As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Intercriteria analysis for evaluation of the pollution of the Struma River in the Bulgarian section

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/22/3/120-130)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/3/120-130
Title of paper: Intercriteria analysis for evaluation of the pollution of the Struma River in the Bulgarian section
Author(s):
Tatiana Ilkova
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, BAS, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
tanja@biomed.bas.bg
Mitko Petrov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, BAS, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
mpetrov@biomed.bas.bg
Presented at: 20th International Conference on Intuitionistic Fuzzy Sets, 2–3 September 2016, Sofia, Bulgaria
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 3, pages 120—130
Download:  PDF (132  Kb, File info)
Abstract: In this paper, we have presented the recently proposed approach Intercriteria Analysis (ICrA) for evaluation of the pollution of the Struma River in the Bulgarian section. The ICrA method is based on the apparatus of the index matrices and the intuitionistic fuzzy sets. ICrA is used to establish the pollution relations and the model structure based on different criteria involved in the Struma River. The following pollution indexes have investigated: Biological oxygen demand (BOD), KMn3O4-oxidation, Ammonia nitrogen, Nitrate nitrogen, and Phosphates–general in two characteristic points of the river – at the beginning – the town of Batanovtsi, and the end of the river in the Bulgarian part – the village of Marino pole. The ICrA method application has shown we have not had positive or negative consonance between the investigated indexes. Between all indexes we have had dissonance. A modification of the Regression Analysis (MRA) has used for modelling of these indexes of the end of the Bulgarian part in dependence on the beginning of the river in the Bulgarian part. The investigated assessment for the model adequate has shown they are adequate and can be used for modelling of the water pollution indexes of the Struma River.
Keywords: Intercriteria analysis, Index matrices, Intuitionistic fuzzy sets, Pollution index, Modification regression analysis, Struma River.
AMS Classification: 03E72, 93A30, 92D40.
References:
  1. Atanassov, K., Mavrov, D., & Atanassova, V. (2014) Intercriteria decision making. A new approach for multicriteria decision making. Issues in Intuitionistic fuzzy sets and generalized nets, 11, 1–8.
  2. Atanassov K. T. Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  3. Atanassov, K. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  4. Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag, Heidelberg.
  5. Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  6. Atanassov, K. (1987) Generalized index matrices. Comptes rendus de l’Academie Bulgare des Sciences, 11(40), 15–18.
  7. Atanassov, K. (2010) On index matrices, Part 1: Standard cases. Advanced Studies in Contemporary Mathematics, 20(2), 291–302.
  8. Atanassov, K. (2010) On index matrices, Part 2: Intuitionistic fuzzy case. Proceedings of the Jangjeon Mathematical Society, 13(2), 121–126.
  9. Atanassov, K. (2014) Index Matrices: Towards an Augmented Matrix Calculus, Springer, Cham.
  10. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013) On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19, 1–13.
  11. Atanassova, V., Doukovska, L., Atanassov, K., & Mavrov, D. (2014) Intercriteria decision making approach to EU member states competitiveness analysis. Proceedings of 4th International Symposium on Business Modeling and Software Design, 24-26 June 2014, Luxembourg, Grand Duchy of Luxembourg, 289–294.
  12. Atanassova, V., Doukovska, L., Mavrov, D., & Atanassov, K. (2014) Intercriteria decision making approach to EU member states competitiveness analysis: temporal and threshold analysis. Proceedings of 7th IEEE International Conference Intelligent Systems IS’2014, Warsaw, Poland, 1, 97–106.
  13. Pencheva, T., Angelova, M., Vassilev, P., & Roeva, O. (2016) Intercriteria analysis approach to parameter identification of a fermentation process model. Novel Developments in Uncertainty Representation and Processing, Part V, (K. T. Atanassov, O. Castillo, J. Kacprzyk, M. Krawczak, P. Melin, S. Sotirov, E. Sotirova, E. Szmidt, G. De Tré, S. Zadrożny, Eds.), 401, 385–397.
  14. Roeva, O., Fidanova, S., Vassilev, P., & Gepner, P. (2015) Intercriteria analysis of a model parameters identification using genetic algorithm. Annals of Computer Science and Information Systems, 5, 501-506.
  15. Angelova, M., Roeva, O., & Pencheva, T. (2015) Intercriteria analysis of crossover and mutation rates relations in simple genetic algorithm. Annals of Computer Science and Information Systems, 5, 419–424.
  16. Roeva, O., Vassilev, P., Angelova, P. & Pencheva, T. (2015) Intercriteria analysis of parameters relations in fermentation processes models. Lecture Notes in Computer Science, 9330, 171–181.
  17. Pencheva, T., Angelova, M., Atanassova, V., & Roeva, O. (2015) InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes on Intuitionistic Fuzzy Sets, 21(2), 99–110.
  18. Roeva, O., Vassilev, P. (2016) Intercriteria analysis of generation gap influence on genetic algorithms performance. Novel Developments in Uncertainty Representation and Processing, Part V, (K. T. Atanassov, O. Castillo, J. Kacprzyk, M. Krawczak, P. Melin, S. Sotirov, E. Sotirova, E. Szmidt, G. De Tré, S. Zadrożny, Eds.), 401, 301–313.
  19. Roeva, O., Fidanova, S., & Paprzycki, M. (2016) Intercriteria analysis of ACO and GA hybrid algorithms. Studies in Computational Intelligence, Springer, 610, 107–126.
  20. Ilkova, T., & Petrov, M. (2015) Using intercriteria analysis for assessment of the pollution indexes of the Struma river. Novel Developments in Uncertainty Representation and Processing, Part V, (K. T. Atanassov, O. Castillo, J. Kacprzyk, M. Krawczak, P. Melin, S. Sotirov, E. Sotirova, E. Szmidt, G. De Tré, S. Zadrożny, Eds.), 610, 351–364.
  21. Ilkova, T., & Petrov, M. (2015) Application of InterCriteria analysis to the Mesta River pollution modelling. Notes on Intuitionistic Fuzzy Sets, 21(2), 118–125.
  22. Ilkova, T., & Petrov, M. (2015) Intercriteria analysis for identification of Escherichia coli fed-batch mathematical model. Journal of International Scientific Publications: Materials, Methods & Technology, 9, 598–608.
  23. Petrov, M., & Ilkova, T. (2015) Application of the intercriteria analysis for selection of growth rate models for cultivation of strain Kluyveromyces marxianus var. lactis MC 5. Notes on Intuitionistic Fuzzy Sets, 21(5), 49–60.
  24. Zadeh L. (1965) Fuzzy sets, Information and Control, 8, 333–353.
  25. Atanassova, V., Mavrov, D., Doukovska, L., & Atanassov, K. (2014) Discussion on the threshold values in the InterCriteria Decision Making approach. Notes on Intuitionistic Fuzzy Sets, 20(2), 94–99.
  26. Ministry of Environment and Water, (2000) General Schemes for Using of Waters in River Basing.
  27. Ilkova T., & Petrov, M. (2008) Investigation of the Pollution of the Strouma River by Application of a Modified Times Series Analysis Method. Modelling and Prognosis. Journal of International Scientific Publication: Ecology & Safety, 2(1), 495-506.
  28. Ilkova, T., Petrov, M., Atanasova, M., & Diadovski, I. (2007) Modeling of the Water Pollution of the Struma River at the end of the Bulgarian part. Journal of Balkan Ecology 9, 435–441.
  29. Ilkova T., & Petrov, M. (2007) An application of regression analysis for modelling of water quality of river ecosystems. Ecology – Scientific Articles, 2, 273–290.
  30. Mavrov, D. (2015) Software for InterCriteria Analysis: Implementation of the main algorithm. Notes on Intuitionistic Fuzzy Sets, 21(2), 77–86.
  31. Gatev, G. (1973), Methods, algorithms and programs for modelling and optimization of the manufacture. Technique, Sofia, (In Bulgarian).
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.