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1 Introduction

Intuitionistic fuzzy sets (IFS) were introduced in 1983 by K. Atanassov [1] as an extension of the
fuzzy sets. Fuzzy sets, introduced by L. Zadeh in 1965 [6], generalized the classical characteristic
function χA(x) by proposing a membership degree for a given element of the set µA(x). IFS
further introduced a non-membership degree νA(x) which reflects the extent to which an element
does not belong to the set. The complement of the sum of the membership and non-membership
degrees to 1 (πA(x)) is called hesitancy degree or index of indeterminacy [2]. A formal definition
is the following:
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Definition 1 (cf. [1, 3, 5]). Let X be a universe set, A ⊂ X. Then an intuitionistic fuzzy set
generated by the set A is an object of the form:

A∗ = {⟨x, µA(x), νA(x)⟩|x ∈ X} (1.1)

where µA : X → [0, 1] and νA : X → [0, 1] are mappings, such that for any x ∈ X,

µA(x) + νA(x) ≤ 1. (1.2)

Let us further denote the class of all IFSs over the same universe X, by IFS(X). If S is a
mapping S : IFS(X) → IFS(X), we call S an operator defined over IFS(X).

Some examples of operators previously defined include but are not limited to (see [5]):

Dα(A
∗) = {⟨x, µA(x) + απA(x), νA(x) + (1− α)πA(x)⟩|x ∈ X},

where α ∈ [0, 1];

Fα,β(A
∗) = {⟨x, µA(x) + απA(x), νA(x) + βπA(x)⟩|x ∈ X},

where α, β, α + β ∈ [0, 1];

Gα,β(A
∗) = {⟨x, αµA(x), βνA(x)⟩|x ∈ X},

where α, β ∈ [0, 1].

In what follows we propose two new operators based on the trigonometric functions sin(t) and
cos(t).

2 The proposed operators

First we start with the following simple observations:

• In the interval [0, π
2
], the function cos(t) is non-negative and strictly decreasing.

• In the interval [0, π
2
], the function 1− sin(t) is non-negative and strictly decreasing.

• Both function are bounded from below by 0 and from above by 1 on the interval [0, π
2
].

Another key point to note is that due to (1.2), we have µA(x) ≤ 1−νA(x) and νA(x) ≤ 1−µA(x),

which means that:
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Now we are ready to define our two operators. Let A∗ be the IFS defined by (1.1).

Definition 2. We define the operator Zcos : IFS(X) → IFS(X) as follows:

Zcos(A
∗) = {⟨x,

√
2

2
cos

(
(1− νA(x))

π

2

)
,

√
2

2
cos

(
(1− µA(x))

π

2

)
⟩|x ∈ X} (2.3)
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Definition 3. We define the operator Zsin : IFS(X) → IFS(X) as follows:

Zsin(A
∗) = {⟨x, 1− sin

(
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π

2

)
, 1− sin

(
(1− µA(x))

π

2

)
⟩|x ∈ X} (2.4)

We will show that Zcos(A
∗) ∈ IFS(X) and Zsin(A

∗) ∈ IFS(X), i.e. the operators are correctly
defined. It is clear that
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. So it remains only to show that
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We have (due to (2.1))
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It is easy to see that
cos

(
(1− νA(x))

π

2

)
+ cos

(
νA(x)

π

2

)
≤

√
2.

Thus, we obtain that
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and hence (2.3) is an IFS.
Similarly, (due to (2.2))
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We can easily see that:
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and hence (2.4) is an IFS.
In order to see how these operators behave we consider the following intuitionistic fuzzy set

B = {⟨x1, 0.67, 0.3⟩, ⟨x2, 0.6, 0.37⟩, ⟨x3, 0.4, 0.45⟩, ⟨x4, 0.2, 0.73⟩, ⟨x5, 0.9, 0.05⟩, ⟨x6, 0.5, 0.5⟩}

We have

Zcos(B) = {⟨x1, 0.321, 0.614⟩, ⟨x2, 0.388, 0.572⟩, ⟨x3, 0.459, 0.415⟩,
⟨x4, 0.644, 0.218⟩, ⟨x5, 0.055, 0.698⟩, ⟨x6, 0.5, 0.5⟩}

Zsin(B) = {⟨x1, 0.108, 0.504⟩, ⟨x2, 0.164, 0.412⟩, ⟨x3, 0.239, 0.190⟩,
⟨x4, 0.588, 0.489⟩, ⟨x5, 0.003, 0.843⟩, ⟨x6, 0.292, 0.292⟩}

We can see that the new operators act similarly to the classical negation in the sense that if
µB(x) > νB(x), we have µZ(x) < νZ(x), and vice versa.
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Proposition 1. The following relationships hold:

Zcos(¬(A∗)) = ¬(Zcos(A
∗));

Zsin(¬(A∗)) = ¬(Zsin(A
∗)),

where
¬(A∗) = {⟨x, νA(x), µA(x)⟩|x ∈ X}.

Proof. This follows directly from (2.3) and (2.4).

Remark 1. If we denote Zcos(A
∗) = ¬ (Zcos(A

∗)) , and Zsin(A
∗) = ¬ (Zsin(A

∗)) , we obtain
another two operators Zcos and Zsin over the intuitionistic fuzzy sets.

Proposition 2. The following relationships are fulfilled:

G1,0 (F0,1 (Zsin (A
∗))) = G1,0 (Zsin (F1,0 (A

∗)))

G1,0 (F0,1 (Zcos (A
∗))) = G1,0 (Zcos (F1,0 (A

∗)))

G0,1 (F1,0 (Zsin (A
∗))) = G0,1 (Zsin (F0,1 (A

∗)))

G0,1 (F1,0 (Zcos (A
∗))) = G0,1 (Zcos (F0,1 (A

∗))) .

Proof. We will only go through the first equality since the others are checked in the same manner.
For the left-hand side we obtain:
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For the right-hand side:
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}
Thus both sides yield the same IFS.

3 Conclusion and an open problem

In the present work we introduced two new operators over intuitionistic fuzzy sets based on the
trigonometric functions sin and cos . An interesting Open problem is the following:

Can the operator Xa,b,c,d,e,f , defined by (see [5])

Xa,b,c,d,e,f (A
∗) = {⟨x, aµA(x) + b(1− µA(x)− cνA(x)),

dνA(x) + e(1− fµA(x)− νA(x))⟩|x ∈ X}

reproduce the action of the operators Zsin and Zcos for a suitable choice of the parameters
a, b, c, d, e and f?
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