Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 2023, Volume 29, Number 2, 85–89 DOI: 10.7546/nifs.2023.29.2.85-89

Trigonometric-based operators over intuitionistic fuzzy sets

Peter Vassilev

Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences Acad. G. Bonchev Str. bl. 105, 1113 Sofia, Bulgaria. e-mail: peter.vassilev@gmail.com

Received: 21 May 2023 **Accepted:** 17 June 2023 Revised: 13 June 2023 Online first: 3 July 2023

Abstract: In the present paper we introduce two new operators over intuitionistic fuzzy sets and study their properties.

Keywords: Operators, Intuitionistic fuzzy sets, Trigonometric functions. **2020 Mathematics Subject Classification:** 03E72.

1 Introduction

Intuitionistic fuzzy sets (IFS) were introduced in 1983 by K. Atanassov [1] as an extension of the fuzzy sets. Fuzzy sets, introduced by L. Zadeh in 1965 [6], generalized the classical characteristic function $\chi_A(x)$ by proposing a membership degree for a given element of the set $\mu_A(x)$. IFS further introduced a non-membership degree $\nu_A(x)$ which reflects the extent to which an element does not belong to the set. The complement of the sum of the membership and non-membership degrees to 1 ($\pi_A(x)$) is called *hesitancy degree* or *index of indeterminacy* [2]. A formal definition is the following:

Copyright © 2023 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Definition 1 (cf. [1, 3, 5]). Let X be a universe set, $A \subset X$. Then an intuitionistic fuzzy set generated by the set A is an object of the form:

$$A^* = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$$

$$(1.1)$$

where $\mu_A: X \to [0,1]$ and $\nu_A: X \to [0,1]$ are mappings, such that for any $x \in X$,

$$\mu_A(x) + \nu_A(x) \le 1. \tag{1.2}$$

Let us further denote the class of all IFSs over the same universe X, by IFS(X). If S is a mapping $S : IFS(X) \to IFS(X)$, we call S an operator defined over IFS(X).

Some examples of operators previously defined include but are not limited to (see [5]):

$$D_{\alpha}(A^*) = \{ \langle x, \mu_A(x) + \alpha \pi_A(x), \nu_A(x) + (1-\alpha)\pi_A(x) \rangle | x \in X \},\$$

where $\alpha \in [0, 1];$

$$F_{\alpha,\beta}(A^*) = \{ \langle x, \mu_A(x) + \alpha \pi_A(x), \nu_A(x) + \beta \pi_A(x) \rangle | x \in X \},\$$

where $\alpha, \beta, \alpha + \beta \in [0, 1];$

$$G_{\alpha,\beta}(A^*) = \{ \langle x, \alpha \mu_A(x), \beta \nu_A(x) \rangle | x \in X \},\$$

where $\alpha, \beta \in [0, 1]$.

In what follows we propose two new operators based on the trigonometric functions sin(t) and cos(t).

2 The proposed operators

First we start with the following simple observations:

- In the interval $[0, \frac{\pi}{2}]$, the function $\cos(t)$ is non-negative and strictly decreasing.
- In the interval $[0, \frac{\pi}{2}]$, the function $1 \sin(t)$ is non-negative and strictly decreasing.
- Both function are bounded from below by 0 and from above by 1 on the interval $[0, \frac{\pi}{2}]$.

Another key point to note is that due to (1.2), we have $\mu_A(x) \le 1 - \nu_A(x)$ and $\nu_A(x) \le 1 - \mu_A(x)$, which means that:

$$\cos\left(\mu_A(x)\frac{\pi}{2}\right) \ge \cos\left((1-\nu_A(x))\frac{\pi}{2}\right) \tag{2.1}$$

$$1 - \sin\left(\mu_A(x)\frac{\pi}{2}\right) \ge 1 - \sin\left((1 - \nu_A(x))\frac{\pi}{2}\right).$$
 (2.2)

Now we are ready to define our two operators. Let A^* be the IFS defined by (1.1).

Definition 2. We define the operator Z_{cos} : IFS(X) \rightarrow IFS(X) as follows:

$$Z_{\cos}(A^*) = \{ \langle x, \frac{\sqrt{2}}{2} \cos\left((1 - \nu_A(x))\frac{\pi}{2}\right), \frac{\sqrt{2}}{2} \cos\left((1 - \mu_A(x))\frac{\pi}{2}\right) \} | x \in X \}$$
(2.3)

Definition 3. We define the operator Z_{sin} : IFS(X) \rightarrow IFS(X) as follows:

$$Z_{\sin}(A^*) = \{ \langle x, 1 - \sin\left((1 - \nu_A(x))\frac{\pi}{2}\right), 1 - \sin\left((1 - \mu_A(x))\frac{\pi}{2}\right) \} | x \in X \}$$
(2.4)

We will show that $Z_{cos}(A^*) \in IFS(X)$ and $Z_{sin}(A^*) \in IFS(X)$, i.e. the operators are correctly defined. It is clear that

$$\frac{\sqrt{2}}{2}\cos\left((1-\nu_A(x))\frac{\pi}{2}\right) + \frac{\sqrt{2}}{2}\cos\left((1-\mu_A(x))\frac{\pi}{2}\right) \ge 0$$

since $0 \le (1 - \nu_A(x))\frac{\pi}{2} \le \frac{\pi}{2}$ and $0 \le (1 - \mu_A(x))\frac{\pi}{2} \le \frac{\pi}{2}$. So it remains only to show that

$$\frac{\sqrt{2}}{2}\cos\left((1-\nu_A(x))\frac{\pi}{2}\right) + \frac{\sqrt{2}}{2}\cos\left((1-\mu_A(x))\frac{\pi}{2}\right) \le 1.$$

We have (due to (2.1))

$$\cos\left((1-\nu_A(x))\frac{\pi}{2}\right) + \cos\left((1-\mu_A(x))\frac{\pi}{2}\right) \le \cos\left((1-\nu_A(x))\frac{\pi}{2}\right) + \cos\left(\nu_A(x)\frac{\pi}{2}\right) + \cos\left(\nu_A(x)\frac{\pi}{2}\right) \le \cos\left((1-\nu_A(x))\frac{\pi}{2}\right) \le \cos\left((1-\nu_A(x))\frac{\pi}{2}\right)$$

It is easy to see that

$$\cos\left((1-\nu_A(x))\frac{\pi}{2}\right) + \cos\left(\nu_A(x)\frac{\pi}{2}\right) \le \sqrt{2}.$$

Thus, we obtain that

$$\frac{\sqrt{2}}{2} \left[\cos\left((1 - \nu_A(x)) \frac{\pi}{2} \right) + \cos\left((1 - \mu_A(x)) \frac{\pi}{2} \right) \right] \le \frac{\sqrt{2}}{2} \sqrt{2} \le 1$$

and hence (2.3) is an IFS.

Similarly, (due to (2.2))

$$2 - \sin\left((1 - \nu_A(x))\frac{\pi}{2}\right) - \sin\left((1 - \mu_A(x))\frac{\pi}{2}\right) \le 2 - \sin\left((\mu_A(x))\frac{\pi}{2}\right) - \sin\left((1 - \mu_A(x))\frac{\pi}{2}\right)$$

We can easily see that:

$$2 - \sin\left((\mu_A(x))\frac{\pi}{2}\right) - \sin\left((1 - \mu_A(x))\frac{\pi}{2}\right) = 2 - \left[\sin\left(\mu_A(x)\frac{\pi}{2}\right) + \cos\left(\mu_A(x)\frac{\pi}{2}\right)\right] \le 1.$$

and hence (2.4) is an IFS.

In order to see how these operators behave we consider the following intuitionistic fuzzy set

$$B = \{ \langle x_1, 0.67, 0.3 \rangle, \langle x_2, 0.6, 0.37 \rangle, \langle x_3, 0.4, 0.45 \rangle, \langle x_4, 0.2, 0.73 \rangle, \langle x_5, 0.9, 0.05 \rangle, \langle x_6, 0.5, 0.5 \rangle \}$$

We have

$$Z_{\rm cos}(B) = \{ \langle x_1, 0.321, 0.614 \rangle, \langle x_2, 0.388, 0.572 \rangle, \langle x_3, 0.459, 0.415 \rangle, \\ \langle x_4, 0.644, 0.218 \rangle, \langle x_5, 0.055, 0.698 \rangle, \langle x_6, 0.5, 0.5 \rangle \}$$

$$Z_{\rm sin}(B) = \{ \langle x_1, 0.108, 0.504 \rangle, \langle x_2, 0.164, 0.412 \rangle, \langle x_3, 0.239, 0.190 \rangle, \\ \langle x_4, 0.588, 0.489 \rangle, \langle x_5, 0.003, 0.843 \rangle, \langle x_6, 0.292, 0.292 \rangle \}$$

We can see that the new operators act similarly to the classical negation in the sense that if $\mu_B(x) > \nu_B(x)$, we have $\mu_Z(x) < \nu_Z(x)$, and vice versa.

Proposition 1. The following relationships hold:

$$Z_{\cos}(\neg(A^*)) = \neg(Z_{\cos}(A^*));$$

$$Z_{\sin}(\neg(A^*)) = \neg(Z_{\sin}(A^*)),$$

where

$$\neg(A^*) = \{ \langle x, \nu_A(x), \mu_A(x) \rangle | x \in X \}.$$

Proof. This follows directly from (2.3) and (2.4).

Remark 1. If we denote $\overline{Z_{\cos}}(A^*) = \neg (Z_{\cos}(A^*))$, and $\overline{Z_{\sin}}(A^*) = \neg (Z_{\sin}(A^*))$, we obtain another two operators $\overline{Z_{\cos}}$ and $\overline{Z_{\sin}}$ over the intuitionistic fuzzy sets.

Proposition 2. The following relationships are fulfilled:

$$G_{1,0} (F_{0,1} (Z_{\sin} (A^*))) = G_{1,0} (Z_{\sin} (F_{1,0} (A^*)))$$

$$G_{1,0} (F_{0,1} (Z_{\cos} (A^*))) = G_{1,0} (Z_{\cos} (F_{1,0} (A^*)))$$

$$G_{0,1} (F_{1,0} (Z_{\sin} (A^*))) = G_{0,1} (Z_{\sin} (F_{0,1} (A^*)))$$

$$G_{0,1} (F_{1,0} (Z_{\cos} (A^*))) = G_{0,1} (Z_{\cos} (F_{0,1} (A^*))).$$

Proof. We will only go through the first equality since the others are checked in the same manner. For the left-hand side we obtain:

$$G_{1,0}\left(F_{0,1}\left(\left\{\left\langle x,1-\sin\left(\left(1-\nu_{A}(x)\right)\frac{\pi}{2}\right),1-\sin\left(\left(1-\mu_{A}(x)\right)\frac{\pi}{2}\right)\right\rangle|x\in X\right\}\right)\right)$$
$$=G_{1,0}\left(\left\{\left\langle x,1-\sin\left(\left(1-\nu_{A}(x)\right)\frac{\pi}{2}\right),\sin\left(\left(1-\nu_{A}(x)\right)\frac{\pi}{2}\right)\right\rangle|x\in X\right\}\right)$$
$$=\left\{\left\langle x,1-\sin\left(\left(1-\nu_{A}(x)\right)\frac{\pi}{2}\right),0\right\rangle|x\in X\right\}$$

For the right-hand side:

$$G_{1,0}\left(Z_{\sin}\left(\left\{\left\langle x, 1-\nu, \nu\right\rangle | x \in X\right\}\right)\right)$$

= $G_{1,0}\left(\left\{\left\langle x, 1-\sin\left(\left(1-\nu_A(x)\right)\frac{\pi}{2}\right), 1-\sin\left(\nu_A(x)\frac{\pi}{2}\right)\right\rangle | x \in X\right\}\right)$
= $\left\{\left\langle x, 1-\sin\left(\left(1-\nu_A(x)\right)\frac{\pi}{2}\right), 0\right\rangle | x \in X\right\}$

Thus both sides yield the same IFS.

3 Conclusion and an open problem

In the present work we introduced two new operators over intuitionistic fuzzy sets based on the trigonometric functions \sin and \cos . An interesting **Open problem** is the following:

Can the operator $X_{a,b,c,d,e,f}$, defined by (see [5])

$$X_{a,b,c,d,e,f}(A^*) = \{ \langle x, a\mu_A(x) + b(1 - \mu_A(x) - c\nu_A(x)), \\ d\nu_A(x) + e(1 - f\mu_A(x) - \nu_A(x)) \rangle | x \in X \}$$

reproduce the action of the operators Z_{sin} and Z_{cos} for a suitable choice of the parameters a, b, c, d, e and f?

References

- Atanassov, K. T. (1983). Intuitionistic Fuzzy Sets. *VII ITKR Session*, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: *Int. J. Bioautomation* 2016, 20(S1), S1–S6 (in English).
- [2] Szmidt, E. (2014). Distances and Similarities in Intuitionistic Fuzzy Sets. Springer, Cham.
- [3] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- [4] Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. *Fuzzy Sets and Systems*, 61, 137–142.
- [5] Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
- [6] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.