Title of paper:
|
Intuitionistic fuzzy interpretations of formula (A → B) → ((¬A → B) → B)
|
Author(s):
|
Nora Angelova
|
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
|
noraa@fmi.uni-sofia.bg
|
Katarína Čunderlíková
|
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
|
cunderlikova.lendelova@gmail.com
|
Eulalia Szmidt
|
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
|
szmidt@ibspan.waw.pl
|
Krassimir Atanassov
|
Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
|
krat@bas.bg
|
|
Presented at:
|
International Workshop on Intuitionistic Fuzzy Sets, founded by Prof. Beloslav Riečan, 2 December 2022, Banská Bystrica, Slovakia
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 4, pages 428–435
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.4.428-435
|
Download:
|
PDF (155 Kb, File info)
|
Abstract:
|
One of the essential formulas of the classical mathematical logic is (A → B) → ((¬A → B) → B). In the present paper, its intuitionistic fuzzy interpretation is introduced, and lists of all defined intuitionistic fuzzy implications that satisfy it as a tautology and an intuitionistic fuzzy tautology are given.
|
Keywords:
|
Intuitionistic fuzzy implication, Intuitionistic fuzzy pair, Intuitionistic fuzzy logic.
|
AMS Classification:
|
03E72.
|
References:
|
- Angelova, N. (2019) IFSTOOL – Software for intuitionistic fuzzy sets – Necessity, Possibility and Circle operators, Advances in Intelligent Systems and Computing, issue:1081, Springer, 76–81.
- Angelova, N., & Atanassov, K. (2021). Research on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 27(2), 20–93.
- Atanassov, K. (2017). Intuitionistic Fuzzy Logics, Springer, Cham.
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
- Atanassov, K., Szmidt, E., Kacprzyk, J., & Angelova, N. (2019). Intuitionistic fuzzy implications revisited. Part 1. Notes on Intuitionistic Fuzzy Sets, 25(3), 71–78.
- Atanassova, L. (2008). On an intuitionistic fuzzy implication from Kleene–Dienes type. Proceedings of the Jangjeon Mathematical Society, 11(1), 69–74.
- Atanassova, L. (2009). New modifications of an intuitionistic fuzzy implication from Kleene–Dienes type. Part 3. Advanced Studies in Contemporary Mathematics, 18(1), 33–40.
- Atanassova, L. (2009). A new intuitionistic fuzzy implication. Cybernetics and Information Technologies, 9(2), 21–25.
- Atanassova, L. (2015). Remark on Dworniczak’s intuitionistic fuzzy implications. Part 1. Notes on Intuitionistic Fuzzy Sets, 21(3), 18–23.
- Atanassova, L. (2015). Remark on Dworniczak’s intuitionistic fuzzy implications. Part 2. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 61–67.
- Atanassova, L. (2016). Remark on Dworniczak’s intuitionistic fuzzy implications. Part 3. Notes on Intuitionistic Fuzzy Sets, 22(1), 1–6.
- Dworniczak, P. (2010). Some remarks about the L. Atanassova’s paper “A new intuitionistic fuzzy implication”. Cybernetics and Information Technologies, 10(3), 3–9.
- Dworniczak, P. (2010). On one class of intuitionistic fuzzy implications. Cybernetics and Information Technologies, 10(4), 13–21.
- Dworniczak, P. (2011). On some two-parametric intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 17(2), 8–16.
- Kacprzyk, J., Čunderlíková, K., Angelova, N., & Atanassov, K. (2021). Modifications of the Goguen's intuitionistic fuzzy implication. Notes on Intuitionistic Fuzzy Sets, 27(4), 20–29.
- Mendelson, E. (1964). Introduction to Mathematical Logic. Princeton, NJ: D. Van Nostrand.
- Vassilev, P., & Atanassov, K. (2019). Extensions and Modifications of Intuitionistic Fuzzy Sets. “Prof. Marin Drinov” Academic Publishing House, Sofia.
- Vassilev, P., Ribagin, S., & Kacprzyk, J. (2018). A remark on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 24(2), 1–7.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|