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1 Introduction

The notion of entropy is a fundamental concept in information theory [5]; it is used as a measure
of information which we get from a realization of the considered experiment. As is known, the
usual approach in information theory is based on Shannon’s entropy [13]. Consider a finite



measurable partition 4 of a probability space (Q, S, P) with probabilities pi, ..., p, of the

corresponding elements of 4. We recall that the Shannon entropy of 4 is the number
Hq(2) = Z:'Z=1 S(pi ),

where s: [O, 1] - [O, o) is the Shannon function defined by s(x)= —xlogx, for every
xXe [0,1]. Note that we use the convention (based on continuity arguments) that 0-log0=0.

The idea of Shannon’s entropy was generalized in a natural way to the Kolmogorov—Sinai
entropy A(T) of dynamical systems ([6, 14]). Kolmogorov and Sinai applied the entropy /(7T) to
prove the existence of non-isomorphic Bernoulli shifts. Of course, the theory of Kolmogorov-
Sinai entropy has many other applications. That is why various proposals for a generalization
of the concept of Kolmogorov—Sinai entropy have been created (see e.g., [7, 8, 11]).

When solving some specific problems, it is more appropriate to use instead of Shannon’s
entropy an approach based on the concept of logical entropy (see e.g., [4]). In [4], classical
logical entropy was discussed by Ellerman as an alternative measure of information. Recall that
the logical entropy of a finite measurable partition 4 with probabilities pi, ..., p. of the
corresponding elements is defined as the number

Hy(a)=Y"", Lpi),

where 1:[0,1] — [0, o) is the logical entropy function defined by I(x) = x(1—x), for every
xXe [O,lJ.
Both concepts has been developed also in the intuitionistic fuzzy case ([2, 9. 10, 15]). In

the paper we introduce an entropy of partitions in the intuitionistic fuzzy case based on a
function ¢: [0,1]% [0, oo) containing both mentioned concepts. We shall consider the @ —

entropy of an IF-partition &= {Al,..., An} defined by the formula

Hy(&) =2 p(m(A)).

If we put ¢ =s, then we obtain the Shannon entropy of IF-partition &, if we put ¢ =1,
we obtain the logical entropy of IF-partition £. Our main result is the subadditivity property
for IF-partitions &, 77 :

Hy (& v n) < Hp(8)+ Hy().

2 Basic definitions, notations and facts

An intuitionistic fuzzy set [1] (shortly IF-set) defined on a non-empty set £ is a mapping
A=(Uy,V4): Q> |0, 1]x|0, 1] such that (@) +V 4 (w) <1, for every we Q. The function
MU, 1s called the membership function of A, the function v, is called the non-membership

function of A. Denote by F the family of all IF-sets on €. We shall define a partial binary
operation @ on the family #. If A=(u,,v,), and B=(ug,vp) are two IF-sets from the
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family F, then A® B is defined in F, if y,(@)+ugz(w)<1, v, (@) +vy(w) =1, for every
we Q, by the formula:

A®@B=(Uy+Hlp,Va+vp—1lg).

Here, 1, denotes the function defined by 1, (@) =1, forevery we Q. Similarly, we denote by
O the function defined by 0, (@) =0, for every we Q. The zero element of operation @ is
the [F-set 0=(0q,15). Indeed, A@O0 =(u,,v4)® (0g,1q) =(ls,V,4)=A, forany Ae F.
Moreover, the product A- B is defined for any A, Be ¥ by the formula:

A-B=(y-tg, 1og—(g=va) (g =V))=(ls Mg, Va+Vp—Vs Vp)
Put 1=(1,, Oy). Evidently, A-1=A, forany Ae ¥. It can easily be verified that, for
any A, B, Ce ¥, the following conditions are satisfied:

(F1) A®B=B® A if one side is defined in F (commutativity);
(F2) (A®B)®C =A®(B®C)if one side is defined in F (associativity);
(F3) If A®B exists, then C-A®C-B exists, and C-(A®B)=C-A®C-B (the

distributive law).

We write A<B if and only if g, <y, and v, 2Vv5. The relation < is a partial order
such that 0< A<1 forall Ae F.

Definition 1. A map m: F — [O, 1] is said to be a state if the following conditions are satisfied:
(i) if A® B is defined in ¥, then m(A® B)=m(A)+m(B);
(i) m(1)=1.

Denote by M the family of all mappings A=(uy,Va): Q— [O,l]x [0,11 If
A=(s,vy) and B=(ug,vg) are two elements of M, then we put
A®B=(us+Hp, Va+vp—1lg), and A-B=(uy-Ug, Vo+Vp—Va Vp).

Theorem 1. Let m:F — [0, 1] be a state and M be the family of all mappings
A=(Uy,Vy): Q> |0,1]x[0,1] Then the mapping 71 : M — |0, 1| defined, for any element
A=(tp,Va) of M, by

(e, va))=ml(ta, 0g))-m(0g, 1-v,))
is a state, and m /F = m.
Proof :The proof can be found in [12]. U]

Proposition 1. Let Ae ¥ such that m(A)=1. Then m(A-B)=m(B), for any Be F.

Proof: Put C=(1qg —pa,1g -V 4). Then
A®C=(ug+tlg-uava+tlag-va-lg)=>Iq.00)=1,

A-BO®B-C=(ta tp,Va+tvp=va-Vp)®p(la —pa), vp +1g —vVa-Vp(lg—v4))=B,

and
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1=m(A)+m(C)=1+m(C),
hence 7(C)=0. From the monotonicity of 7 it follows m(B-C)<m(C)=0.
Therefore
m(B) = #i(B) = 7ii(A- B)+7i(B-C) = (A - B) = m(A- B). 0

Definition 2. By an IF-partition on F we mean a finite collection & =1{A,,..., A, } of elements
of # such that @, A; exists, and m(®); A;) =3 m(A;)=1.

Given two IF-partitions & ={A1,..., A, }.and 7 =1{Bq,.., B,,, } their join & v 7 is defined
as the system &v 77 = {A; - Bj;i=1..n.j= 1...m}if E#n, and EvE=E.

It is easy to see that v 77 is an IF-partition on #. Namely, by definition G—)?:l A;, and
@7:1 B; exist, hence according to (F3) e, @?1=1(Ai ‘B;) also exists, and
Oy @ (A;B))=(®)y A))-(®, B)).

By Definition 1 we have

ml@rL, @ (A B))=XIL T m(A;-B)).
Moreover, using Proposition 1 we get

mle, " (4 B)))= m((@;?zlAi)-(@’]ﬁlej)): m(@" B;)=1,

3 @-entropy of IF-partitions

In this section we define the @ —entropy of IF-partitions. As special cases we obtain the
Kolmogorov entropy and the logical entropy of IF-partitions.

Definition 3. If ¢: [O, 1J — R is a mapping, &= {Al,..., An} is an IF-partition, then we define
the @ —entropy of & by the formula

Hy (&)=L 0(m(A)).
Definition 4. A function ¢: [0,1]% [0, oo) is called a subadditive generator, if the following
implication holds: if ¢;el0,1) i=1,..,n, j=l.,m 3l c;=b;, j=1..,m,

m . n _ m _
>y =a;, i=1..,n, and D14 =1, Zj:lb]' =1, then

Dy 2y olei) < Xy ola) + XL (b)),
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Example 1. The Shannon function s: [0, 1] - [0, o) is a subadditive generator. Namely, if

Cij € 0,1, i=1..,n,j=1..m, >Ci =bj, Z;'nﬂcij —a, i=l.,n, j=1..,m, and
Zleai =1, Z;n:lbj =1, then

Ci'
> Z?il s(cij) = =2 iq 27:1 cijlogeij =21y Z}ﬂzl cij log(b—; ‘b j)

C;
= _Z?:lz;nzlcij 10g b] — z?:l 27121 Cij logb—/]
Of course,
- 2?21(2?:1@]')10{; b] = _Z;'nzl b] log b] = 271:1 S(b])

Moreover, since the function y =s(x) is concave, and 271:1 b i= 1, we have

Ci

C;i C;i
— Z;n:l Cjj Iogb—]’_ = Z;”zl bis (b—jj < s(z;”zl b; EJ =5 (Z;n:l Cij): s(a;).
Therefore
Cii
- XL S cilog < X yslas)

Hence we get

Dy 2 jiys(e) < 2y s(by) + 20y s(a;)
Example 2. Let [: [0, 1] - [0, oo) be the logical entropy function. If cij € lo,1],
i=l.,nj=1..,m, > c; =b, 27:1Cij =aq;, i=1,.,n,j=1,..,m, and zl'.zzlai =1,
Z;”zlbj =1, then

Y Xl =1= 2 Y

_ m 2 m n n m 2
=12 b+ 2 (i by~ 2y 2 G -

But
in1 7:1Cij(bj_cij))
<yl '}21%) '}il(bj—cz'j)»
= a3 e )= T a1 ) =T 0(ay)
Hence

PIEPWLCHEDWRUCHED WY

This means that the logical entropy function is a subadditive generator.
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Example 3. Let us consider the function k:|0,1]— |0, «) defined by k(x)= x(1—x2), for

every x € [0,1]. We will show that the function k& is a subadditive generator.

Let ¢ e 0,1} i=1,.,s,j=1,.,t such that "7, 2321 cjj=1. Put a; = Z§:1Cij/

b; = > ¢jj,1=1,..,8,j=1,..,t. We have to prove the inequality
t t
Zf:l Z]':l k(cij) < 21?21 k(a; )"‘Z]'zl k(b;),
resp. equivalently,

s t
1‘21':12]':1% <1-30 a0 +1- Z] b7

Let us calculate:
Yo+ Z] by = Z?=1(2§'=1 i)’ + 22:1(2?:1617)3
= Z?ﬂ 2221 C?j + 2?21(32221 Zle Cz'zkcz'l )+ 2221 Z?ﬂ C?j + 2221(3Zi21 Z?:l CI%jClj)
<Yia Zj':l i +(Xin Zj.:lcf} +30 01 201 X Xt )
=2 Zj'zlcia} X Z§=1Cij)3 =2 zj'zlcia} +1°
= 12] 101] +1.

Thus,
S
Zz 1% +Z] 17] _Zz 12] 1Cz]+1
and therefore

3 ¢
1- 21121111 <1-30 a0 +1- 211]'

Theorem 2. Let ¢ be a subadditive generator, m: ¥ — [O, 1] be a state, &, 17 be IF-partitions.
Then
Hy(&v ) < Hp(8) + Hy(m).

Proof: Let & ={A1,...,An}, n ={Bl,...,Bm}. Put cij = m(A; -B]-), a; =m(A;), b]- = m(B]-). By
Proposition 1, (F3), and the additivity of m we have

ap = m(A;) =m(A; (@7 Bj)) = m(®7L; (A; - Bj)) = 351 m(A; - By) =2 ¢y,

bj =m(Bj)=m(B;-(®]_1 A))=m(®]_;(A;-Bj)) =D m(A;-Bj)=D1 .
In addition, by Definition 2 " ; a; = >/ m(A;) =1, analogously Y7 b; =1.

Therefore
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Hy(Svm=2", Z;”zl ¢’(m(Az' : Bj))=2?=1 z;’il (cij)
<Y oa) + XL o))

=2 m(AD)+ XL @(m(B))) = Hy(&) + Hy (). O

4 Conclusion

In the contribution, we have introduced a general type of entropy of IF-partitions based on a
function ¢: [0,1] - [O, oo). As special cases of @ —entropy we obtain the Shannon entropy as

well as the logical entropy of IF-partitions. Further, we have proved that if the function ¢ is a
so-called subadditive generator, then the ¢ —entropy of [F-partitions is a subadditive function.

It has been shown that the Shannon function and the logical entropy function are subadditive
generators. Moreover, we found a subadditive generator different from the Shannon-
Kolmogorov-Sinai case and the logical case.

Since we have proved the subadditivity of ¢ —entropy of IF-partitions, it is hopeful to
construct for the proposed @ —entropy an isomorphism theory of the Kolmogorov-Sinai type.
As a direct consequence of @ —results we could obtain the Kolmogorov-Sinai entropy theory
as well as the logical entropy theory.
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