Issue:An intuitionistic fuzzy evaluation of the "subset" relation between two crisp sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/4/75-79
Title of paper: An intuitionistic fuzzy evaluation of the "subset" relation between two crisp sets
Author(s):
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
kratAt sign.pngbas.bg
Guy de Tré
Ghent University, Department of Telecommunications and Information Processing, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
Guy.DETREAt sign.pngUGent.be
Presented at: 3rd International Intuitionistic Fuzzy Sets Conference, 9 Aug – 1 Sep 2016, Mersin, Turkey
Published in: "Notes on IFS", Volume 22, 2016, Number 4, pages 75—79
Download: Download-icon.png PDF (123  Kb, Info) Download-icon.png
Abstract: In this paper we propose an intuitionistic evaluation method for the is subset of relationship between two crisp sets. The subset comparison operator is an important component for different information management tasks, including querying, decision support and data quality handling. Considering it in an intuitionistic fuzzy logic framework provides us with a tool for developing semantic richer information management techniques.
Keywords: Intuitionistic fuzzy evaluation, Set comparison, Subset relationship.
AMS Classification: 03E72.
References:
  1. Atanassov, K. (1984) Intuitionistic fuzzy relations. Third Int. Symp. “Automation and Sci. Instrumentation”, Varna, Oct. 1984, Proc. part II, 56-57.
  2. Atanassov, K. (1988) Two variants of intuitonistic fuzzy propositional calculus. Preprint IMMFAIS-5-88, Sofia; Reprinted in: Int. J. Bioautomation, 2016, 20(S1), S17-S26.
  3. Atanassov, K. (1999) Intuitionistic Fuzzy Sets, Springer, Heidelberg.
  4. Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
  5. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013) On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  6. Burillo, P., & Bustince, H. (1995) Intuitionistic fuzzy relations. I, Mathware and Soft Computing, 2(1), 5–38.
  7. Burillo, P., & Bustince, H. (1995) Intuitionistic fuzzy relations. II: Effect of Atanassov’s operators on the properties of the intuitionistic fuzzy sets, Mathware and Soft Computing, 2(2), 117–148.
  8. Fraenkel, A., & Bar-Hillel Y. (1958) Foundations of Set Theory, Amsterdam, North-Holland Publ. Co.
  9. Kuratowski K., & Mostowski, A. (1967) Set Theory, Amsterdam, North-Holland Publ. Co.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.