16-17 May 2019 • Sofia, Bulgaria

Submission: 21 February 2019Notification: 11 March 2019Final Version: 1 April 2019

Issue:Short remark on interval type-2 fuzzy sets and intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/20/2/1-5
Title of paper: Short remark on interval type-2 fuzzy sets and intuitionistic fuzzy sets
Author(s):
Oscar Castillo
Tijuana Institute of Technology, Division of Graduate Studies, Tijuana, Mexico
ocastilloAt sign.pngtectijuana.mx
Patricia Melin
Tijuana Institute of Technology, Division of Graduate Studies, Tijuana, Mexico
pmelinAt sign.pngtectijuana.mx
Radoslav Tsvetkov
Technical University of Sofia, St, Kliment Ohridski Boulevard 8
rado_tzvAt sign.pngtu-sofia.bg
Krassimir Atanassov
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
kratAt sign.pngbas.bg
Presented at: 18th International Conference on Intuitionistic Fuzzy Sets, 10–11 May 2014, Sofia, Bulgaria
Published in: "Notes on IFS", Volume 20, 2014, Number 2, pages 1—5
Download: Download-icon.png PDF (96  Kb, Info) Download-icon.png
Abstract: Short comparison between concepts of interval type-2 fuzzy sets and intuitionistic fuzzy sets is given.
Keywords: Interval type-2 fuzzy set, Intuitionistic fuzzy set.
AMS Classification: 03E72
References:
  1. Atanassov, K., Intuitionistic fuzzy sets, Proc. of VII ITKR’s Session, Sofia (deposed June 1983, in Bulgarian)
  2. Atanassov, K., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, Vol 20, 1986, No. 1, 87–96.
  3. Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
  4. Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  5. Atanassov, K., P. Vassilev, R. Tsvetkov, Intuitionistic Fuzzy Sets, Measures and Integrals. “Prof. Marin Drinov” Academic Publishing House, Sofia, 2013.
  6. Castillo O. and P. Melin, A New Approach for Plant Monitoring using Type-2 Fuzzy Logic and Fractal Theory, International J. of General Systems, vol. 33, 305-319, 2004.
  7. Castillo, O., P. Melin, A. Alanis, O. Montiel, R. Sepulveda, Optimization of interval type 2 fuzzy logic controllers using evolutionary algorithms, Journal of Soft Computing, 15(6) 2011, 1145-1160.
  8. Goguen, J., L-fuzzy sets, Journal of Mathematical Analysis and Applications, 1967, Vol. 18, No. 1, 145-174.
  9. Melin P. and O. Castillo, A New Method for Adaptive Control of Non-Linear Plants using Type-2 Fuzzy Logic and Neural Networks, International J. of General Systems, vol. 33, 2004, 289-304.
  10. Mendel, J. M. and R. I. Bob John, Type-2 Fuzzy Sets Made Simple, IEEE Transactions on Fuzzy Systems, Vol. 10, 2002, 117-127.
  11. Mendel, J. M., Computing Derivatives in Interval Type-2 Fuzzy Logic Systems, IEEE Transactions on Fuzzy Systems vol. 12, 2004, 84–98.
  12. Mendel, J. M., G. C. Mouzouris, Type-2 fuzzy logic systems, IEEE Transactions on Fuzzy Systems, Vol. 7, 1999, 643–658.
  13. Mendel, J. M., Uncertain Rule-Based Fuzzy Logic Systems: Introduction and new directions, Prentice Hall, New Jersey, 2001.
  14. Mizumoto, M. and K. Tanaka, Some properties of fuzzy sets of type-2, Information and Control, Vol. 31, 1976, 312–340.
  15. Pawlak, Z., Rough functions, ICS, PAS Report 467, 1981.
  16. Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning, Part 1, Information Sciences, Vol. 8, 1975, 199–249.
  17. Zadeh, L. A., Toward a generalized theory of uncertainty (GTU)- an outline, Information Sciences, Vol. 172, 2005 1–40.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.