First Int. Conf. on IFS, Sofia, 18-19 Oct. 1997 NIFS 3 (1997) 4, 14-20

ON INTUITIONISTIC FUZZY SETS
Supriya Kumar De
Ranjit Biswas*
Akhil Ranjan Roy
Department of Mathematics,
Indian Institute of Technology,
Kharagpur - 721302, West Bengal,
INDIA. 1

Abstract

In this paper we define α -cut of an IFS, nearest ordinary set of an IFS, distance between two IFSs, index of intuitionistic fuzziness and study their properties with examples.

Keywords: Fuzzy set, intuitionistic fuzzy set (IFS), α -cut, nearest ordinary set, index of intuitionistic fuzziness.

1 INTRODUCTION

Fuzzy sets have been generalised in many ways for various purposes, out of which [1], [7], [8], [12], [13] [14], [15], [16] are interesting. One of the existing higher order fuzzy sets is the notion of intuitionistic fuzzy sets (IFSs) introduced by Atanassov [1]. Where the fuzzy sets can be viewed as intuitionistic fuzzy sets, the converse is not necessarily true. In the present paper we study intuitionistic fuzzy sets to define α -cut of intuitionistic fuzzy sets, nearest ordinary sets of intuitionistic fuzzy sets, distance between two intuitionistic fuzzy sets and prove some propositions.

2 PRELIMINARIES

We present here some basic preliminaries for the progress of our works.

Definition 2.1

Let E be any set, a mapping μ_A : E \rightarrow [0, 1] is called a fuzzy subset of E.

Definition 2.2

Let A be a fuzzy subset of a set E. The complement of A is A^c with membership function μ_{A^c} defined by

¹Correspondence to: Dr. Ranjit Biswas, Department of Mathematics, Indian Institute of Technology, Kharagpur-721302, W.B., INDIA. (E-mail: ranjit@maths.iitkgp.ernet.in)

$$\mu_{A^c} = 1 - \mu_A(x)$$
, $\forall x \in E$.

Definition 2.3

Let a set E is fixed. An intuitionistic fuzzy set or IFS A in E is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \}$

where the function μ_A : $E \rightarrow [0,1]$ and ν_A : $E \rightarrow [0,1]$ define the degree of membership and degree of non-membership respectively of the element $x \in E$ to the set A, which is a subset of E, and for every $x \in E$:

$$0 \le \mu_A(x) + \nu_A(x) \le 1.$$

Definition 2.4

If A and B are two IFSs of the set E, then $A \subset B \text{ iff } \forall x \in E, \left[\mu_A(x) \leq \mu_B(x) \text{ and } \nu_A(x) \geq \nu_B(x) \right]$ $A \subset B \text{ iff } B \supset A$ $A = B \text{ iff } \forall x \in E, \left[\mu_A(x) = \mu_B(x) \text{ and } \nu_A(x) = \nu_B(x) \right]$ $\bar{A} = \left\{ \langle x, \nu_A(x), \mu_A(x) \rangle \middle| x \in E \right\}$ $A \cap B = \left\{ \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle \middle| x \in E \right\}$ $A \cup B = \left\{ \langle x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) \rangle \middle| x \in E \right\}$ $A + B = \left\{ \langle x, \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x), \nu_A(x) \cdot \nu_B(x) \rangle \middle| x \in E \right\}$ $A \cdot B = \left\{ \langle x, \mu_A(x) \cdot \mu_B(x), \nu_A(x) + \nu_B(x) - \nu_A(x) \cdot \nu_B(x) \rangle \middle| x \in E \right\}$ $\Box A = \left\{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle \middle| x \in E \right\}$ $\Diamond A = \left\{ \langle x, \mu_A(x), \nu_A(x) \rangle \middle| x \in E \right\}$ $\Diamond A = \left\{ \langle x, \mu_A(x), \nu_A(x) \rangle \middle| x \in E \right\}$ $C(A) = \left\{ \langle x, K, L \rangle \middle| x \in E \right\}$ $\text{where } K = \max_{x \in E} \mu_A(x),$ $L = \min_{x \in E} \nu_A(x)$ $L = \max_{x \in E} \nu_A(x)$ $I(A) = \left\{ \langle x, k, l \rangle \middle| x \in E \right\}$ $\text{where } k = \min_{x \in E} \mu_A(x),$ $l = \max_{x \in E} \nu_A(x)$

Obviously every fuzzy set has the form $\{\langle x, \mu_A(x), \mu_{A^c}(x) \rangle | x \in E \}$. In [1], Atanassov presented an example of an IFS which is not a fuzzy set.

3 SOME CHARACTERIZATION

We start this section with some examples of IFS.

Example 3.1

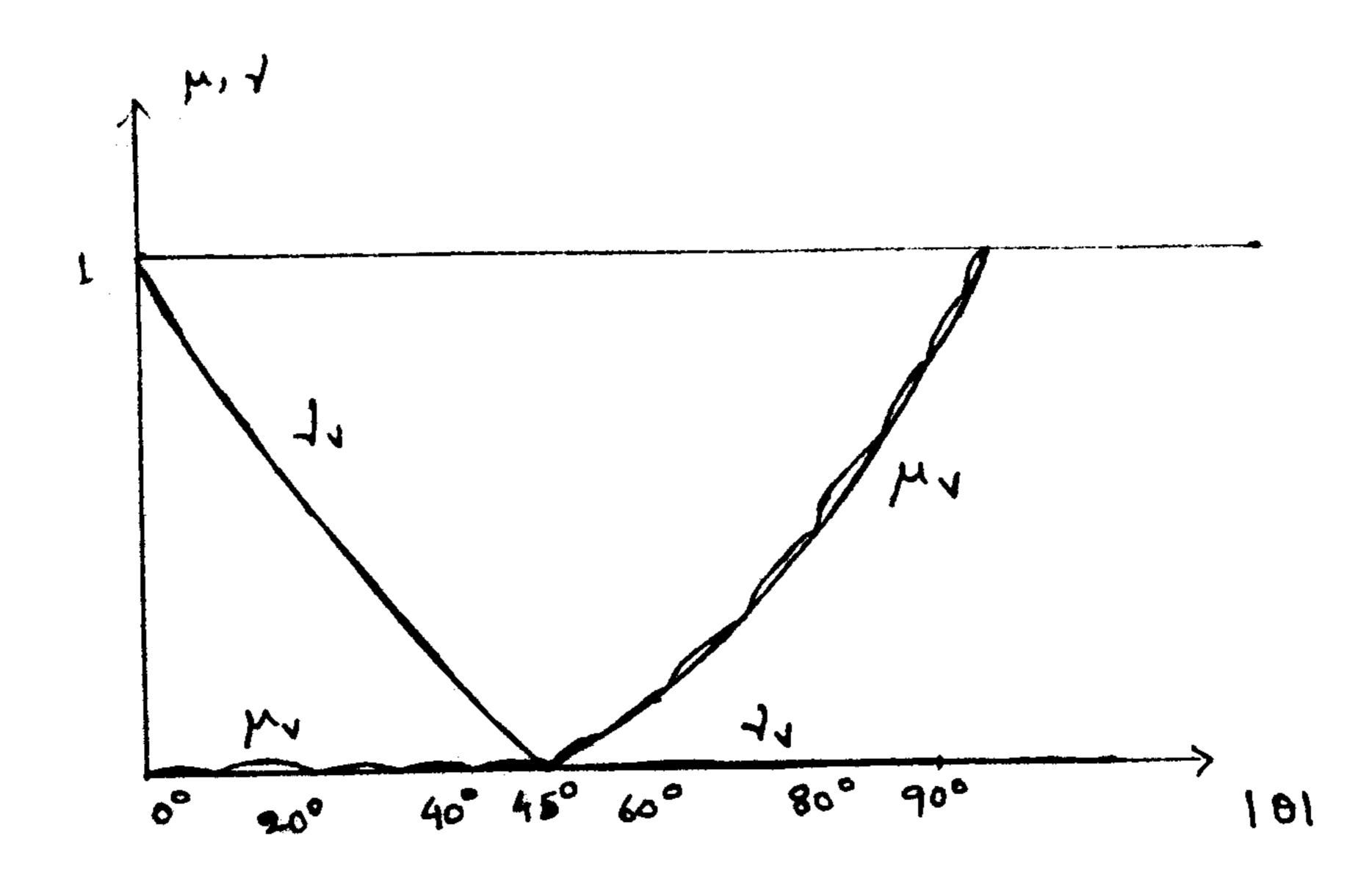
The intuitionistic fuzzy set of straight lines labelled "Vertical" is given by the membership function

$$\mu_V(x) = \begin{cases} 1 - \left| \frac{1}{m_x} \right|^{F_e}, & \text{if } |m_x| > 1 \\ 0, & \text{otherwise} \end{cases}$$

and the non-membership function

$$u_V(x) = \begin{cases}
1 - |m_x|^{F_e}, & \text{if } |m_x| < 1 \\
0, & \text{otherwise}
\end{cases}$$

where $m_x = \tan \theta$ is the slope of the line and F_e is some positive integer. The graphical representation of this IFS is shown below:



Example 3.2

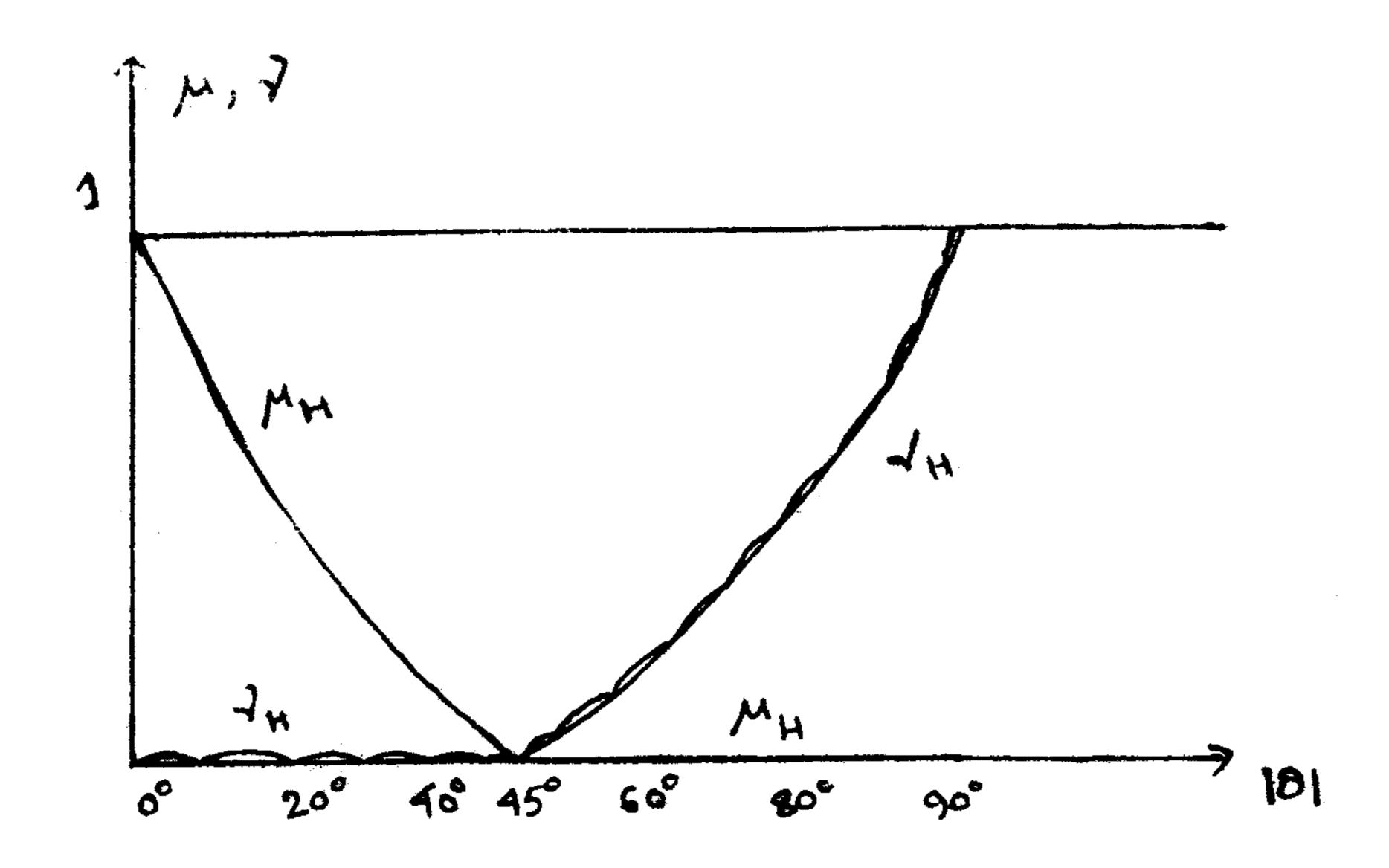
The IFS of a straight line labelled "Horozontal" is given by the membership function

$$\mu_H(x) = \begin{cases} 1 - |m_x|^{F_e}, & \text{if } |m_x| < 1 \\ 0, & \text{otherwise} \end{cases}$$

and the non-membership function

$$u_V(x) = \begin{cases}
1 - \left| \frac{1}{m_x} \right|^{F_e}, & \text{if } |m_x| > 1 \\
0, & \text{otherwise}
\end{cases}$$

where $m_x = \tan \theta$ be the slope of the line and F_e is some positive integer. The graphical representation of this IFS is shown below:



Note: Let E be a set. We can view E itself as an intuitionistic fuzzy set with membership value given by $\mu_E(x) = 1 \ \forall \ x \in E$ and the non-membership values given by $\nu_E(x) = 0 \ \forall \ x \in E$. Similarly, a null set ϕ also can be viewed as $\mu_{\phi}(x) = 0 \ \forall \ x \in E$ and $\nu_{\phi}(x) = 1 \ \forall \ x \in E$. We call it null intuitionistic fuzzy set or null IFS.

Nearest ordinary sets of fuzzy sets have got applications in many areas because the index of fuzziness of a fuzzy set is defined with the help of nearest ordinary sets. A similar study can be made in case of IFSs too. First of all let us defined α -cut of intuitionistic fuzzy sets.

Definition 3.1

Let A be an IFS of the set E. For $\alpha \in [0,1]$, the α -cut of A is the crisp set A_{α} defined by $A_{\alpha} = \{ x : x \in E \text{ , either } \mu_{A}(x) \geq \alpha \text{ or } \nu_{A}(x) \leq 1 - \alpha \}.$

Clearly $A_0 = E$.

It may be noted that the condition $\mu_A(x) \ge \alpha$ ensures $\nu_A(x) \le 1 - \alpha$ but not conversely.

Example 3.3

Let $E = \{e_1, e_2, e_3, e_4\}$ be a set and

 $A = \{ (.5, .4)/e_1, (.4, .5)/e_2, (.2, .8)/e_3, (.8, .1)/e_4 \}$ be an IFS of E.

Then, the .3-cut of the IFS A is given by

$$A_{.3} = \{ e_1, e_2, e_4 \}$$

The .5-cut of the IFS A is given by

$$A_{.5} = \{ e_1, e_2, e_4 \}$$
 and

the .8-cut of the IFS A is given by

$$A_{.8} = \{ e_4 \}.$$

Definition 3.2

The nearest ordinary set of an IFS A of the set E is denoted by A_{ne} and is defined by the

characterstic function C_{Anc} given by

$$C_A(ne) = \left\{ egin{array}{ll} 1, & ext{if either } \mu_A(x) > 0.5 ext{ or }
u_A(x) < 0.5 \\ 1 ext{ or } 0, & ext{if } \mu_A(x) = 0.5 ext{ and }
u_A(x) = 0.5 \\ 0, & ext{otherwise}. \end{array}
ight.$$

Example 3.4

Consider the IFS A as chosen in the previous example (example 3.3). We can see that $A_{ne} = \{ e_1 , e_4 \}$

The following proposition is straightforward

Proposition 3.1

If α_1 , $\alpha_2 \in [0,1]$, then

- (i) $\alpha_2 \geq \alpha_1 \Rightarrow A_{\alpha_2} \subseteq A_{\alpha_1}$
- (ii) for $\alpha_2 \geq \alpha_1$, if $A_{\alpha_2} = A_{\alpha_1}$, then $\forall \alpha \in [\alpha_1, \alpha_2]$, A_{α} is fixed.

Proposition 3.2

If A and B are intuitionistic fuzzy sets of E, then $\forall \alpha \in [0,1]$

- (i) $(A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}$
- (ii) $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$

Proof (i) Suppose
$$x \in (A \cup B)_{\alpha}$$

 $\Rightarrow \mu_{A \cup B}(x) \geq \alpha \text{ or } \nu_{A \cup B} \leq 1 - \alpha$

Case (i): If
$$\mu_{A \cup B}(x) \geq \alpha$$
, then max $\{ \mu_A(x), \mu_B(x) \} \geq \alpha$ \Rightarrow either $\mu_A(x) \geq \alpha$ or $\mu_B(x) \geq \alpha$ or both the cases hold.

Case (ii) If $\nu_{A \cup B}(x) \leq 1 - \alpha$

then min $\{ \nu_A(x), \nu_B(x) \} \leq 1 - \alpha$

 \Rightarrow either $\nu_A(x) \leq 1 - \alpha$ or $\nu_B(x) \leq 1 - \alpha$ or both the cases hold.

Case (i) and case (ii) reveals that $x \in A_{\alpha} \cup B_{\alpha}$. Similarly, we can prove that if $x \in A_{\alpha} \cup B_{\alpha}$ then $x \in (A \cup B)_{\alpha}$

 $\Rightarrow (A \cup B)_{\alpha} = A_{\alpha} \cup B_{\alpha}.$

(ii) This proof is similar to (i).

The following propositions is now obvious.

Proposition 3.3

If A and B are intuitionistic fuzzy sets of E, then

- (i) $(A \cap B)_{ne} = A_{ne} \cap B_{ne}$.
- (ii) $(A \cup B)_{ne} = A_{ne} \cup B_{ne}$.

Definition 3.3

If A and B are two IFSs of a finite set E, then the Hamming distance between A and B is given by

$$d(A,B) = \sum_{i=1}^{n} min\{d_i,r_i\}$$

where
$$d_i = |\mu_A(x_i) - \mu_B(x_i)|$$
, and $r_i = |\nu_A(x_i) - \nu_B(x_i)|$

and the Euclidean distance between A and B is given by

$$e(A, B) = \left[\sum_{i=1}^{n} min(d_{i}^{2}, r_{i}^{2})\right]^{\frac{1}{2}}$$

where
$$d_i = \mu_A(x_i) - \mu_B(x_i)$$
, and $r_i = \nu_A(x_i) - \nu_B(x_i)$

where n is the cardinality of E.

The following results are obvious.

Proposition 3.4

If A, B, C are intuitionistic fuzzy sets of E, then

- (i) $d(A,B) \ge 0$
- (ii) d(A,B) = 0 if A = B, but the converse is not necessarily true.
- (iii) d(A,B) = d(B,A)
- (iv) The inequality $d(A,B) \le d(A,C) + d(C,B)$ is not true in general.

Definition 3.5

The index of intuitionistic fuzziness of an IFS A of E with n supporting points is given by $i(A) = \frac{2}{n^k} d(A, A_{ne})$

where $d(A, A_{ne})$ denotes the distance (Hamming or Eucledian) between IFS A and the ordinary set A_{ne} (Viewing as an IFS).

Example 3.5

Consider the IFS A as chosen in example 3.3. in A the index of intuitionistic fuzziness is given by

 $i(A) = \frac{2}{n} d(A, A_{ne}) = .55$

where the distance is Hamming distance.

References

- [1] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems. 20 (1986) 87-96.
- [2] Atanassov, K., Two operators on intuitionistic fuzzy sets, Comptes Rendus de l'Academic Bulgare des Sciences 41(5) (1988) 35-38.

- [3] Atanassov, K., More on intuitionistic fuzzy sets, Fuzzy sets and Systems. 33 (1989) 37-46.
- [4] Atanassov, K., A universal operator over intuitionistic fuzzy sets, Comptes Rendus de l'Academic Bulgare des Sciences. 46 (1) 1993 13-15.
- [5] Atanassov, K., New operations defined over intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1994) 137-142.
- [6] Atanassov, K. and Georgeiv, C., Intuitionistic fuzzy prolog, Fuzzy Sets and Systems. 53 (1993) 121-128.
- [7] Bassu, K., Deb, R. and Pattanaik, P.K., Soft sets: An ordinal formulation of vagueness with some applications to the theory of choice, 45 (1992) 45-88.
- [8] Biswas, R., Square zero (2): reducing vagueness in zero (0), to appear in Bull. Pour. Sous. Ens. Flous. Appl. (BUSEFAL).
- [9] Biswas, R., Similarity measurements in IFSs, Notes on IFSs, 2(3) (1996) 5-14.
- [10] Biswas, R., Intuitionistic fuzzy relations, in Bull. Sous. Ens. Flous. Appl. (BUSEFAL) 70 (1997).
- [11] Burillo, P. and Bustinee, H., Construction theorams for intuitionistic fuzzy sets, Fuzzy Sets and Systems, 84 (1996) 271-281.
- [12] Dubois, D. and Prade, H., Twofold fuzzy sets and rough sets: some issues in knowledge representation, Fuzzy Sets and Systems 23 (1987) 3-18.
- [13] Dubois, D. and Prade, H., Toll sets and toll logic in fuzzy logic: State of the Art, R. Lowen and M. Roubens eds., Dordrecht: Kluwer Aca. Publisher (to appear).
- [14] Goguen, J.A., L-fuzzy sets, Jou. Maths. Anal. Appl. 18 (1967) 145-174.
- [15] Hirota, K., Concepts of probabilistic sets, Fuzzy Sets and Systems 5(1) (1981) 31-46.
- [16] Mizumto, M. and Tanaka, K., Some properties of fuzzy sets of type 2., Info. and Control. 31 (1976) 312-340.
- [17] Zadeh, L.A., Fuzzy sets, Information and Control. 8 (1965) 338-353.