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Abstract: We discuss how to assign weights to the experts participating in group decision making
in intuitionistic fuzzy environment which means that the options are expressed via intuitionistic
fuzzy sets (IFSs, for short). We use the three term representation of the IFSs. A question arises
if by making use of the expert’s opinions concerning a problem considered is it possible to assess
the experts. The typical approaches from literature are recalled and discussed. Next, we propose
two novel methods of assigning weights to experts. However, the methods are not ideal as
starting from expert’s opinions concerning the options considered. Alas, while not knowing a
real solution of a problem the experts try to solve, it is difficult to tell who is right and who is
wrong whereas we do not have additional knowledge about the experts. The advantage of the
method proposed is that we avoid assumptions about a real optimal solution which is not known.
Instead, we pay attention if an expert is able to tell in a convincing way which option is good and
which one is bad by pointing out pros and cons of an option in a definite way.
Keywords: Intuitionistic fuzzy sets, Three term representation of IFSs, Multi-attribute group
decision-making, Assigning weights to the experts.
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1 Introduction

Group decision making problems (GDM) are helpful in many aspects of our life starting from
politics, science, technology, economy, education, and other fields. Each expert (decision maker)
has his/her preferences to each option and the attribute considered. The opinions vary from
expert to expert so they are aggregated and sometimes weights to the experts are assigned. In
this paper we concentrate on assessing the experts. The weights of experts should be computed
in an objective way. In the literature there are not too many ideas how to tackle the problem.
Sometimes it is just assumed that the weights are predefined. An interesting approach is
presented by Ramanathan and Ganesh [9] who proposed that each member of a group rates
himself with others in terms of their relative importance. It means that the experts use their
own subjective opinions. The idea boils down to an eigenvector based method working in one of
the well known but specific techniques for decision making, namely Analytic Hierarchy Process
AHP (cf. Saaty [11]).

Yang et al. [26] proposed to determine the weights of decision makers based on rough set
theory (cf. Pawlak, Słowinski [8]). Yang et al. [26] derived a positive ideal solution (PIS) founded
on the average matrix of rough group decision, and negative ideal solutions(NIS) founded on the
lower and upper limit matrices of rough group decision. The weight of each group member was
found out by using relative closeness method depending on the distances from each individual
group member’s decision to the PIS and NIS. The presented method [26] is useful for real number
form of attributes only.

There are several other methods making use of the idea of PIS and NIS. For example Yue [27]
proposed an extended TOPSIS method (Technique for Order Preference by Similarity to an Ideal
Solution [7]) for ranking the order of decision makers. The distances from each individual
decision to ideal decisions is the basis of assessing the experts. Next, Yue [28] assumed that
the average decision of all individual decisions is the ideal decision. After that, the weight of
expert is determined by the projection of individual decision on the ideal decision.

The cited above approaches make use of the expert’s opinions concerning the options to assess
the experts. In this paper we also make use of expert’s opinions but we do not assume to know
the ideal or real solution. We concentrate on the options from the point of view if the options
expressed by using IFSs are properly described by experts in the sense of giving with confidence
option’s advantages and disadvantages.

2 A brief introduction to IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [29]) given by

A
′
= {〈x, µA′ (x)〉|x ∈ X} (1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′ , is an IFS (Atanassov [1–3])
A is given by
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A = {〈x, µA(x), νA(x)〉|x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-membership of
x ∈ A, respectively (see Szmidt and Baldwin [13] for deriving memberships and non-memberships
for A-IFSs from data).

An additional concept for each A-IFS in X , that is not only an obvious result of (2) and (3)
but which is also relevant for applications, we will call (Atanassov [2])

πA(x) = 1− µA(x)− νA(x) (4)

a hesitation margin of x ∈ A which expresses a lack of knowledge of whether x belongs to A or
not (cf. Atanassov [2]). It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances (Szmidt and
Kacprzyk [14, 15, 17], entropy (Szmidt and Kacprzyk [16, 18]), similarity (Szmidt and Kacprzyk
[19]) for the IFSs, etc. i.e., the measures that play a crucial role in virtually all information
processing tasks (Szmidt [12]).

The hesitation margin turns out to be relevant for applications – in image processing (cf.
Bustince et al. [6]), the classification of imbalanced and overlapping classes (cf. Szmidt and
Kukier [23–25]), the classification applying intuitionistic fuzzy trees (cf. Bujnowski [5]), group
decision making (e.g., [4, 20]), genetic algorithms [10], negotiations, voting and other situations
(cf. Szmidt and Kacprzyk papers).

3 Problem of group decision making

Assume that there is a set of alternatives (options) X = {X1, X2, . . . , Xm}, from which the most
preferred alternative is to be selected by a group of K experts (decision makers)
P = {P1, P2, . . . , Pk}. Suppose that the decision maker Pk (k = 1, 2, . . . , K) constructs IFS
Xk

ij = {〈Xi, µ
k
i,j, ν

k
i,j, π

k
i,j〉} where µk

i,j , ν
k
i,j , π

k
i,j are the degree of membership (or satisfaction),

the degree of non-membership (or non-satisfaction), and the degree of hesitation margin (lack of
knowledge) of the alternativeXi ∈ X with respect to the attributeAj ∈ A = {A1, A2, . . . , An} to
the concept “excellence” given by Pk, respectively, and 0 ≤ µk

i,j ≤ 1, 0 ≤ νki,j ≤ 1, 0 ≤ πk
i,j ≤ 1,

µk
i,j + νki,j + πk

i,j = 1. The bigger πk
i,j the higher a hesitation margin of the decision maker Pk as

to the “excellence” of the alternative Xi with respect to the attribute Aj . Thus, a group decision
making problem expressed in IFS environment can be expressed concisely as follows:
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P k =
A1 A2 . . . An

X1 〈µk
11, ν

k
11, π

k
11〉 〈µk

12, ν
k
12, π

k
12〉 . . . 〈µk

1n, ν
k
1n, π

k
1n〉

X2 〈µk
21, ν

k
21, π

k
21〉 〈µk

22, ν
k
22, π

k
22〉 . . . 〈µk

2n, ν
k
2n, π

k
2n〉

...
...

... . . . ...
Xm 〈µk

m1, ν
k
m1, π

k
m1〉 〈µk

m2, ν
k
m2, π

k
m2〉 . . . 〈µk

mn, ν
k
mn, π

k
mn〉

where k = 1, . . . , K.
As it was mentioned earlier, the problem of assigning weights to the experts has been

considered in literature under different conditions as it is impossible to offer one general solution
for purposes of all the considered decision making problems. Here we consider group decision
making using IFSs. We assume that the experts represent the same status, i.e., there is not their
boss or a very famous expert among them. However, the experience and confidence of the experts
considering a concrete problem may be different. Some experts have more information than
others (which is expressed here in terms of membership values µ and non-membership values
ν), and their confidence (expressed here as 1 − π) is also different. For example, if an expert
k assesses option xi taking into account attribute j as 〈1, 0, 0〉 means that an option is excellent
and the expert is absolutely sure abut it. If an expert k assesses option xi taking into account an
attribute Aj as 〈0.5, 0.4, 0.1〉, it means that the option satisfies in opinion of the expert
expectations to degree 0.5, does not satisfy expectations to degree 0.4, and the lack of
knowledge of the expert is 0.1.

The simplest method of assigning weights to the experts is to take into account hesitation
margins the experts assign to the options. If an expert assigns high hesitation margins to the
options considered it means that he/she is not sure whether an option is good or bad. In result a
weight of the opinions given by such an expert should not be hight.

Example 3.1. Assume that expert P1 gives opinion concerning three options Xi, (i = 1, . . . , 3)

described via two attributes Aj , (j = 1, 2) in the following way:

P1 =
A1 A2

X1 〈1, 0, 0〉 〈0, 1, 0〉
X2 〈0.7, 0.2, 0.1〉 〈0.9, 0.1, 0〉
X3 〈0.5, 0.4, 0.1〉 〈0.2, 0.8, 0〉

OptionX1 got two opposite opinions (very good, and very bad) in respect of the two attributes
considered. But in both cases the hesitation margin is equal to 0, i.e., the expert is sure about the
two opinion and the average score S with respect to hesitation margin is 1. In general we use

Sk(Xi) =
1

n

n∑
i=1

(1− πXi
) (5)

k = 1, . . . , K. In our Example the scores in respect to the options are: S1(X1) =
1
2
(1 + 1) = 1,

S1(X2) =
1
2
(0.9 + 1) = 0.95, S1(X3) =

1
2
(0.9 + 1) = 0.95.
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In result expert P1 gets:

S1(X) =
m∑
i=1

S1(Xi) (6)

In Example 3.1 we have S1(X) = 1 + 0.95 + 0.95 = 2.9.
Assume that a second expert P2 delivered the following opinions concerning the same options

and attributes:

P2 =
A1 A2

X1 〈0.8, 0, 0.2〉 〈0.3, 0.5, 0.2〉
X2 〈0.7, 0.1, 0.2〉 〈0.6, 0.3, 0.1〉
X3 〈0.6, 0.4, 0〉 〈0.1, 0.7, 0.2〉

Repeating the same steps as previously we obtain from (5): S2(X1) = 1
2
(0.8 + 0.8) = 0.8,

S2(X2) =
1
2
(0.8+0.9) = 0.85, S2(X3) =

1
2
(1+0.8) = 0.9, and from (6): S2(X) = 0.8+0.85+

0.9 = 2.55.

To assign weights wk, (k = 1, . . . , K) to experts where 0 ≤ wk ≤ 1, and
K∑
k=1

wk = 1 we

normalize the scores Sk(X), k = 1, . . . , K, namely:

wk =
Sk(X)

K∑
k=1

Sk(X)

(7)

For the data from Example 3.1 the weights are w1 = 2.9/(2.9 + 2.55) = 0.53,
w2 = 2.55/(2.9 + 2.55) = 0.47 which means that Expert 1 has a little bit higher weight than
Expert 2.

Following the literature trends of assigning the weights to experts by taking into account their
preferences concerning options considered, we propose another, more detailed method. So far
we were taking into account only the hesitation margins assigned to options given by the experts.
Now we will take into account also membership values and non-membership values. We assume
that the best opinions (reflecting how good are experts) should make it possible to conclude with
confidence if an option is good or bad. Such condition is fulfilled when membership values are
as far as possible from non-membership values, and as previously, the hesitation margin is as
small as possible. The same conditions were formulated by Szmidt and Kacprzyk [21], Szmidt et
al. [22] but used in a different context (attribute selection). The simplest function fk(Xi) fulfilling
the above condition for an expert k and a single option Xi is:

fk(Xi) =
1

n

n∑
j=1

(1− πij)(|µij − νij|) (8)

The properties of (8) are:

1. 0 ≤ fk(Xi) ≤ 1.

2. fk(Xi) = (fk(Xi)
C)
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3. For a fixed value of |µk
i − νki |, (fk(Xi))) increases while πk

i decreases.

4. For a fixed value of πk
i , fk(Xi) behaves dually to a very simple sort of entropy measure

|µk
i − νki | (i.e., as 1− (|µk

i − νki |)).

In result of using (8) expert Pk assessing all the options receives the score:

fk(X) =
m∑
i=1

fk(Xi) (9)

Finally, to assign weights wk, (k = 1, . . . , K) to experts where 0 ≤ wk ≤ 1, and
K∑
k=1

wk = 1

we normalize the scores fk(X), k = 1, . . . , K, namely:

wk =
fk(X)

K∑
k=1

fk(X)

(10)

Using the method (8) – (10) we obtain the following results for the data in Example 3.1.
From (8) we have:

f 1(X1) =
1

2
((1− 0)|1− 0|+ (1− 0)|0− 1|) = 1

f 1(X2) =
1

2
((1− 0.1)|0.7− 0.2|+ (1− 0)|0.9− 0.1|) = 0.625

f 1(X3) =
1

2
((1− 0.1)|0.5− 0.4|+ (1− 0)|0.2− 0.8|) = 0.345

f 2(X1) =
1

2
((1− 0, 2)|0.8− 0|+ (1− 0.2)|0.3− 0.5|) = 0.4

f 2(X2) =
1

2
((1− 0.2)|0.7− 0.1|+ (1− 0.1)|0.6− 0.3|) = 0.375

f 2(X3) =
1

2
((1− 0)|0.6− 0.4|+ (1− 0.2)|0.1− 0.7|) = 0.34.

From (9):

f 1(X) = 1 + 0.625 + 0.345 = 1.97

f 2(X) = 0.4 + 0.375 + 0.34 = 1.115

From (10):

w1 =
1.97

1.97 + 1.115
= 0.639, w2 =

1.115

1.97 + 1.115
= 0.361

which means that from our approach (8)–(10) it turns out that expert P1 is more important that
expert P2.

In this way we have proposed two methods of assigning the weights to experts in group
decision making. Our starting point was similar as in some other methods known from literature –
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the experts are being assessed making use of their opinions they assign to the options considered
as we do not have other data to use. However, a question arises if assessing experts this way
is reliable. The problem is that we do not know the real state of affairs, i.e., we do not know a
real the best option(s). The methods taking into account experts’ opinions assume that an expert
who gives with confidence very good scores or very bad scores is a very good expert. However, it
could happen that the options considered are average and the best expert who knows about it gives
average scores. On the other hand a less experienced expert might give very good scores and in
result such an expert is seen as a very good one which is not the truth in the considered case. To
sum up, we should be very careful assigning weights to experts when the only information about
them are their opinions concerning the options.

4 Conclusions

We have proposed a novel method for assigning the weights to experts in a group decision
process. We used three term model of IFSs which made it possible to formulate an understand-
able function being a foundation of the proposed algorithm. We avoided an assumption that we
know an optimal solution (resulting e.g., from all expert’s opinions producing an average opinion
and using it as optimal one). Instead we assigned higher weights to the experts who are able to
point out advantages and disadvantages of the options considered in a definite way. The method
is transparent and simple from the point of view of calculations. It was not compared to other
methods as in our opinion only real experiments could confirm it in a reliable way.

References

[1] Atanassov, K. (1983). Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Centr. Sci.-Techn.
Libr. of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).

[2] Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag.

[3] Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer-Verlag.

[4] Atanassova, V. (2004). Strategies for Decision Making in the Conditions of Intuitionistic
Fuzziness. Int. Conf. 8th Fuzzy Days, Dortmund, Germany, 263–269.

[5] Bujnowski, P., Szmidt, E., Kacprzyk, J. (2014). Intuitionistic Fuzzy Decision Trees – a new
Approach. In: Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L., Zurada
J. (Eds.): Artificial Intelligence and Soft Computing, Part I. Springer, Switzerland, 181–192.

[6] Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M. (2006). An algorithm for
calculating the threshold of an image representing uncertainty through A-IFSs. IPMU’2006,
2383–2390.

49



[7] Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making Methods and
Applications, Springer-Verlag, Berlin.

[8] Pawlak, Z., & Słowinski, R. (1994). Rough set approach to multi-attribute decision analysis.
European Journal of Operational Research, 72, 443–459.

[9] Ramanathan, R., & Ganesh, L. S. (1994). Group preference aggregation methods employed
in AHP: An evaluation and an intrinsic process for deriving members’ weightages. European
Journal of Operational Research, 79, 249–265.

[10] Roeva, O., & Michalikova, A. (2013). Generalized net model of intuitionistic fuzzy logic
control of genetic algorithm parameters. Notes on Intuitionistic Fuzzy Sets, 19 (2), 71–76.

[11] Saaty, T. L. (1980). The Analytic Hierarchy Process, McGraw- Hill, New York.

[12] Szmidt, E. (2014). Distances and Similarities in Intuitionistic Fuzzy Sets. Springer.

[13] Szmidt, E., & Baldwin, J. (2006). Intuitionistic Fuzzy Set Functions, Mass Assignment
Theory, Possibility Theory and Histograms. 2006 IEEE World Congress on Computational
Intelligence, 237–243.

[14] Szmidt, E., & Kacprzyk, J. (1997). On measuring distances between intuitionistic fuzzy
sets, Notes on Intuitionistic Fuzzy Sets, 3 (4), 1–13.

[15] Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets, Fuzzy Sets
and Systems, 114 (3), 505–518.

[16] Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and
Systems, 118 (3), 467–477.

[17] Szmidt, E., & Kacprzyk, J. (2006). Distances Between Intuitionistic Fuzzy Sets: Straight-
forward Approaches May Not Work. IEEE Intelligent System’06, London, 716–721.

[18] Szmidt, E., & Kacprzyk, J. (2007). Some problems with entropy measures for the Atanassov
intuitionistic fuzzy sets. Applications of Fuzzy Sets Theory. LNAI 4578, 291–297.

[19] Szmidt, E., & Kacprzyk, J. (2007). A New Similarity Measure for Intuitionistic Fuzzy Sets:
Straightforward Approaches May Not Work. 2007 IEEE Conf. on Fuzzy Systems, 481–486.

[20] Szmidt, E., & Kacprzyk, J. (2009). Ranking of Intuitionistic Fuzzy Alternatives in a
Multi-criteria Decision Making Problem. In: Proceedings of the conference: NAFIPS 2009,
Cincinnati, USA, June 14-17, 2009, IEEE, ISBN: 978-1-4244-4577-6.

[21] Szmidt, E., & Kacprzyk, J. (2018). Selection of the attributes in intuitionistic fuzzy models.
Notes on Intuitionistic Fuzzy Sets, 24 (4), 63–71, DOI: 10.7546/nifs.2018.

50



[22] Szmidt E., Kacprzyk, J., & Bujnowski, P. (2020) Attribute Selection for Sets of Data
Expressed by Intuitionistic Fuzzy Sets. 2020 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 1–7.

[23] Szmidt, E., & Kukier, M. (2006). Classification of Imbalanced and Overlapping Classes
using Intuitionistic Fuzzy Sets. IEEE IS’06, London, 722–727.

[24] Szmidt, E., & Kukier, M. (2008). A New Approach to Classification of Imbalanced Classes
via Atanassov’s Intuitionistic Fuzzy Sets. In: Hsiao-Fan Wang (Ed.): Intelligent Data
Analysis : Developing New Methodologies Through Pattern Discovery and Recovery. Idea
Group, 85–101.

[25] Szmidt, E., & Kukier, M. (2008) Atanassov’s intuitionistic fuzzy sets in classification of
imbalanced and overlapping classes. In: Panagiotis Chountas, Ilias Petrounias, Janusz
Kacprzyk (Eds.): Intelligent Techniques and Tools for Novel System Architectures. Springer,
Berlin Heidelberg, 455–471.

[26] Yang, Q., Du, P.-A., Wang, Y., & Liang, B. (2017). A rough set approach for determining
weights of decision makers in group decision making. PLoS ONE 12(2): e0172679.
doi:10.1371/journal.pone.0172679.

[27] Yue, Z. L. (2013). Group decision making with multi-attribute interval data. Information
Fusion, 14, 551–561.

[28] Yue, Z. L. (2012). Approach to group decision making based on determining the weights of
experts by using projection method. Applied Mathematical Modelling, 36, 2896–2906.

[29] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

51


