzy Sets and Systems, 84 (1996) 271-281.
  12. Dubois, D. and Prade, H., Twofold fuzzy sets and rough sets: some issues in knowledge representation, Fuzzy Sets and Systems 23 (1987) 3-18.
  13. Dubois, D. and Prade, H., Toll sets and toll logic in fuzzy logic: State of the Art, R. Lowen and M. Roubens eds., Dordrecht: Kluwer Aea. Publisher (to appear).
  14. Goguen, J.A., L-fuzzy sets, Jou. Maths. Anal. Appl. 18 (1967) 145-174.
  15. Hirota, K., Concepts of probabilistic sets, Fuzzy Sets and Systems 5(1) (1981) 31-46.
  16. Mizumto, M. and Tanaka, K., Some properties of fuzzy sets of type 2., Info. and Control. 31 (1976) 312-340.
  17. Zadeh, L.A., Fuzzy sets, Information and Control. 8 (1965) 338-353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.