φ-entropy of IF-partitions

Beloslav Riečan ${ }^{1,2}$ and Dagmar Markechová ${ }^{3}$

${ }^{1}$ Department of Mathematics, Faculty of Natural Sciences
Matej Bel University
Tajovského 40, SK-974 01 Banská Bystrica, Slovakia
${ }^{2}$ Mathematical Institut, Slovak Academy of Sciences
Štefánikova 49, SK-814 73 Bratislava, Slovakia
e-mail: Beloslav.Riecan@umb.sk
${ }^{3}$ Department of Mathematics, Faculty of Natural Sciences
Constantine the Philosopher University in Nitra
A. Hlinku 1, SK-949 01 Nitra, Slovakia
e-mail: dmarkechova@ukf.sk

Received: 18 June 2017
Accepted: 20 July 2017
Abstract: In the paper a common formulation is given for two types of entropy of partitions in
the intuitionistic fuzzy case: the Shannon-Kolmogorov-Sinai entropy ([6]) and the logical
entropy ([4]).
Keywords: Intuitionistic fuzzy set, IF-partition, Shannon’s entropy, Logical entropy, Subadditive generator.
AMS Classification: 03E72.

The paper is dedicated to Professor Janusz Kaczprzyk
on the occasion of his $70^{\text {th }}$ birthday.

1 Introduction

The notion of entropy is a fundamental concept in information theory [5]; it is used as a measure of information which we get from a realization of the considered experiment. As is known, the usual approach in information theory is based on Shannon's entropy [13]. Consider a finite
measurable partition \mathcal{A} of a probability space (Ω, S, P) with probabilities p_{1}, \ldots, p_{n} of the corresponding elements of \mathcal{A}. We recall that the Shannon entropy of \mathcal{A} is the number

$$
H_{s}(\mathcal{A})=\sum_{i=1}^{n} s\left(p_{i}\right)
$$

where $s:[0,1] \rightarrow[0, \infty)$ is the Shannon function defined by $s(x)=-x \log x$, for every $x \in[0,1]$. Note that we use the convention (based on continuity arguments) that $0 \cdot \log 0=0$. The idea of Shannon's entropy was generalized in a natural way to the Kolmogorov-Sinai entropy $h(T)$ of dynamical systems ([6, 14]). Kolmogorov and Sinai applied the entropy $h(T)$ to prove the existence of non-isomorphic Bernoulli shifts. Of course, the theory of KolmogorovSinai entropy has many other applications. That is why various proposals for a generalization of the concept of Kolmogorov-Sinai entropy have been created (see e.g., $[7,8,11]$).

When solving some specific problems, it is more appropriate to use instead of Shannon's entropy an approach based on the concept of logical entropy (see e.g., [4]). In [4], classical logical entropy was discussed by Ellerman as an alternative measure of information. Recall that the logical entropy of a finite measurable partition \mathcal{A} with probabilities p_{1}, \ldots, p_{n} of the corresponding elements is defined as the number

$$
H_{l}(\mathcal{A})=\sum_{i=1}^{n} l\left(p_{i}\right)
$$

where $l:[0,1] \rightarrow[0, \infty)$ is the logical entropy function defined by $l(x)=x(1-x)$, for every $x \in[0,1]$.

Both concepts has been developed also in the intuitionistic fuzzy case ([2, 9. 10, 15]). In the paper we introduce an entropy of partitions in the intuitionistic fuzzy case based on a function $\varphi:[0,1] \rightarrow[0, \infty)$ containing both mentioned concepts. We shall consider the φ entropy of an IF-partition $\xi=\left\{A_{1}, \ldots, A_{n}\right\}$ defined by the formula

$$
H_{\varphi}(\xi)=\sum_{i=1}^{n} \varphi\left(m\left(A_{i}\right)\right)
$$

If we put $\varphi=s$, then we obtain the Shannon entropy of IF-partition ξ, if we put $\varphi=l$, we obtain the logical entropy of IF-partition ξ. Our main result is the subadditivity property for IF-partitions ξ, η :

$$
H_{\varphi}(\xi \vee \eta) \leq H_{\varphi}(\xi)+H_{\varphi}(\eta)
$$

2 Basic definitions, notations and facts

An intuitionistic fuzzy set [1] (shortly IF-set) defined on a non-empty set Ω is a mapping $A=\left(\mu_{A}, v_{A}\right): \Omega \rightarrow[0,1] \times[0,1]$ such that $\mu_{A}(\omega)+v_{A}(\omega) \leq 1$, for every $\omega \in \Omega$. The function μ_{A} is called the membership function of A, the function v_{A} is called the non-membership function of A. Denote by F the family of all IF-sets on Ω. We shall define a partial binary operation \oplus on the family \mathcal{F}. If $A=\left(\mu_{A}, v_{A}\right)$, and $B=\left(\mu_{B}, v_{B}\right)$ are two IF-sets from the
family F, then $A \oplus B$ is defined in F, if $\mu_{A}(\omega)+\mu_{B}(\omega) \leq 1, v_{A}(\omega)+v_{B}(\omega) \geq 1$, for every $\omega \in \Omega$, by the formula:

$$
A \oplus B=\left(\mu_{A}+\mu_{B}, v_{A}+v_{B}-1_{\Omega}\right) .
$$

Here, 1_{Ω} denotes the function defined by $1_{\Omega}(\omega)=1$, for every $\omega \in \Omega$. Similarly, we denote by 0_{Ω} the function defined by $0_{\Omega}(\omega)=0$, for every $\omega \in \Omega$. The zero element of operation \oplus is the IF-set $0=\left(0_{\Omega}, 1_{\Omega}\right)$. Indeed, $A \oplus 0=\left(\mu_{A}, v_{A}\right) \oplus\left(0_{\Omega}, 1_{\Omega}\right)=\left(\mu_{A}, v_{A}\right)=A$, for any $A \in F$. Moreover, the product $A \cdot B$ is defined for any $A, B \in F$ by the formula:

$$
A \cdot B=\left(\mu_{A} \cdot \mu_{B}, 1_{\Omega}-\left(1_{\Omega}-v_{A}\right) \cdot\left(1_{\Omega}-v_{B}\right)\right)=\left(\mu_{A} \cdot \mu_{B}, v_{A}+v_{B}-v_{A} \cdot v_{B}\right) .
$$

Put $1=\left(1_{\Omega}, 0_{\Omega}\right)$. Evidently, $A \cdot 1=A$, for any $A \in F$. It can easily be verified that, for any $A, B, C \in F$, the following conditions are satisfied:
(F1) $\quad A \oplus B=B \oplus A$ if one side is defined in F (commutativity);
(F2) $\quad(A \oplus B) \oplus C=A \oplus(B \oplus C)$ if one side is defined in F (associativity);
(F3) If $A \oplus B$ exists, then $C \cdot A \oplus C \cdot B$ exists, and $C \cdot(A \oplus B)=C \cdot A \oplus C \cdot B$ (the distributive law).
We write $A \leq B$ if and only if $\mu_{A} \leq \mu_{B}$, and $v_{A} \geq v_{B}$. The relation \leq is a partial order such that $0 \leq A \leq 1$ for all $A \in F$.

Definition 1. A map $m: \mathcal{F} \rightarrow[0,1]$ is said to be a state if the following conditions are satisfied:
(i) if $A \oplus B$ is defined in F, then $m(A \oplus B)=m(A)+m(B)$;
(ii) $m(1)=1$.

Denote by \mathcal{M} the family of all mappings $A=\left(\mu_{A}, v_{A}\right): \Omega \rightarrow[0,1] \times[0,1]$. If $A=\left(\mu_{A}, v_{A}\right)$, and $B=\left(\mu_{B}, v_{B}\right)$ are two elements of \mathcal{M}, then we put $A \oplus B=\left(\mu_{A}+\mu_{B}, v_{A}+v_{B}-1_{\Omega}\right)$, and $A \cdot B=\left(\mu_{A} \cdot \mu_{B}, v_{A}+v_{B}-v_{A} \cdot v_{B}\right)$.

Theorem 1. Let $m: \mathcal{F} \rightarrow[0,1]$ be a state and \mathcal{M} be the family of all mappings $A=\left(\mu_{A}, v_{A}\right): \Omega \rightarrow[0,1] \times[0,1]$. Then the mapping $\bar{m}: \mathscr{M} \rightarrow[0,1]$ defined, for any element $A=\left(\mu_{A}, v_{A}\right)$ of \mathscr{M}, by

$$
\bar{m}\left(\left(\mu_{A}, v_{A}\right)\right)=m\left(\left(\mu_{A}, 0_{\Omega}\right)\right)-m\left(\left(0_{\Omega}, 1-v_{A}\right)\right)
$$

is a state, and $\bar{m} / F=m$.
Proof:The proof can be found in [12].
Proposition 1. Let $A \in F$ such that $m(A)=1$. Then $m(A \cdot B)=m(B)$, for any $B \in F$.
Proof: Put $C=\left(1_{\Omega}-\mu_{A}, 1_{\Omega}-v_{A}\right)$. Then

$$
A \oplus C=\left(\mu_{A}+1_{\Omega}-\mu_{A}, v_{A}+1_{\Omega}-v_{A}-1_{\Omega}\right)=\left(1_{\Omega}, 0_{\Omega}\right)=1,
$$

$A \cdot B \oplus B \cdot C=\left(\mu_{A} \cdot \mu_{B}, v_{A}+v_{B}-v_{A} \cdot v_{B}\right) \oplus\left(\mu_{B}\left(1_{\Omega}-\mu_{A}\right), v_{B}+1_{\Omega}-v_{A}-v_{B}\left(1_{\Omega}-v_{A}\right)\right)=B$, and

$$
1=\bar{m}(A)+\bar{m}(C)=1+\bar{m}(C)
$$

hence $\bar{m}(C)=0$. From the monotonicity of \bar{m} it follows $\bar{m}(B \cdot C) \leq \bar{m}(C)=0$.
Therefore

$$
m(B)=\bar{m}(B)=\bar{m}(A \cdot B)+\bar{m}(B \cdot C)=\bar{m}(A \cdot B)=m(A \cdot B) .
$$

Definition 2. By an IF-partition on \mathcal{F} we mean a finite collection $\xi=\left\{A_{1}, \ldots, A_{n}\right\}$ of elements of \mathcal{F} such that $\oplus_{i=1}^{n} A_{i}$ exists, and $m\left(\oplus_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} m\left(A_{i}\right)=1$.

Given two IF-partitions $\xi=\left\{A_{1}, \ldots, A_{n}\right\}$, and $\eta=\left\{B_{1}, \ldots, B_{m}\right\}$ their join $\xi \vee \eta$ is defined as the system $\xi \vee \eta=\left\{A_{i} \cdot B_{j} ; i=1, \ldots, n, j=1, \ldots, m\right\}$ if $\xi \neq \eta$, and $\xi \vee \xi=\xi$.

It is easy to see that $\xi \vee \eta$ is an IF-partition on F. Namely, by definition $\oplus_{i=1}^{n} A_{i}$, and $\oplus_{j=1}^{m} B_{j} \quad$ exist, hence according to (F3) $\oplus_{i=1}^{n} \oplus_{j=1}^{m}\left(A_{i} \cdot B_{j}\right)$ also exists, and $\oplus_{i=1}^{n} \oplus_{j=1}^{m}\left(A_{i} \cdot B_{j}\right)=\left(\oplus_{i=1}^{n} A_{i}\right) \cdot\left(\oplus_{j=1}^{m} B_{j}\right)$.

By Definition 1 we have

$$
m\left(\oplus_{i=1}^{n} \oplus_{j=1}^{m}\left(A_{i} \cdot B_{j}\right)\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} m\left(A_{i} \cdot B_{j}\right) .
$$

Moreover, using Proposition 1 we get

$$
m\left(\oplus_{i=1}^{n} \oplus_{j=1}^{m}\left(A_{i} \cdot B_{j}\right)\right)=m\left(\left(\oplus_{i=1}^{n} A_{i}\right) \cdot\left(\oplus_{j=1}^{m} B_{j}\right)\right)=m\left(\oplus_{j=1}^{m} B_{j}\right)=1 .
$$

3φ-entropy of IF-partitions

In this section we define the φ-entropy of IF-partitions. As special cases we obtain the Kolmogorov entropy and the logical entropy of IF-partitions.

Definition 3. If $\varphi:[0,1] \rightarrow \mathfrak{R}$ is a mapping, $\xi=\left\{A_{1}, \ldots, A_{n}\right\}$ is an IF-partition, then we define the φ-entropy of ξ by the formula

$$
H_{\varphi}(\xi)=\sum_{i=1}^{n} \varphi\left(m\left(A_{i}\right)\right)
$$

Definition 4. A function $\varphi:[0,1] \rightarrow[0, \infty)$ is called a subadditive generator, if the following implication holds: if $c_{i j} \in[0,1], i=1, \ldots, n, \quad j=1, \ldots, m, \quad \sum_{i=1}^{n} c_{i j}=b_{j}, \quad j=1, \ldots, m$, $\sum_{j=1}^{m} c_{i j}=a_{i}, i=1, \ldots, n$, and $\sum_{i=1}^{n} a_{i}=1, \sum_{j=1}^{m} b_{j}=1$, then

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \varphi\left(c_{i j}\right) \leq \sum_{i=1}^{n} \varphi\left(a_{i}\right)+\sum_{j=1}^{m} \varphi\left(b_{j}\right) .
$$

Example 1. The Shannon function $s:[0,1] \rightarrow[0, \infty)$ is a subadditive generator. Namely, if $c_{i j} \in[0,1], \quad i=1, \ldots, n, j=1, \ldots, m, \quad \sum_{i=1}^{n} c_{i j}=b_{j}, \quad \sum_{j=1}^{m} c_{i j}=a_{i}, \quad i=1, \ldots, n, \quad j=1, \ldots, m$, and $\sum_{i=1}^{n} a_{i}=1, \sum_{j=1}^{m} b_{j}=1$, then

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{m} s\left(c_{i j}\right)=-\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} \log c_{i j}=-\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} \log \left(\frac{c_{i j}}{b_{j}} \cdot b_{j}\right) \\
=-\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} \log b_{j}-\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} \log \frac{c_{i j}}{b_{j}} .
\end{gathered}
$$

Of course,

$$
-\sum_{j=1}^{m}\left(\sum_{i=1}^{n} c_{i j}\right) \log b_{j}=-\sum_{j=1}^{m} b_{j} \log b_{j}=\sum_{j=1}^{m} s\left(b_{j}\right) .
$$

Moreover, since the function $y=s(x)$ is concave, and $\sum_{j=1}^{m} b_{j}=1$, we have

$$
-\sum_{j=1}^{m} c_{i j} \log \frac{c_{i j}}{b_{j}}=\sum_{j=1}^{m} b_{j} s\left(\frac{c_{i j}}{b_{j}}\right) \leq s\left(\sum_{j=1}^{m} b_{j} \frac{c_{i j}}{b_{j}}\right)=s\left(\sum_{j=1}^{m} c_{i j}\right)=s\left(a_{i}\right) .
$$

Therefore

$$
-\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} \log \frac{c_{i j}}{b_{j}} \leq \sum_{i=1}^{n} s\left(a_{i}\right) .
$$

Hence we get

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} s\left(c_{i j}\right) \leq \sum_{j=1}^{m} s\left(b_{j}\right)+\sum_{i=1}^{n} s\left(a_{i}\right) .
$$

Example 2. Let $l:[0,1] \rightarrow[0, \infty)$ be the logical entropy function. If $c_{i j} \in[0,1]$, $i=1, \ldots, n, j=1, \ldots, m, \quad \sum_{i=1}^{n} c_{i j}=b_{j}, \quad \sum_{j=1}^{m} c_{i j}=a_{i}, \quad i=1, \ldots, n, j=1, \ldots, m, \quad$ and $\quad \sum_{i=1}^{n} a_{i}=1$, $\sum_{j=1}^{m} b_{j}=1$, then

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{m} l\left(c_{i j}\right)=1-\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j}^{2} \\
=1-\sum_{j=1}^{m} b_{j}^{2}+\sum_{j=1}^{m}\left(\sum_{i=1}^{n} c_{i j}\right) b_{j}-\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j}{ }^{2} .
\end{gathered}
$$

But

$$
\begin{gathered}
\sum_{i=1}^{n}\left(\sum_{j=1}^{m} c_{i j}\left(b_{j}-c_{i j}\right)\right) \\
\leq \sum_{i=1}^{n}\left(\left(\sum_{j=1}^{m} c_{i j}\right)\left(\sum_{j=1}^{m}\left(b_{j}-c_{i j}\right)\right)\right) \\
=\sum_{i=1}^{n} a_{i}\left(1-\sum_{j=1}^{m} c_{i j}\right)=\sum_{i=1}^{n} a_{i}\left(1-a_{i}\right)=\sum_{i=1}^{n} l\left(a_{i}\right) .
\end{gathered}
$$

Hence

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} l\left(c_{i j}\right) \leq \sum_{j=1}^{m} l\left(b_{j}\right)+\sum_{i=1}^{n} l\left(a_{i}\right) .
$$

This means that the logical entropy function is a subadditive generator.

Example 3. Let us consider the function $k:[0,1] \rightarrow[0, \infty)$ defined by $k(x)=x\left(1-x^{2}\right)$, for every $x \in[0,1]$. We will show that the function k is a subadditive generator.

Let $c_{i j} \in[0,1], i=1, \ldots, s, j=1, \ldots, t$, such that $\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}=1$. Put $a_{i}=\sum_{j=1}^{t} c_{i j}$, $b_{j}=\sum_{i=1}^{s} c_{i j}, i=1, \ldots, s, j=1, \ldots, t$. We have to prove the inequality

$$
\sum_{i=1}^{s} \sum_{j=1}^{t} k\left(c_{i j}\right) \leq \sum_{i=1}^{s} k\left(a_{i}\right)+\sum_{j=1}^{t} k\left(b_{j}\right),
$$

resp. equivalently,

$$
1-\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3} \leq 1-\sum_{i=1}^{s} a_{i}^{3}+1-\sum_{j=1}^{t} b_{j}^{3} .
$$

Let us calculate:

$$
\begin{gathered}
\sum_{i=1}^{s} a_{i}^{3}+\sum_{j=1}^{t} b_{j}^{3}=\sum_{i=1}^{s}\left(\sum_{j=1}^{t} c_{i j}\right)^{3}+\sum_{j=1}^{t}\left(\sum_{i=1}^{s} c_{i j}\right)^{3} \\
=\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3}+\sum_{i=1}^{s}\left(3 \sum_{k=1}^{t} \sum_{l=1}^{t} c_{i k}^{2} c_{i l}\right)+\sum_{j=1}^{t} \sum_{i=1}^{s} c_{i j}^{3}+\sum_{j=1}^{t}\left(3 \sum_{k=1}^{s} \sum_{l=1}^{s} c_{k j}^{2} c_{l j}\right) \\
\leq \sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3}+\left(\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3}+3 \sum_{k=1}^{s} \sum_{l=1}^{t} \sum_{m=1}^{s} \sum_{n=1}^{t} c_{k l}^{2} c_{m n}\right) \\
=\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3}+\left(\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}\right)^{3}=\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3}+1^{3} \\
=\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3}+1 .
\end{gathered}
$$

Thus,

$$
\sum_{i=1}^{s} a_{i}^{3}+\sum_{j=1}^{t} b_{j}^{3} \leq \sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3}+1
$$

and therefore

$$
1-\sum_{i=1}^{s} \sum_{j=1}^{t} c_{i j}^{3} \leq 1-\sum_{i=1}^{s} a_{i}^{3}+1-\sum_{j=1}^{t} b_{j}^{3} .
$$

Theorem 2. Let φ be a subadditive generator, $m: F \rightarrow[0,1]$ be a state, ξ, η be IF-partitions. Then

$$
H_{\varphi}(\xi \vee \eta) \leq H_{\varphi}(\xi)+H_{\varphi}(\eta)
$$

Proof: Let $\xi=\left\{A_{1}, \ldots, A_{n}\right\}, \eta=\left\{B_{1}, \ldots, B_{m}\right\}$. Put $c_{i j}=m\left(A_{i} \cdot B_{j}\right), a_{i}=m\left(A_{i}\right), b_{j}=m\left(B_{j}\right)$. By Proposition 1, (F3), and the additivity of m we have

$$
\begin{gathered}
a_{i}=m\left(A_{i}\right)=m\left(A_{i} \cdot\left(\oplus_{j=1}^{m} B_{j}\right)\right)=m\left(\oplus_{j=1}^{m}\left(A_{i} \cdot B_{j}\right)\right)=\sum_{j=1}^{m} m\left(A_{i} \cdot B_{j}\right)=\sum_{j=1}^{m} c_{i j}, \\
b_{j}=m\left(B_{j}\right)=m\left(B_{j} \cdot\left(\oplus_{i=1}^{n} A_{i}\right)\right)=m\left(\oplus_{i=1}^{n}\left(A_{i} \cdot B_{j}\right)\right)=\sum_{i=1}^{n} m\left(A_{i} \cdot B_{j}\right)=\sum_{i=1}^{n} c_{i j} .
\end{gathered}
$$

In addition, by Definition $2 \sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} m\left(A_{i}\right)=1$, analogously $\sum_{j=1}^{m} b_{j}=1$.
Therefore

$$
\begin{gathered}
H_{\varphi}(\xi \vee \eta)=\sum_{i=1}^{n} \sum_{j=1}^{m} \varphi\left(m\left(A_{i} \cdot B_{j}\right)\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \varphi\left(c_{i j}\right) \\
\leq \sum_{i=1}^{n} \varphi\left(a_{i}\right)+\sum_{j=1}^{m} \varphi\left(b_{j}\right) \\
=\sum_{i=1}^{n} \varphi\left(m\left(A_{i}\right)\right)+\sum_{j=1}^{m} \varphi\left(m\left(B_{j}\right)\right)=H_{\varphi}(\xi)+H_{\varphi}(\eta)
\end{gathered}
$$

4 Conclusion

In the contribution, we have introduced a general type of entropy of IF-partitions based on a function $\varphi:[0,1] \rightarrow[0, \infty)$. As special cases of φ-entropy we obtain the Shannon entropy as well as the logical entropy of IF-partitions. Further, we have proved that if the function φ is a so-called subadditive generator, then the φ-entropy of IF-partitions is a subadditive function. It has been shown that the Shannon function and the logical entropy function are subadditive generators. Moreover, we found a subadditive generator different from the Shannon-Kolmogorov-Sinai case and the logical case.

Since we have proved the subadditivity of φ-entropy of IF-partitions, it is hopeful to construct for the proposed φ-entropy an isomorphism theory of the Kolmogorov-Sinai type. As a direct consequence of φ-results we could obtain the Kolmogorov-Sinai entropy theory as well as the logical entropy theory.

References

[1] Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Physic Verlag, Heidelberg,
[2] Ďurica, M. (2007) Entropy on IF events. Notes on Intuitionistic Fuzzy Sets, 13(4), 30-40.
[3] Ebrahimzadeh, A. (2016) Logical entropy of quantum dynamical systems. Open Physics, 14, 1-5.
[4] Ellerman, D. (2013) An introduction to logical entropy and its relation to Shannon entropy. Int. J. Seman. Comput., 7, 121-145.
[5] Gray, R. M. (2009) Entropy and Information Theory. Springer: Berlin/Heidelberg, Germany.
[6] Kolmogorov, A. N. (1958) New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. Dokl. Russ. Acad. Sci., 119, 861-864.
[7] Markechová, D. (1992) The entropy of fuzzy dynamical systems and generators. Fuzzy Sets Syst., 48, 351-363.
[8] Markechová, D., \& Riečan, B. (2016) Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems. Entropy, 18 (19), doi:10.3390/e18010019.
[9] Markechová, D., \& Riečan, B. (2016) Logical Entropy of Fuzzy Dynamical Systems. Entropy, Vol. 18 (157), doi: 10.3390/e18040157.
[10] Markechová, D., \& Riečan, B. Logical Entropy and Logical Mutual Information of Experiments in the Intuitionistic Fuzzy Case. Entropy (under review).
[11] Mesiar, R., \& Rybárik, J. (1998) Entropy of Fuzzy Partitions - A General Model. Fuzzy Sets Syst., 99, 73-79.
[12] Riečan, B. (2015) On finitely additive IF-states. Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014, Warsaw, Poland, 24-26 September 2014; Volume 1: Mathematical Foundations, Theory, Analysis (P. Angelov et al. eds.), Springer, Switzerland; 149-156.
[13] Shannon, C. E. (1948) Mathematical theory of communication. Bell Syst. Tech. J., 27, 379-423.
[14] Sinai, Y. G. (1990) Ergodic theory with applications to dynamical systems and statistical mechanics. Springer, Berlin.
[15] Szmidt, E., \& Kacprzyk, J. (2001) Entropy of intuitionistic fuzzy sets. Fuzzy Sets Syst., 118, 467-477.

