Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 23, 2017, No. 3, 9–16

φ -entropy of IF-partitions

Beloslav Riečan^{1,2} and Dagmar Markechová³

¹ Department of Mathematics, Faculty of Natural Sciences Matej Bel University Tajovského 40, SK-974 01 Banská Bystrica, Slovakia ² Mathematical Institut, Slovak Academy of Sciences Štefánikova 49, SK-814 73 Bratislava, Slovakia e-mail: Beloslav.Riecan@umb.sk

³ Department of Mathematics, Faculty of Natural Sciences Constantine the Philosopher University in Nitra A. Hlinku 1, SK-949 01 Nitra, Slovakia e-mail: dmarkechova@ukf.sk

Received: 18 June 2017

Accepted: 20 July 2017

Abstract: In the paper a common formulation is given for two types of entropy of partitions in the intuitionistic fuzzy case: the Shannon-Kolmogorov-Sinai entropy ([6]) and the logical entropy ([4]).

Keywords: Intuitionistic fuzzy set, IF-partition, Shannon's entropy, Logical entropy, Subadditive generator.

AMS Classification: 03E72.

The paper is dedicated to Professor Janusz Kaczprzyk on the occasion of his 70th birthday.

1 Introduction

The notion of entropy is a fundamental concept in information theory [5]; it is used as a measure of information which we get from a realization of the considered experiment. As is known, the usual approach in information theory is based on Shannon's entropy [13]. Consider a finite

measurable partition \mathcal{A} of a probability space (Ω, S, P) with probabilities $p_1, ..., p_n$ of the corresponding elements of \mathcal{A} . We recall that the Shannon entropy of \mathcal{A} is the number

$$H_s(\mathcal{A}) = \sum_{i=1}^n s(p_i),$$

where $s:[0,1] \rightarrow [0,\infty)$ is the Shannon function defined by $s(x) = -x \log x$, for every $x \in [0,1]$. Note that we use the convention (based on continuity arguments) that $0 \cdot \log 0 = 0$. The idea of Shannon's entropy was generalized in a natural way to the Kolmogorov–Sinai entropy h(T) of dynamical systems ([6, 14]). Kolmogorov and Sinai applied the entropy h(T) to prove the existence of non-isomorphic Bernoulli shifts. Of course, the theory of Kolmogorov–Sinai entropy has many other applications. That is why various proposals for a generalization of the concept of Kolmogorov–Sinai entropy have been created (see e.g., [7, 8, 11]).

When solving some specific problems, it is more appropriate to use instead of Shannon's entropy an approach based on the concept of logical entropy (see e.g., [4]). In [4], classical logical entropy was discussed by Ellerman as an alternative measure of information. Recall that the logical entropy of a finite measurable partition \mathcal{A} with probabilities $p_1, ..., p_n$ of the corresponding elements is defined as the number

$$H_l(\mathcal{A}) = \sum_{i=1}^n l(p_i),$$

where $l: [0,1] \rightarrow [0, \infty)$ is the logical entropy function defined by l(x) = x(1-x), for every $x \in [0,1]$.

Both concepts has been developed also in the intuitionistic fuzzy case ([2, 9, 10, 15]). In the paper we introduce an entropy of partitions in the intuitionistic fuzzy case based on a function $\varphi: [0,1] \rightarrow [0,\infty)$ containing both mentioned concepts. We shall consider the φ entropy of an IF-partition $\xi = \{A_1, ..., A_n\}$ defined by the formula

$$H_{\varphi}(\xi) = \sum_{i=1}^{n} \varphi(m(A_i)).$$

If we put $\varphi = s$, then we obtain the Shannon entropy of IF-partition ξ , if we put $\varphi = l$, we obtain the logical entropy of IF-partition ξ . Our main result is the subadditivity property for IF-partitions ξ , η :

$$H_{\varphi}(\xi \lor \eta) \le H_{\varphi}(\xi) + H_{\varphi}(\eta).$$

2 Basic definitions, notations and facts

An intuitionistic fuzzy set [1] (shortly IF-set) defined on a non-empty set Ω is a mapping $A = (\mu_A, \nu_A) : \Omega \to [0, 1] \times [0, 1]$ such that $\mu_A(\omega) + \nu_A(\omega) \le 1$, for every $\omega \in \Omega$. The function μ_A is called the membership function of *A*, the function ν_A is called the non-membership function of *A*. Denote by \mathcal{F} the family of all IF-sets on Ω . We shall define a partial binary operation \oplus on the family \mathcal{F} . If $A = (\mu_A, \nu_A)$, and $B = (\mu_B, \nu_B)$ are two IF-sets from the

family \mathcal{F} , then $A \oplus B$ is defined in \mathcal{F} , if $\mu_A(\omega) + \mu_B(\omega) \le 1$, $v_A(\omega) + v_B(\omega) \ge 1$, for every $\omega \in \Omega$, by the formula:

$$A \oplus B = (\mu_A + \mu_B, \nu_A + \nu_B - 1_\Omega).$$

Here, 1_{Ω} denotes the function defined by $1_{\Omega}(\omega) = 1$, for every $\omega \in \Omega$. Similarly, we denote by 0_{Ω} the function defined by $0_{\Omega}(\omega) = 0$, for every $\omega \in \Omega$. The zero element of operation \oplus is the IF-set $0 = (0_{\Omega}, 1_{\Omega})$. Indeed, $A \oplus 0 = (\mu_A, \nu_A) \oplus (0_{\Omega}, 1_{\Omega}) = (\mu_A, \nu_A) = A$, for any $A \in \mathcal{F}$. Moreover, the product $A \cdot B$ is defined for any $A, B \in \mathcal{F}$ by the formula:

$$A \cdot B = (\mu_A \cdot \mu_B, \ 1_{\Omega} - (1_{\Omega} - \nu_A) \cdot (1_{\Omega} - \nu_B)) = (\mu_A \cdot \mu_B, \ \nu_A + \nu_B - \nu_A \cdot \nu_B).$$

Put $1 = (1_{\Omega}, 0_{\Omega})$. Evidently, $A \cdot 1 = A$, for any $A \in \mathcal{F}$. It can easily be verified that, for any $A, B, C \in \mathcal{F}$, the following conditions are satisfied:

- (F1) $A \oplus B = B \oplus A$ if one side is defined in \mathcal{F} (commutativity);
- (F2) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ if one side is defined in \mathcal{F} (associativity);
- (F3) If $A \oplus B$ exists, then $C \cdot A \oplus C \cdot B$ exists, and $C \cdot (A \oplus B) = C \cdot A \oplus C \cdot B$ (the distributive law).

We write $A \le B$ if and only if $\mu_A \le \mu_B$, and $\nu_A \ge \nu_B$. The relation \le is a partial order such that $0 \le A \le 1$ for all $A \in \mathcal{F}$.

Definition 1. A map $m: \mathcal{F} \to [0, 1]$ is said to be a state if the following conditions are satisfied: (i) if $A \oplus B$ is defined in \mathcal{F} , then $m(A \oplus B) = m(A) + m(B)$; (ii) m(1) = 1.

Denote by \mathcal{M} the family of all mappings $A = (\mu_A, \nu_A) : \Omega \to [0,1] \times [0,1]$. If $A = (\mu_A, \nu_A)$, and $B = (\mu_B, \nu_B)$ are two elements of \mathcal{M} , then we put $A \oplus B = (\mu_A + \mu_B, \nu_A + \nu_B - 1_{\Omega})$, and $A \cdot B = (\mu_A \cdot \mu_B, \nu_A + \nu_B - \nu_A \cdot \nu_B)$.

Theorem 1. Let $m: \mathcal{F} \to [0, 1]$ be a state and \mathcal{M} be the family of all mappings $A = (\mu_A, \nu_A): \Omega \to [0, 1] \times [0, 1]$. Then the mapping $\overline{m}: \mathcal{M} \to [0, 1]$ defined, for any element $A = (\mu_A, \nu_A)$ of \mathcal{M} , by

$$\overline{m}((\mu_A, \nu_A)) = m((\mu_A, 0_{\Omega})) - m((0_{\Omega}, 1 - \nu_A))$$

is a state, and $\overline{m} / F = m$.

Proof: The proof can be found in [12].

Proposition 1. Let $A \in \mathcal{F}$ such that m(A) = 1. Then $m(A \cdot B) = m(B)$, for any $B \in \mathcal{F}$.

Proof: Put $C = (1_{\Omega} - \mu_A, 1_{\Omega} - \nu_A)$. Then

$$A \oplus C = (\mu_A + 1_{\Omega} - \mu_A, \nu_A + 1_{\Omega} - \nu_A - 1_{\Omega}) = (1_{\Omega}, 0_{\Omega}) = 1,$$

 $A \cdot B \oplus B \cdot C = (\mu_A \cdot \mu_B, \nu_A + \nu_B - \nu_A \cdot \nu_B) \oplus (\mu_B (1_\Omega - \mu_A), \nu_B + 1_\Omega - \nu_A - \nu_B (1_\Omega - \nu_A)) = B,$ and

$$1 = \overline{m}(A) + \overline{m}(C) = 1 + \overline{m}(C),$$

hence $\overline{m}(C) = 0$. From the monotonicity of \overline{m} it follows $\overline{m}(B \cdot C) \le \overline{m}(C) = 0$. Therefore

$$m(B) = \overline{m}(B) = \overline{m}(A \cdot B) + \overline{m}(B \cdot C) = \overline{m}(A \cdot B) = m(A \cdot B).$$

Definition 2. By an IF-partition on \mathcal{F} we mean a finite collection $\xi = \{A_1, ..., A_n\}$ of elements of \mathcal{F} such that $\bigoplus_{i=1}^n A_i$ exists, and $m(\bigoplus_{i=1}^n A_i) = \sum_{i=1}^n m(A_i) = 1$.

Given two IF-partitions $\xi = \{A_1, ..., A_n\}$, and $\eta = \{B_1, ..., B_m\}$ their join $\xi \lor \eta$ is defined as the system $\xi \lor \eta = \{A_i \cdot B_j; i = 1, ..., n, j = 1, ..., m\}$ if $\xi \neq \eta$, and $\xi \lor \xi = \xi$.

It is easy to see that $\xi \lor \eta$ is an IF-partition on \mathcal{F} . Namely, by definition $\bigoplus_{i=1}^{n} A_i$, and $\bigoplus_{j=1}^{m} B_j$ exist, hence according to (F3) $\bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m} (A_i \cdot B_j)$ also exists, and $\bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m} (A_i \cdot B_j) = (\bigoplus_{i=1}^{n} A_i) \cdot (\bigoplus_{j=1}^{m} B_j).$

By Definition 1 we have

$$m\left(\oplus_{i=1}^{n}\oplus_{j=1}^{m}(A_{i}\cdot B_{j})\right)=\sum_{i=1}^{n}\sum_{j=1}^{m}m(A_{i}\cdot B_{j}).$$

Moreover, using Proposition 1 we get

$$m(\bigoplus_{i=1}^{n} \oplus_{j=1}^{m} (A_i \cdot B_j)) = m((\bigoplus_{i=1}^{n} A_i) \cdot (\oplus_{j=1}^{m} B_j)) = m(\oplus_{j=1}^{m} B_j) = 1.$$

3 φ -entropy of IF-partitions

In this section we define the φ -entropy of IF-partitions. As special cases we obtain the Kolmogorov entropy and the logical entropy of IF-partitions.

Definition 3. If $\varphi : [0,1] \to \Re$ is a mapping, $\xi = \{A_1, ..., A_n\}$ is an IF-partition, then we define the φ -entropy of ξ by the formula

$$H_{\varphi}(\xi) = \sum_{i=1}^{n} \varphi(m(A_i)).$$

Definition 4. A function $\varphi: [0,1] \rightarrow [0,\infty)$ is called a subadditive generator, if the following implication holds: if $c_{ij} \in [0,1]$, i = 1,...,n, j = 1,...,m, $\sum_{i=1}^{n} c_{ij} = b_j$, j = 1,...,m, $\sum_{j=1}^{m} c_{ij} = a_i$, i = 1,...,n, and $\sum_{i=1}^{n} a_i = 1$, $\sum_{j=1}^{m} b_j = 1$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \varphi(c_{ij}) \leq \sum_{i=1}^{n} \varphi(a_i) + \sum_{j=1}^{m} \varphi(b_j).$$

Example 1. The Shannon function $s: [0,1] \rightarrow [0, \infty)$ is a subadditive generator. Namely, if $c_{ij} \in [0,1]$, $i = 1,...,n, j = 1,...,m, \sum_{i=1}^{n} c_{ij} = b_j$, $\sum_{j=1}^{m} c_{ij} = a_i$, i = 1,...,n, j = 1,...,m, and $\sum_{i=1}^{n} a_i = 1$, $\sum_{j=1}^{m} b_j = 1$, then $\sum_{i=1}^{n} \sum_{j=1}^{m} s(c_{ij}) = -\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \log c_{ij} = -\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \log \left(\frac{c_{ij}}{b_j} \cdot b_j\right)$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \log b_j - \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \log \frac{c_{ij}}{b_j}.$$

Of course,

$$-\sum_{j=1}^{m} (\sum_{i=1}^{n} c_{ij}) \log b_j = -\sum_{j=1}^{m} b_j \log b_j = \sum_{j=1}^{m} s(b_j)$$

Moreover, since the function y = s(x) is concave, and $\sum_{j=1}^{m} b_j = 1$, we have

$$-\sum_{j=1}^{m} c_{ij} \log \frac{c_{ij}}{b_j} = \sum_{j=1}^{m} b_j s\left(\frac{c_{ij}}{b_j}\right) \le s\left(\sum_{j=1}^{m} b_j \frac{c_{ij}}{b_j}\right) = s\left(\sum_{j=1}^{m} c_{ij}\right) = s(a_i).$$

Therefore

$$-\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}\log\frac{c_{ij}}{b_{j}}\leq \sum_{i=1}^{n}s(a_{i}).$$

Hence we get

$$\sum_{i=1}^{n} \sum_{j=1}^{m} s(c_{ij}) \le \sum_{j=1}^{m} s(b_j) + \sum_{i=1}^{n} s(a_i).$$

Example 2. Let $l: [0,1] \to [0,\infty)$ be the logical entropy function. If $c_{ij} \in [0,1]$, $i = 1, ..., n, j = 1, ..., m, \sum_{i=1}^{n} c_{ij} = b_j$, $\sum_{j=1}^{m} c_{ij} = a_i$, i = 1, ..., n, j = 1, ..., m, and $\sum_{i=1}^{n} a_i = 1$, $\sum_{j=1}^{m} b_j = 1$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{m} l(c_{ij}) = 1 - \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij}^{2}$$
$$= 1 - \sum_{j=1}^{m} b_{j}^{2} + \sum_{j=1}^{m} (\sum_{i=1}^{n} c_{ij}) b_{j} - \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij}^{2}$$

But

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_{ij} (b_j - c_{ij}) \right)$$

$$\leq \sum_{i=1}^{n} \left(\left(\sum_{j=1}^{m} c_{ij} \right) \right) \left(\sum_{j=1}^{m} (b_j - c_{ij}) \right) \right)$$

$$= \sum_{i=1}^{n} a_i \left(1 - \sum_{j=1}^{m} c_{ij} \right) = \sum_{i=1}^{n} a_i (1 - a_i) = \sum_{i=1}^{n} l(a_i).$$

Hence

$$\sum_{i=1}^{n} \sum_{j=1}^{m} l(c_{ij}) \le \sum_{j=1}^{m} l(b_j) + \sum_{i=1}^{n} l(a_i).$$

This means that the logical entropy function is a subadditive generator.

Example 3. Let us consider the function $k:[0,1] \rightarrow [0,\infty)$ defined by $k(x) = x(1-x^2)$, for every $x \in [0,1]$. We will show that the function k is a subadditive generator.

Let
$$c_{ij} \in [0,1]$$
, $i = 1,...,s, j = 1,...,t$, such that $\sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij} = 1$. Put $a_i = \sum_{j=1}^{t} c_{ij}$, $b_j = \sum_{i=1}^{s} c_{ij}$, $i = 1,...,s, j = 1,...,t$. We have to prove the inequality

$$\sum_{i=1}^{s} \sum_{j=1}^{t} k(c_{ij}) \le \sum_{i=1}^{s} k(a_i) + \sum_{j=1}^{t} k(b_j),$$

resp. equivalently,

$$1 - \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^{3} \le 1 - \sum_{i=1}^{s} a_{i}^{3} + 1 - \sum_{j=1}^{t} b_{j}^{3}.$$

Let us calculate:

$$\begin{split} \sum_{i=1}^{s} a_i^3 + \sum_{j=1}^{t} b_j^3 &= \sum_{i=1}^{s} (\sum_{j=1}^{t} c_{ij})^3 + \sum_{j=1}^{t} (\sum_{i=1}^{s} c_{ij})^3 \\ &= \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^3 + \sum_{i=1}^{s} (3\sum_{k=1}^{t} \sum_{l=1}^{t} c_{ik}^2 c_{il}) + \sum_{j=1}^{t} \sum_{i=1}^{s} c_{ij}^3 + \sum_{j=1}^{t} (3\sum_{k=1}^{s} \sum_{l=1}^{s} c_{kj}^2 c_{lj}) \\ &\leq \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^3 + (\sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^3 + 3\sum_{k=1}^{s} \sum_{l=1}^{t} \sum_{m=1}^{s} \sum_{n=1}^{t} c_{kl}^2 c_{mn}) \\ &= \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^3 + (\sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij})^3 = \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^3 + 1^3 \\ &= \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^3 + 1. \end{split}$$

Thus,

$$\sum_{i=1}^{s} a_i^{3} + \sum_{j=1}^{t} b_j^{3} \le \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^{3} + 1,$$

and therefore

$$1 - \sum_{i=1}^{s} \sum_{j=1}^{t} c_{ij}^{3} \le 1 - \sum_{i=1}^{s} a_{i}^{3} + 1 - \sum_{j=1}^{t} b_{j}^{3}.$$

Theorem 2. Let φ be a subadditive generator, $m: \mathcal{F} \to [0, 1]$ be a state, ξ, η be IF-partitions. Then

$$H_{\varphi}(\xi \lor \eta) \le H_{\varphi}(\xi) + H_{\varphi}(\eta).$$

Proof: Let $\xi = \{A_1, ..., A_n\}$, $\eta = \{B_1, ..., B_m\}$. Put $c_{ij} = m(A_i \cdot B_j)$, $a_i = m(A_i)$, $b_j = m(B_j)$. By Proposition 1, (F3), and the additivity of *m* we have

$$a_i = m(A_i) = m(A_i \cdot (\bigoplus_{j=1}^m B_j)) = m(\bigoplus_{j=1}^m (A_i \cdot B_j)) = \sum_{j=1}^m m(A_i \cdot B_j) = \sum_{j=1}^m c_{ij},$$

$$b_j = m(B_j) = m(B_j \cdot (\bigoplus_{i=1}^n A_i)) = m(\bigoplus_{i=1}^n (A_i \cdot B_j)) = \sum_{i=1}^n m(A_i \cdot B_j) = \sum_{i=1}^n c_{ij}.$$

In addition, by Definition 2 $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} m(A_i) = 1$, analogously $\sum_{j=1}^{m} b_j = 1$. Therefore

$$H_{\varphi}(\xi \lor \eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} \varphi(m(A_i \cdot B_j)) = \sum_{i=1}^{n} \sum_{j=1}^{m} \varphi(c_{ij})$$
$$\leq \sum_{i=1}^{n} \varphi(a_i) + \sum_{j=1}^{m} \varphi(b_j)$$
$$= \sum_{i=1}^{n} \varphi(m(A_i)) + \sum_{j=1}^{m} \varphi(m(B_j)) = H_{\varphi}(\xi) + H_{\varphi}(\eta).$$

4 Conclusion

In the contribution, we have introduced a general type of entropy of IF-partitions based on a function $\varphi:[0,1] \rightarrow [0,\infty)$. As special cases of φ -entropy we obtain the Shannon entropy as well as the logical entropy of IF-partitions. Further, we have proved that if the function φ is a so-called subadditive generator, then the φ -entropy of IF-partitions is a subadditive function. It has been shown that the Shannon function and the logical entropy function are subadditive generators. Moreover, we found a subadditive generator different from the Shannon-Kolmogorov-Sinai case and the logical case.

Since we have proved the subadditivity of φ -entropy of IF-partitions, it is hopeful to construct for the proposed φ -entropy an isomorphism theory of the Kolmogorov-Sinai type. As a direct consequence of φ -results we could obtain the Kolmogorov-Sinai entropy theory as well as the logical entropy theory.

References

- [1] Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Physic Verlag, Heidelberg,.
- [2] Durica, M. (2007) Entropy on IF events. *Notes on Intuitionistic Fuzzy Sets*, 13(4), 30–40.
- [3] Ebrahimzadeh, A. (2016) Logical entropy of quantum dynamical systems. *Open Physics*, 14, 1–5.
- [4] Ellerman, D. (2013) An introduction to logical entropy and its relation to Shannon entropy. *Int. J. Seman. Comput.*, 7, 121–145.
- [5] Gray, R. M. (2009) *Entropy and Information Theory*. Springer: Berlin/Heidelberg, Germany.
- [6] Kolmogorov, A. N. (1958) New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. *Dokl. Russ. Acad. Sci.*, 119, 861–864.
- [7] Markechová, D. (1992) The entropy of fuzzy dynamical systems and generators. *Fuzzy Sets Syst.*, 48, 351–363.

- [8] Markechová, D., & Riečan, B. (2016) Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems. *Entropy*, 18 (19), doi:10.3390/e18010019.
- [9] Markechová, D., & Riečan, B. (2016) Logical Entropy of Fuzzy Dynamical Systems. *Entropy*, Vol. 18 (157), doi: 10.3390/e18040157.
- [10] Markechová, D., & Riečan, B. Logical Entropy and Logical Mutual Information of Experiments in the Intuitionistic Fuzzy Case. *Entropy* (under review).
- [11] Mesiar, R., & Rybárik, J. (1998) Entropy of Fuzzy Partitions A General Model. Fuzzy Sets Syst., 99, 73–79.
- [12] Riečan, B. (2015) On finitely additive IF-states. *Proceedings of the 7th IEEE International Conference Intelligent Systems IS'2014*, Warsaw, Poland, 24-26 September 2014; Volume 1: Mathematical Foundations, Theory, Analysis (P. Angelov et al. eds.), Springer, Switzerland; 149–156.
- [13] Shannon, C. E. (1948) Mathematical theory of communication. *Bell Syst. Tech. J.*, 27, 379–423.
- [14] Sinai, Y. G. (1990) Ergodic theory with applications to dynamical systems and statistical *mechanics*. Springer, Berlin.
- [15] Szmidt, E., & Kacprzyk, J. (2001) Entropy of intuitionistic fuzzy sets. Fuzzy Sets Syst., 118, 467–477.