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1 Introduction  

The notion of entropy is a fundamental concept in information theory [5]; it is used as a measure 
of information which we get from a realization of the considered experiment. As is known, the 
usual approach in information theory is based on Shannon’s entropy [13]. Consider a finite 
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measurable partition A  of a probability space  ( )PS,,Ω  with probabilities p1, ..., pn of the 

corresponding elements of A.  We recall that the Shannon entropy of A  is the number  

,)()( 1∑ ==
n
i is psH A  

where [ ] [ )∞→ ,01,0:s  is the Shannon function defined by ,log)( xxxs −=  for every 

[ ].1,0∈x  Note that we use the convention (based on continuity arguments) that .00log0 =⋅  

The idea of Shannon’s entropy was generalized in a natural way to the Kolmogorov–Sinai 
entropy h(T) of dynamical systems ([6, 14]). Kolmogorov and Sinai applied the entropy h(T) to 
prove the existence of non-isomorphic Bernoulli shifts. Of course, the theory of Kolmogorov-
Sinai entropy has many other applications. That is why various proposals for a generalization 
of the concept of Kolmogorov–Sinai entropy have been created (see e.g., [7, 8, 11]). 

When solving some specific problems, it is more appropriate to use instead of Shannon’s 
entropy an approach based on the concept of logical entropy (see e.g., [4]). In [4], classical 
logical entropy was discussed by Ellerman as an alternative measure of information. Recall that 
the logical entropy of a finite measurable partition A  with probabilities p1, ..., pn of the 

corresponding elements is defined as the number  

,)()( 1∑ ==
n
i il plH A   

where [ ] [ )∞→ ,01,0:l  is the logical entropy function defined by ),1()( xxxl −=  for every 

[ ].1,0∈x  

Both concepts has been developed also in the intuitionistic fuzzy case ([2, 9. 10, 15]). In 
the paper we introduce an entropy of partitions in the intuitionistic fuzzy case based on a 
function [ ] [ )∞→ ,01,0:ϕ  containing both mentioned concepts. We shall consider the −ϕ

entropy of an IF-partition { }nAA ,...,1=ξ  defined by the formula 

.))(()( 1∑ == n
i iAmH ϕξϕ  

If we put ,s=ϕ  then we obtain the Shannon entropy of IF-partition ,ξ  if we put ,l=ϕ  

we obtain the logical entropy of IF-partition .ξ  Our main result is the subadditivity property 

for IF-partitions ηξ , : 

).()()( ηξηξ ϕϕϕ HHH +≤∨  

2 Basic definitions, notations and facts  

An intuitionistic fuzzy set [1] (shortly IF-set) defined on a non-empty set Ω  is a mapping 
[ ] [ ]1,01,0:),( ×→Ω= AAA νµ  such that ,1)()( ≤+ ωνωµ AA  for every .Ω∈ω  The function 

Aµ  is called the membership function of A, the function Aν  is called the non-membership 

function of A. Denote by F  the family of all IF-sets on Ω . We shall define a partial binary 
operation ⊕  on the family F . If ),,( AAA νµ=  and ),( BBB νµ=  are two IF-sets from the 
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family ,F  then BA⊕  is defined in ,F  if ,1)()( ≤+ ωµωµ BA  ,1)()( ≥+ ωνων BA  for every 

,Ω∈ω  by the formula:  

).1,( Ω−++=⊕ BABABA ννµµ  

Here, Ω1  denotes the function defined by ,1)(1 =Ω ω  for every .Ω∈ω  Similarly, we denote by 

Ω0  the function defined by ,0)(0 =Ω ω  for every .Ω∈ω  The zero element of operation ⊕  is 

the IF-set ).1,0(0 ΩΩ=  Indeed, 0⊕A  )1,0(),( ΩΩ⊕= AA νµ  ,),( AAA == νµ  for any .F∈A  

Moreover, the product BA ⋅  is defined for any F∈BA,  by the formula: 

).,())1()1(1,( BABABABABABA ννννµµννµµ ⋅−+⋅=−⋅−−⋅=⋅ ΩΩΩ  

Put ).0,1(1 ΩΩ=  Evidently, ,1 AA =⋅  for any .F∈A  It can easily be verified that, for 

any ,,, F∈CBA  the following conditions are satisfied: 

(F1) BA⊕ AB⊕=  if one side is defined in F  (commutativity); 
(F2) CBA ⊕⊕ )( )( CBA ⊕⊕= if one side is defined in F  (associativity); 

(F3) If BA⊕  exists, then BCAC ⋅⊕⋅  exists, and )( BAC ⊕⋅ BCAC ⋅⊕⋅=  (the 

distributive law). 

We write BA ≤  if and only if ,BA µµ ≤ and .BA νν ≥  The relation ≤  is a partial order 

such that 10 ≤≤ A  for all .F∈A   

Definition 1. A map [ ]1,0: →Fm  is said to be a state if the following conditions are satisfied:  

(i) if BA⊕  is defined in ,F  then ( ) ( ) ( );BmAmBAm +=⊕   

(ii) ( ) .11 =m  

Denote by M  the family of all mappings [ ] [ ].1,01,0:),( ×→Ω= AAA νµ  If 

),,( AAA νµ=  and ),( BBB νµ=  are two elements of ,M  then we put 

),1,( Ω−++=⊕ BABABA ννµµ  and BA⋅ ).,( BABABA ννννµµ ⋅−+⋅=  

Theorem 1. Let [ ]1,0: →Fm  be a state and M  be the family of all mappings 

[ ] [ ].1,01,0:),( ×→Ω= AAA νµ  Then the mapping [ ]1,0: →Mm  defined, for any element 

),( AAA νµ=  of ,M  by 

( ) ( ) ( ))1,0()0,(),( AAAA mmm νµνµ −−= ΩΩ  

is a state, and ./ mm =F  

Proof :The proof can be found in [12].  � 

Proposition 1. Let F∈A  such that ( ) .1=Am  Then ( ) ( ),BmBAm =⋅  for any .F∈B  

Proof:  Put ).1,1( AAC νµ −−= ΩΩ  Then 

,1)0,1()11,1( ==−−+−+=⊕ ΩΩΩΩΩ AAAACA ννµµ  

,))1(1),1((),( BCBBA ABABABBABABA =−−−+−⊕⋅−+⋅=⋅⊕⋅ ΩΩΩ ννννµµννννµµ

and 
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( ) ( ) ( ),11 CmCmAm +=+=  

hence ( ) .0=Cm  From the monotonicity of m  it follows ( ) ( ) .0=≤⋅ CmCBm  

Therefore 
 ( ) ( ) ( ) ( ) ( ) ( ).BAmBAmCBmBAmBmBm ⋅=⋅=⋅+⋅==   � 

Definition 2. By an IF-partition on F  we mean a finite collection { }nAA ,...,1=ξ  of elements 

of F  such that i
n
i A1=⊕  exists, and ( )in

i Am 1=⊕  ( )∑ = == n
i iAm1 .1  

Given two IF-partitions { }nAA ,...,1=ξ , and { }mBB ,...,1=η  their join ηξ ∨  is defined 

as the system =∨ ηξ { niBA ji ,...,1; =⋅ , }mj ,...,1=  if ,ηξ ≠  and .ξξξ =∨   

It is easy to see that ηξ ∨  is an IF-partition on .F  Namely, by definition ,1 i
n
i A=⊕  and 

j
m
j B1=⊕  exist, hence according to (F3) )(11 ji

m
j

n
i BA ⋅⊕⊕ ==  also exists, and 

).()()( 1111 j
m
ji

n
iji

m
j

n
i BABA ==== ⊕⋅⊕=⋅⊕⊕   

By Definition 1 we have 

( ) ∑ ∑= === ⋅=⋅⊕⊕ n
i

m
j jiji

m
j

n
i BAmBAm 1 111 ).()(  

Moreover, using Proposition 1 we get 

( ) ( ) .1)()()()( 11111 =⊕=⊕⋅⊕=⋅⊕⊕ ===== j
m
jj

m
ji

n
iji

m
j

n
i BmBAmBAm  

3 ϕϕϕϕ–entropy of IF-partitions  

In this section we define the −ϕ entropy of IF-partitions. As special cases we obtain  the 

Kolmogorov entropy and the logical entropy of IF-partitions.      

Definition 3.  If [ ] ℜ→1,0:ϕ  is a mapping, { }nAA ,...,1=ξ  is an IF-partition, then we define 

the −ϕ entropy of ξ  by the formula 

( ) ( ).)(1∑ == n
i iAmH ϕξϕ  

Definition 4. A function [ ] [ )∞→ ,01,0:ϕ  is called a subadditive generator, if the following 

implication holds: if [ ],1,0∈ijc ,,...,1 ni =  ,,...,1 mj =  ,
1 j

n

i ij bc =∑ =
 ,,...,1 mj =  

,
1 i

m

j ij ac =∑ =
,,...,1 ni =  and ,11 =∑ =

n
i ia  ,11 =∑ =

m
j jb  then 

.)()()( 111 1 ∑∑∑ ∑ === = +≤
m
j j

n
i i

n
i

m
j ij bac ϕϕϕ  
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Example 1. The Shannon function [ ] [ )∞→ ,01,0:s  is a subadditive generator. Namely, if 

[ ],1,0∈ijc  ,,...,1,,...,1 mjni ==  ,
1 j

n

i ij bc =∑ =
 ,

1 i
m

j ij ac =∑ =
 ,,...,1 ni =  ,,...,1 mj =  and 

,11 =∑ =
n
i ia  ,11 =∑ =

m
j jb  then 









⋅−=−= ∑ ∑∑ ∑∑ ∑ = == == = jb

cn
i

m
j ijij

n
i

m
j ij

n
i

m
j ij bccccs

j

ij

1 11 11 1 loglog)(  

.loglog 1 11 1
j

ij

b

cn
i

m
j ijj

n
i

m
j ij cbc ∑ ∑∑ ∑ = == =

−−=  

Of course,  

∑∑∑ ∑ === = =−=−
m
j jj

m
j jj

m
j

n
i ij bsbbbc 111 1 ).(loglog)(  

Moreover, since the function  )(xsy =  is concave, and ∑ = =
m
j jb1 ,1  we have 

( ) ( ).log 1111 i
m
j ijb

cm
j jb

cm
j jb

cm
j ij ascsbssbc

j

ij

j

ij

j

ij
==








≤








=− ∑∑∑∑ ====  

Therefore 

( )∑∑ ∑ == = ≤− n
i i

n
i b

cm
j ij asc

j

ij

11 1 .log  

Hence we get 

( )∑∑∑ ∑ === = +≤
n
i i

m
j j

n
i

m
j ij asbscs 111 1 .)()(  

Example 2. Let [ ] [ )∞→ ,01,0:l  be the logical entropy function. If [ ],1,0∈ijc  

,,...,1,,...,1 mjni ==   ,
1 j

n

i ij bc =∑ =
 ,

1 i
m

j ij ac =∑ =
 ,,...,1,,...,1 mjni ==  and ,11 =∑ =

n
i ia  

,11 =∑ =
m
j jb  then  

∑ ∑∑ ∑ = == = −=
n
i

m
j ij

n
i

m
j ij ccl 1 1

2
1 1 1)(  

∑ ∑∑ ∑∑ = == == −+−=
n
i

m
j ijj

m
j

n
i ij

m
j j cbcb 1 1

2
1 11

2 )(1 . 

But  

( )∑ ∑= = −
n
i ijj

m
j ij cbc1 1 )(  

( )( )( )∑ ∑∑= == −≤
n
i

m
j ijj

m
j ij cbc1 11 )(  

( ) ( ) ( ).11 111 1 i
n
i

n
i ii

n
i

m
j iji alaaca ∑∑∑ ∑ === = =−=−=  

Hence  

( ).)()( 111 1 i
n
ij

m
j

n
i

m
j ij alblcl ∑∑∑ ∑ === = +≤  

This means that the logical entropy function is a subadditive generator. 
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Example 3. Let us consider the function [ ] [ )∞→ ,01,0:k  defined by ),1()( 2xxxk −=  for 

every [ ].1,0∈x  We will show that the function k is a subadditive generator.  

Let [ ],1,0∈ijc ,,...,1,,...,1 tjsi ==  such that ∑ ∑= = =
s
i

t
j ijc1 1 .1  Put ,1∑ ==

t
j iji ca    

,1∑ == s
i ijj cb .,...,1,,...,1 tjsi ==  We have to prove the inequality 

( ) ),()( 111 1 ∑∑∑ ∑ === = +≤
t
j j

s
i i

s
i

t
j ij bkakck  

resp. equivalently, 

.111
1

3
1

3
1 1

3 ∑∑∑ ∑ === =
−+−≤− t

j j
s
i i

s
i

t
j ij bac  

Let us calculate: 

∑ ∑∑ ∑∑∑ = == ===
+=+ t

j
s
i ij

s
i

t
j ij

t
j j

s
i i ccba

1
3

11
3

11
3

1
3 )()(  

)3()3(
1 1 1

2
1 1

3
1 1 1

2
1 1

3 ∑ ∑ ∑∑ ∑∑ ∑ ∑∑ ∑ = = == == = == =
+++= t

j lj
s
k

s
l kj

t
j

s
i ij

s
i il

t
k

t
l ik

s
i

t
j ij cccccc  

)3(
1 1 1 1

2
1 1

3
1 1

3 ∑ ∑ ∑ ∑∑ ∑∑ ∑ = = = == == =
++≤ s

k
t
l

s
m

t
n mnkl

s
i

t
j ij

s
i

t
j ij cccc  

∑ ∑ ∑ ∑∑ ∑ = = = == =
+=+= s

i
t
j

s
i

t
j ijij

s
i

t
j ij ccc

1 1
3

1 1
33

1 1
3 1)(  

.1
1 1

3∑ ∑= =
+= s

i
t
j ijc  

Thus, 

,1
1 1

3
1

3
1

3 ∑ ∑∑∑ = ===
+≤+ s

i
t
j ij

t
j j

s
i i cba  

and therefore  

.111
1

3
1

3
1 1

3 ∑∑∑ ∑ === =
−+−≤− t

j j
s
i i

s
i

t
j ij bac  

Theorem 2. Let ϕ  be a subadditive generator, [ ]1,0: →Fm  be a state, ηξ ,  be IF-partitions. 

Then  
).()()( ηξηξ ϕϕϕ HHH +≤∨  

Proof: Let { }nAA ,...,1=ξ , { }.,...,1 mBB=η  Put ),( jiij BAmc ⋅= ),( ii Ama = ).( jj Bmb =   By 

Proposition 1, (F3), and the additivity of m we have 

∑∑ ==== =⋅=⋅⊕=⊕⋅== m
j ij

m
j jiji

m
jj

m
jiii cBAmBAmBAmAma

1111 ,)())(())(()(  

∑∑ ==== =⋅=⋅⊕=⊕⋅==
n
i ij

n
i jiji

n
ii

n
ijjj cBAmBAmABmBmb 1111 .)())(())(()(  

In addition, by Definition 2 ( )∑∑ == == n
i i

n
i i Ama 11 ,1  analogously .1

1
=∑ =

m
j jb  

Therefore 
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( ) ∑ ∑∑ ∑ = == =
=⋅=∨ n

i
m
j ij

n
i

m
j ji cBAmH

1 11 1
)()()( ϕϕηξϕ  

∑∑ ==
+≤ m

j j
n
i i ba

11
)()( ϕϕ  

 ∑∑ ==
+= m

j j
n
i i BmAm

11
))(())(( ϕϕ ).()( ηξ ϕϕ HH +=  � 

4 Conclusion 

In the contribution, we have introduced a general type of entropy of IF-partitions based on a 
function [ ] [ ).,01,0: ∞→ϕ  As special cases of −ϕ entropy we obtain the Shannon entropy as 

well as the logical entropy of IF-partitions. Further, we have proved that if the function ϕ  is a 

so-called subadditive generator, then the −ϕ entropy of IF-partitions is a subadditive function. 

It has been shown that the Shannon function and the logical entropy function are subadditive 
generators. Moreover, we found a subadditive generator different from the Shannon- 
Kolmogorov-Sinai case and the logical case.  

Since we have proved the subadditivity of −ϕ entropy of IF-partitions, it is hopeful to 

construct for the proposed −ϕ entropy an isomorphism theory of the Kolmogorov-Sinai type. 

As a direct consequence of −ϕ results we could obtain the Kolmogorov-Sinai entropy theory 

as well as the logical entropy theory.  

References 

[1] Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Physic Verlag, 
Heidelberg,.  

[2] Ďurica, M. (2007) Entropy on IF events. Notes on Intuitionistic Fuzzy Sets, 13(4), 
30–40. 

[3] Ebrahimzadeh, A. (2016) Logical entropy of quantum dynamical systems. Open Physics, 
14, 1–5.  

[4] Ellerman, D. (2013) An introduction to logical entropy and its relation to Shannon 
entropy. Int. J. Seman. Comput., 7,  121–145. 

[5] Gray, R. M. (2009) Entropy and Information Theory. Springer: Berlin/Heidelberg, 
Germany. 

[6] Kolmogorov, A. N. (1958) New metric invariant of transitive dynamical systems and 
automorphisms of Lebesgue spaces. Dokl. Russ. Acad. Sci., 119, 861–864.  

[7] Markechová, D. (1992)  The entropy of fuzzy dynamical systems and generators. Fuzzy 

Sets Syst., 48, 351–363.  



 16  

[8] Markechová, D., & Riečan, B. (2016) Entropy of Fuzzy Partitions and Entropy of Fuzzy 
Dynamical Systems. Entropy, 18 (19), doi:10.3390/e18010019. 

[9]  Markechová, D., & Riečan, B. (2016)  Logical Entropy of Fuzzy Dynamical Systems. 
Entropy, Vol. 18 (157), doi: 10.3390/e18040157. 

[10] Markechová, D., & Riečan, B. Logical Entropy and Logical Mutual Information of 
Experiments in the Intuitionistic Fuzzy Case. Entropy (under review).  

[11]  Mesiar, R., & Rybárik, J. (1998) Entropy of Fuzzy Partitions – A General Model. Fuzzy 

Sets  Syst., 99, 73–79.  

[12] Riečan, B. (2015) On finitely additive IF-states. Proceedings of the 7th IEEE International 

Conference Intelligent Systems IS’2014, Warsaw, Poland, 24-26 September 2014; 
Volume 1: Mathematical Foundations, Theory, Analysis (P. Angelov et al. eds.), Springer, 
Switzerland; 149–156. 

[13] Shannon, C. E. (1948) Mathematical theory of communication. Bell Syst. Tech. J., 27, 
379–423. 

[14]  Sinai, Y. G. (1990) Ergodic theory with applications to dynamical systems and statistical 

mechanics. Springer, Berlin.  

[15] Szmidt, E., & Kacprzyk, J. (2001) Entropy of intuitionistic fuzzy sets. Fuzzy Sets Syst., 
118, 467–477. 

 
 
 


