Issue:Intuitionistic fuzzy implications revisited. Part 2

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/26/1/28-35
Title of paper: Intuitionistic fuzzy implications revisited. Part 2
Author(s):
Nora Angelova
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., Sofia 1164, Bulgaria
nora.angelovaAt sign.pngfmi.uni-sofia.bg
Eulalia Szmidt
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
szmidtAt sign.pngibspan.waw.pl
Janusz Kacprzyk
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzykAt sign.pngibspan.waw.pl
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia 1113, Bulgaria
kratAt sign.pngbas.bg
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 26 (2020), Number 1, pages 28–35
DOI: https://doi.org/10.7546/nifs.2020.26.128-35
Download: Download-icon.png PDF (134  Kb, Info) Download-icon.png
Abstract: New conditions for correctness of the intuitionistic fuzzy implications are formulated and they are checked for the separate implications.
Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
AMS Classification: 03E72.
References:
  1. Angelova, N., & Atanassov, K. (2016). Intuitionistic Fuzzy Implications and Klir-Yuan's Axioms. Novel Developments in Uncertainty Representation and Processing. Advances in Intuitionistic Fuzzy Sets and Generalized Nets. (Atanassov, K.T., Castillo, O., et al., Eds.), 401, 97–110.
  2. Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
  3. Atanassov, K. (2019). On the new intuitionistic fuzzy implication → 191 . Notes on Intuitionistic Fuzzy Sets, 25 (4), 1–6.
  4. Atanassov, K., & Angelova, N. (2016). Properties of the intuitionistic fuzzy implications and negations. Notes on Intuitionistic Fuzzy Sets, 22 (3), 25–33.
  5. Atanassov, K., Angelova, N., Szmidt, E., & Kacprzyk, J. (2016). Properties of the intuitionistic fuzzy implication → 186 . Notes on Intuitionistic Fuzzy Sets, 22 (4), 6–12.
  6. Atanassov, K., Ribagin, S., Doukovska, L., & Atanassova, V. (2017). Intuitionistic fuzzy implication → 190 . Notes on Intuitionistic Fuzzy Sets, 23 (4), 79–83.
  7. Atanassov, K., Szmidt, E., & Angelova, N. (2017). Properties of the intuitionistic fuzzy implication → 187 . Notes on Intuitionistic Fuzzy Sets, 23 (3), 3–8.
  8. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19 (3), 1–13.
  9. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2016). New Fodor’s type of intuitionistic fuzzy implication and negation. Notes on Intuitionistic Fuzzy Sets, 22 (3), 1–8.
  10. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017). Intuitionistic fuzzy implication → 188. Notes on Intuitionistic Fuzzy Sets, 23 (1), 6–13.
  11. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017). Intuitionistic fuzzy implication → 187. Notes on Intuitionistic Fuzzy Sets, 23 (2), 37–43.
  12. Atanassov, K., Szmidt, E., Kacprzyk, J., & Angelova, N. (2019). Intuitionistic fuzzy implications revisited. Part 1. Notes on Intuitionistic Fuzzy Sets, 25 (3), 71–78.
  13. Atanassova, L. (2017). Intuitionistic fuzzy implication → 189 . Notes on Intuitionistic Fuzzy Sets, 23 (1), 14–20.
  14. Mendelson, E. (1964). Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand.
  15. Vassilev, P., Ribagin, S., & Kacprzyk, J. (2018). A remark on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 24 (2), 1–7.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.