As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy interpretations of formula (A → B) → ((¬A → B) → B)

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/28/4/428-435)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/4/428-435
Title of paper: Intuitionistic fuzzy interpretations of formula (AB) → ((¬AB) → B)
Author(s):
Nora Angelova
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
noraa@fmi.uni-sofia.bg
Katarína Čunderlíková
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
cunderlikova.lendelova@gmail.com
Eulalia Szmidt
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
szmidt@ibspan.waw.pl
Krassimir Atanassov
Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
krat@bas.bg
Presented at: International Workshop on Intuitionistic Fuzzy Sets, founded by Prof. Beloslav Riečan, 2 December 2022, Banská Bystrica, Slovakia
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 4, pages 428–435
DOI: https://doi.org/10.7546/nifs.2022.28.4.428-435
Download:  PDF (155  Kb, File info)
Abstract: One of the essential formulas of the classical mathematical logic is (AB) → ((¬AB) → B). In the present paper, its intuitionistic fuzzy interpretation is introduced, and lists of all defined intuitionistic fuzzy implications that satisfy it as a tautology and an intuitionistic fuzzy tautology are given.
Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy pair, Intuitionistic fuzzy logic.
AMS Classification: 03E72.
References:
  1. Angelova, N. (2019) IFSTOOL – Software for intuitionistic fuzzy sets – Necessity, Possibility and Circle operators, Advances in Intelligent Systems and Computing, issue:1081, Springer, 76–81.
  2. Angelova, N., & Atanassov, K. (2021). Research on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 27(2), 20–93.
  3. Atanassov, K. (2017). Intuitionistic Fuzzy Logics, Springer, Cham.
  4. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  5. Atanassov, K., Szmidt, E., Kacprzyk, J., & Angelova, N. (2019). Intuitionistic fuzzy implications revisited. Part 1. Notes on Intuitionistic Fuzzy Sets, 25(3), 71–78.
  6. Atanassova, L. (2008). On an intuitionistic fuzzy implication from Kleene–Dienes type. Proceedings of the Jangjeon Mathematical Society, 11(1), 69–74.
  7. Atanassova, L. (2009). New modifications of an intuitionistic fuzzy implication from Kleene–Dienes type. Part 3. Advanced Studies in Contemporary Mathematics, 18(1), 33–40.
  8. Atanassova, L. (2009). A new intuitionistic fuzzy implication. Cybernetics and Information Technologies, 9(2), 21–25.
  9. Atanassova, L. (2015). Remark on Dworniczak’s intuitionistic fuzzy implications. Part 1. Notes on Intuitionistic Fuzzy Sets, 21(3), 18–23.
  10. Atanassova, L. (2015). Remark on Dworniczak’s intuitionistic fuzzy implications. Part 2. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 61–67.
  11. Atanassova, L. (2016). Remark on Dworniczak’s intuitionistic fuzzy implications. Part 3. Notes on Intuitionistic Fuzzy Sets, 22(1), 1–6.
  12. Dworniczak, P. (2010). Some remarks about the L. Atanassova’s paper “A new intuitionistic fuzzy implication”. Cybernetics and Information Technologies, 10(3), 3–9.
  13. Dworniczak, P. (2010). On one class of intuitionistic fuzzy implications. Cybernetics and Information Technologies, 10(4), 13–21.
  14. Dworniczak, P. (2011). On some two-parametric intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 17(2), 8–16.
  15. Kacprzyk, J., Čunderlíková, K., Angelova, N., & Atanassov, K. (2021). Modifications of the Goguen's intuitionistic fuzzy implication. Notes on Intuitionistic Fuzzy Sets, 27(4), 20–29.
  16. Mendelson, E. (1964). Introduction to Mathematical Logic. Princeton, NJ: D. Van Nostrand.
  17. Vassilev, P., & Atanassov, K. (2019). Extensions and Modifications of Intuitionistic Fuzzy Sets. “Prof. Marin Drinov” Academic Publishing House, Sofia.
  18. Vassilev, P., Ribagin, S., & Kacprzyk, J. (2018). A remark on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 24(2), 1–7.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.