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Abstract: Simple genetic algorithms have been investigated aiming to improve the algorithm 

convergence time. Because of the stochastic nature of genetic algorithms, several runs have to be 

performed in order representative results to be achieved. A procedure for purposeful genesis 

concerning intervals of variations of model parameters is proposed for a standard simple genetic 

algorithm aiming to improve significantly the algorithm effectiveness. Such stepwise 

methodology is applied to a parameter identification of a fed-batch cultivation of S. cerevisiae. 

The procedure is further validated to a modified simple genetic algorithm with changed sequence 

of main genetic algorithm operators, namely mutation, crossover and selection proven as faster 

than the standard one. Results obtained from both applications show significantly improvement 

of algorithm convergence time saving the model accuracy.  

 

Keywords: genetic algorithms, purposeful genesis, model parameters, fermentation process, 

Saccharomyces cerevisiae. 

 

Introduction 

 

Application of fermentation processes (FP) in different branches of industry makes their 

investigation a very topical question. Modelling and further optimal control of FP is a non-trivial 

task due to they are complex, dynamic systems with interdependence and time-varying process 

variables. An important step for FP adequate modeling is the choice of a certain optimization 

procedure for model parameter identification. Inability of conventional optimization methods 

such as Nelder-Mead’s minimization, sequential quadratic programming, quasi-Newton 

algorithms (i.e. Broyden, Fletcher, Goldfarb and Shanno), etc. to reach to a satisfied solution [1, 
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2] provokes an idea some stochastic algorithms to be applied. As an alternative for solving such 

a complex problem evolutionary algorithms can be considered. Among them genetic algorithms 

(GA) [3], inspired by Darwin’s theory of “survival of the fittest”, is a stochastic global 

optimization technique with applications in different areas [4, 5, 6]. Properties like hard 

problems solving, noise tolerance, easy to interface and hybridize make GA suitable and more 

workable for parameter identification of fermentation models [2, 4, 6-9]. Obtained promising 

results using GA encourage their future investigation. 

 

The effectiveness of a certain optimization technique can be evaluated by the model accuracy 

achieved and the convergence time needed. Due to the stochastic nature of GA obtained results 

might be quite diverse. That is why several runs have to be performed in order representative 

results to be reached. Accumulating data from different runs, an idea for purposeful genesis 

concerning intervals of variations of model parameters has been provoked. Such idea is going to 

be elaborated for standard simple genetic algorithms and further promptly applied for a modified 

one, previously proven as faster one [7].  

 

Standard simple genetic algorithm (SGA), originally presented in [3], is here denoted as SGA-

SCM, coming from an execution of main genetic operators in a sequence selection, crossover, 

mutation. In SGA-SCM chromosomes (coded parameter set) representing better possible 

solutions according to their own objective function values are chosen through selection from the 

population. After that, crossover proceeds in order to form new offspring. Mutation is then 

applied with determinate probability aiming to prevent falling of all solutions in the population 

into a local optimum of the solved problem. Many modifications of SGA-SCM, which differ 

from each other in the sequence of execution of those operators, have been elaborated aiming to 

improve the algorithm convergence time [7, 8]. Among them is SGA-MCS (mutation, crossover, 

selection), proposed and basically investigated in [7], in which selection operator has been 

processed after performing of crossover and mutation, in order to be prevented the loss of 

reached good solution by either crossover or mutation or both operators. After the reproduction, 

the SGA-MCS calculates the objective function for the offspring and the best fitted individuals 

from the offspring are selected to replace the parents, according to their objective function 

values. In both considered here SGA the calculations stop when a certain number of generations 

have been performed.  
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The aim of the study is simple genetic algorithms to be applied to a purposeful model parameters 

genesis for parameter identification of S. cerevisiae fed-batch cultivation. Aiming that a stepwise 

procedure is elaborated for SGA-SCM and further validated to SGA-MCS. 

 

Procedure for Purposeful Model Parameters Genesis 

Due to stochastic nature of GA a great number of algorithms runs have to be executed in order to 

be obtained reliable results in parameter identification of a fermentation process model. In the 

beginning GA searches for solutions of model parameters in wide, but reasonably chosen 

boundaries according to [10] statements. When results have been analyzed they showed that the 

values of model parameters can be assembled and preliminary defined boundaries could be 

straitened. Thus it has been generated an idea for developing a procedure of purposeful model 

parameters genesis. Such procedure is going to result in a definition of more appropriate 

boundaries for variation of model parameters values aiming to decrease convergence time while 

saving model accuracy.  

 

The proposed procedure consists of six steps given further in details: 

Step 1: Performance of N runs of genetic algorithms  

Step 2: Determination of minimum and maximum of the objective function 

Step 3: Determination of top level (TL), middle level (ML) and low level (LL) of performance  

            with corresponding low boundary (LB) and up boundary (UB) following the scheme: 

3.1. Determination of discrimination number  by  

3

maxJ - minJ
   

3.2. Top level low boundary (TL_LB)  min J 

Top level up boundary (TL_UB)  min J + ∆ – ε 

Middle level low boundary (ML_LB) min J + ∆ 

Middle level up boundary (ML_UB)  min J + 2∆ – ε 

Low level low boundary (LL_LB)  min J + 2∆ 

Low level up boundary (LL_UB)  max J 

where ε is a small number, ensuring the difference between levels. 

Step 4: Determination of minimum, maximum and average value for each parameter at each  

level 

Step 5: Based on averaged values, determination of new intervals of model parameters variations 

Step 6: Run of genetic algorithm with intervals, determined in Step 5. 
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Model Parameters Genesis for S. cerevisiae Fed-batch Cultivation 

Experimental data of S. cerevisiae fed-batch cultivation is obtained in the Institute of Technical 

Chemistry – University of Hannover, Germany [2]. The cultivation of the yeast S. cerevisiae is 

performed in a 1.5 l reactor, using a Schatzmann medium. Glucose in feeding solution is 50 g/l. 

The temperature was controlled at 30°C, the pH at 5.7. The stirrer speed was set to 500 rpm. 

Biomass and ethanol were measured off-line, while substrate (glucose) and dissolved oxygen 

were measured on-line.  

 

Mathematical model of S. cerevisiae fed-batch cultivation is commonly described as follows, 

according to the mass balance [2]:  

dX F
= μX - X

dt V
 (1) 

 S in

dS F
= -q X + S - S

dt V
 (2) 

E

dE F
= q X - E

dt V
 (3) 

 O *2 2
O L 2 22

dO
= -q X +k a O - O

dt
 (4) 

dV
= F

dt
 (5) 

where X is the concentration of biomass, [g/l]; S – concentration of substrate (glucose), [g/l];  

E – concentration of ethanol, [g/l]; O2 – concentration of oxygen, [%]; 2

*O  – dissolved oxygen 

saturation concentration, [%]; F – feeding rate, [l/h]; V – volume of bioreactor, [l];  

2O

Lk a  – volumetric oxygen transfer coefficient, [1/h]; Sin – initial glucose concentration in the 

feeding solution, [g/l]; μ , qS, qE, qO2 – specific growth/utilization rates of biomass, substrate, 

ethanol and dissolved oxygen, [1/h]. All functions are continuous and differentiable. 

 

Considered here fed-batch cultivation of S. cerevisiae is characterized with keeping glucose 

concentration equal to or below to its critical level (Scrit = 0.05 g/l), sufficient dissolved oxygen 

O2 ≥ O2crit (O2crit = 18%) and availability of ethanol in the broth. This state corresponds to the so 

called mixed oxidative state (FS II) according to functional state modeling approach [2]. Hence, 

specific rates in Eqs. (1)-(5) are: 

2 2 ,
E

S E

S

S E
μ= μ + μ

S +k E + k

2 ,S
S

SX S

μ S
q =

Y S + k 2

2 ,
O

E
E E OE S OS

EX E

μ E
q = - q = q  Y + q Y

Y E +k
 (6) 
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where 
2 2S E

,μ μ  are the maximum growth rates of substrate and ethanol, [1/h]; kS, kE – saturation 

constants of substrate and ethanol, [g/l]; Yij – yield coefficients, [g/g]; all model parameters fulfill 

the non-zero division requirement. 

 

As an optimization criterion, mean square deviation between the model output and the 

experimental data obtained during cultivation has been used: 

 
2

,YJ = Y -Y * min  (7) 

where Y is the experimental data, Y
*
 – model predicted data, Y = [X, S, E, O2]. 

 

Developed procedure for a purposeful model genesis has been applied to parameter identification 

of S. cerevisiae fed-batch cultivation. The values of GA parameters and type of genetic operators 

in both considered here GA are tuned according to [7, 9]. Parameter identification of the model 

(1)-(6) has been performed using Genetic Algorithm Toolbox [11] in Matlab 7 environment. All 

the computations are performed using a PC Intel Pentium 4 (2.4 GHz) platform running 

Windows XP.  

 

Following model equations (1)-(6) altogether nine parameters for S. cerevisiae fed-batch 

cultivation model have been estimated firstly applying standard simple genetic algorithm, 

denoted here as SGA-SCM. As presented in Table 1, the algorithm has been investigated for four 

different values of the most sensitive towards algorithm convergence time parameter, namely the 

generation gap (GGAP) [9]. For each value of GGAP several runs of SGA-SCM have been 

executed. Obtained results are analyzed according to achieved objective function values. For 

each GGAP value minimum and maximum of the objective function are determined and the 

discrimination number is assigned according to Step 3 of the procedure. After that the 

determination of top, middle and low level of performance is going on. The best results hit the 

interval [min J; min J + ∆ – ε]. These ones classified in the middle level have an objective 

function varying in terms [min J + ∆; min J + 2∆ – ε]. The worst solutions for the objective 

function fall in the interval [min J + 2∆; max J]. 

 

For each of the constructed in such a way levels, the minimum, maximum and average value of 

each model parameter have been determined. Table 2 presents these values only for the top 

levels according to Table 1.  
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 Table 1 

SGA_SCM 
Objective  

function 

Levels  

of performance 

Average  

convergence time 

GGAP = 0.9 

min J 0.0221 
TL_LB 0.0221 

81.6693 

TL_UB ~0.0222 

avrg J 0.0222 
ML_LB 0.0222 

ML_UB 0.0222 

max J 0.0223 
LL_LB 0.0222 

LL_UB 0.0223 

GGAP = 0.8 

min J 0.0221 
TL_LB 0.0221 

70.3386 

TL_UB ~0.0222 

avrg J 0.0222 
ML_LB 0.0222 

ML_UB 0.0222 

max J 0.0223 
LL_LB 0.0222 

LL_UB 0.0223 

GGAP = 0.67 

min J 0.0221 
TL_LB 0.0221 

59.1654 

TL_UB ~0.0222 

avrg J 0.0222 
ML_LB 0.0222 

ML_UB 0.0222 

max J 0.0223 
LL_LB 0.0222 

LL_UB 0.0223 

GGAP = 0.5 

min J 0.0222 
TL_LB 0.0222 

46.9997 

TL_UB ~0.0223 

avrg J 0.0223 
ML_LB 0.0223 

ML_UB ~0.0225 

max J 0.0226 
LL_LB 0.0225 

LL_UB 0.0226 

 

 Table 2 

SGA-SCM  μ2S μ2E kS kE YSX YEX 
2O

Lk a  YOS YOE 

GGAP = 0.9 min 0.94 0.14 0.13 0.80 0.40 2.00 40.42 333.03 35.73 

 max 0.99 0.15 0.14 0.80 0.39 1.81 95.53 785.10 96.73 

 avrg 0.97 0.14 0.13 0.80 0.39 1.92 63.24 515.78 61.78 

GGAP = 0.8 min 0.91 0.12 0.12 0.79 0.41 1.84 52.20 415.38 102.70 

 max 1.00 0.14 0.13 0.80 0.40 1.63 126.44 990.90 201.39 

 avrg 0.95 0.13 0.13 0.80 0.40 1.78 96.82 769.11 155.37 

GGAP = 0.67 min 0.91 0.12 0.11 0.80 0.41 1.98 48.98 379.71 30.46 

 max 0.97 0.15 0.14 0.80 0.39 1.67 126.78 987.88 149.45 

 avrg 0.95 0.14 0.13 0.80 0.40 1.84 101.39 801.98 92.02 

GGAP = 0.5 min 0.91 0.11 0.11 0.79 0.40 2.04 99.59 768.66 102.84 

 max 1.00 0.15 0.14 0.80 0.39 1.47 126.78 983.37 261.13 

 avrg 0.95 0.14 0.13 0.80 0.40 1.84 108.41 853.07 216.27 
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The new boundaries of model parameters are constructed following that the new minimum is the 

minimum between the averages, and the new maximum is the maximum between the averages. 

Table 3 presents previously used “wide” boundaries for each model parameter according to [10] 

as well as new boundaries proposed based on the procedure for purposeful model parameter 

genesis.  

 Table 3 

SGA-SCM  μ2S μ2E kS kE YSX YEX 
2O

Lk a  YOS YOE 

previously used 
LB 0.9 0.05 0.08 0.5 0.1 0.1 0.001 0.001 0.001 

UB 1 0.15 0.15 0.8 3 10 1000 1000 300 

advisable after  

procedure application 

LB 0.94 0.13 0.12 0.7 0.38 1.7 60 500 50 

UB 0.97 0.15 0.14 0.8 0.42 2.5 120 900 220 

 

Investigated SGA-SCM has been again applied involving newly proposed boundaries at  

GGAP = 0.5. Several runs have been performed to obtain reliable results. Table 4 presents the 

average values of objective function, calculation time and model parameters.  

 Table 4 

Parameter/ 

GGAP = 0.5 

SGA-SCM 

before procedure 

application 

after procedure 

application 

J 0.0222 0.0221 

CPU time, s 46.9997 29.25 

μ2S, 1/h 0.95 0.95 

μ2E, 1/h 0.14 0.14 

kS, g/l 0.13 0.13 

kE, g/l 0.80 0.80 

YSX, g/g 0.40 0.40 

YEX, g/g 1.84 1.87 
2O

Lk a , 1/h 108.41 77.21 

YOS, g/g 853.07 608.53 

YOE, g/g 216.27 212.56 

 

Applied procedure leads to saving up to 38% of computational time without loss of model 

accuracy, thus showing good effectiveness of proposed procedure for purposeful model 

parameter genesis. 

 

Further proposed procedure is verified when applied to the one of the modified SGA, namely 

SGA-MCS [7] since it has been distinguished as faster than SGA-SCM. Observed tendency in 

SGA-SCM that the lower value of GGAP ensures saving the model accuracy for less 

computational time has been confirmed in SGA-MCS. Up to almost 44% of calculation time is 

saved in case of SGA-MCS application using GGAP = 0.5 instead of 0.9 with a such model 
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accuracy. Applying again proposed here procedure for purposeful model parameters genesis for 

SGA-MCS, new boundaries for model parameters are proposed (Table 5).  

 Table 5 

SGA-MCS  μ2S μ2E kS kE YSX YEX 
2O

Lk a  YOS YOE 

advisable after  

procedure application 

LB 0.9 0.1 0.11 0.75 0.4 1 60 500 80 

UB 0.93 0.13 0.13 0.8 0.43 2 120 800 220 

 

New boundaries applicability has been tested in several runs of SGA-MCS aiming to obtain 

reliable results. Table 6 presents the average values of objective function, calculation time and 

model parameters when SGA-MCS has been executed at GGAP = 0.5. Applied procedure for 

model parameter genesis leads to almost 30% reduction of computational time of SGA-MCS 

without loss of model accuracy.  

 Table 6 

Parameter/ 

GGAP = 0.5 

SGA-MCS 

before procedure 

application 

after procedure 

application 

J 0.0224 0.0221 

CPU time, s 40.5261 28.6090 

μ2S, 1/h 0.92 0.91 

μ2E, 1/h 0.12 0.11 

kS, g/l 0.12 0.11 

kE, g/l 0.79 0.80 

YSX, g/g 0.40 0.42 

YEX, g/g 1.58 1.51 
2O

Lk a , 1/h 90.23 69.23 

YOS, g/g 708.44 550.75 

YOE, g/g 203.38 194.26 

 

As it could be seen from Tables 4 and 6 the value of the objective function is further reduced 

when proposed here procedure is applied to modified SGA-MCS. This algorithm is accurate as 

SGA-SCM, even more for considerably less CPU time. Due to the similarity of the results 

achieved, here only the promising results applying SGA-MCS are presented. Fig. 1 shows results 

from experimental data and model prediction respectively for biomass, ethanol, substrate and 

dissolved oxygen. 
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Fig. 1 Model prediction compared to experimental data  

 

Obtained results show the workability of the proposed procedure for purposeful model 

parameters genesis and its effectiveness when applied to SGA-SCM and SGA-MCS. 

 

Analysis and Conclusions 

In this investigation a stepwise procedure for purposeful model parameters genesis for parameter 

identification of S. cerevisiae fed-batch cultivation has been elaborated and further applied 

towards two kinds of simple genetic algorithms. SGA-SCM, as a standard GA and mostly 

examined, has been used as a test example. Obtained promising results have been confirmed 

when proposed procedure has been validated in modified SGA-MCS with exchanged sequence 

of genetics operators, namely mutation, crossover and selection. Applying consequently 

proposed stepwise procedure in such algorithms, intervals of variations of model parameters 

have been straitened thus the GA performance has been improved. After the application of 

proposed procedure SGA-SCM has become 38% and SGA-MCS 29% faster, thus showing 

significantly improvement of algorithm convergence time saving the model accuracy. But if one 

compares obtained results for SGA-SCM when GGAP = 0.9 to these when GGAP = 0.5 in  

SGA-MCS with applied procedure of purposeful model parameters genesis, it could be seen that 

up to 65% of calculation time are saved without affecting the model accuracy. It is worth to note, 
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that the proposed here procedure of purposeful model parameters genesis is universal remedy 

and could be appropriately and successfully implemented to another stochastic optimization 

algorithms, as well as to different objects of model parameter identification. 
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