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1 Introduction

The concept of almost prime ideal, which is a generalisation of prime ideal, was introduced by
Bhatwadekar and Sharma in [10], which was also studied in detail by Bataineh in [8]. Presently,
studies on the different generalisations of prime ideals, namely weakly prime ideals, almost prime
ideals, n-almost prime ideals, and ω-prime ideals are progressing rapidly. Anderson and Bataineh
[1] unify these generalisations into ϕα-prime ideals and derive many results.

A proper ideal P of a commutative ring R is called an almost prime, if ab ∈ P − P 2 implies
a ∈ P or b ∈ P . A proper ideal P of a ring R is called a weakly prime, if 0 ̸= ab ∈ P implies
a ∈ P or b ∈ P . A proper ideal P of R is said to be almost prime, if for any ideals A and B of R
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such that AB ⊆ P and AB ⊈ P 2, we have A ⊆ P or B ⊆ P . As every prime ideal is a weakly
prime, and a weakly prime ideal is almost prime.

One of the natural generalisations of prime ideals that has attracted the interest of several
authors is the notion of prime submodules (see, for example, [13], [20]). These have led to
more information on the structure of the R-module M . A proper submodule N of M is called
prime, if for r ∈ R and x ∈ M , rx ∈ N implies that r ∈ (N : M) or x ∈ N , where (N :

M) = {r ∈ R : rM ⊆ N} is called fraction of submodule N by its module M , which is
clearly an ideal of R. Also, if N is a prime submodule of M , then (N : M) is a prime ideal
of R. Among various generalisations of the prime submodules, two generalisations, namely
weakly prime submodules and almost prime submodules, are very progressing rapidly. A proper
submodule N of an R-module M is called a weakly prime submodule, if for each submodule K

of M and elements a, b of R, abK ⊆ N , it implies that aK ⊆ N or bK ⊆ N (see [5], [9]). Also,
a proper submodule N of an R-module M is called almost prime, if for r ∈ R and x ∈ M such
that rx ∈ N -(N : M)N , then either x ∈ N or r ∈ (N : M) (see [19]). Zamani [28] unifies
different generalisations of prime submodules to ϕ-prime submodules and derives many results.

In his classical paper, published in 1965, Zadeh [27] coined the idea of a fuzzy set by
generalizing the concept of a classical set by replacing the binary membership of an element
in a set by a gradation of membership ranging between 0 and 1. Since then, plenty of research
work has been carried out in the field of fuzzy set theory and its applications. By adding one
more element of gradation of non-membership along with the gradation of membership with the
condition that their sum is always less than or equal to one, was introduced by Atanassov in [2–4].
This is one of the most progressing and widely used generalization among other generalizations
to the theory of fuzzy sets. Therefore, an intuitionistic fuzzy subset A of a nonempty set X is as
an ordered function (µA, νA) : X → [0, 1]× [0, 1]. Research on the theory of intuitionistic fuzzy
sets has been witnessing exponential growth both within mathematics and in its applications.
This ranges from traditional mathematical logic, topology, algebra, analysis, etc. to pattern
recognition, information theory, artificial intelligence, neural networks and planning (see [4], [15]
and [16]). Consequently, intuitionistic fuzzy set theory has emerged. As a potential area of
interdisciplinary research, intuitionistic fuzzy module theory is also of recent interest. In [11,12],
Biswas considered the intuitionistic fuzzification of algebraic structures and introduced the notion
of intuitionistic fuzzy subgroup of a group. Hur et al. [17] introduced and examined the notion of
an intuitionistic fuzzy ideal of a ring. Davvaz et al. in [14] introduced the notion of intuitionistic
fuzzy submodules of a module. In the last few years, a considerable amount of work has been
done on intuitionistic fuzzy ideals and intuitionistic fuzzy modules (see [6, 7, 14, 18, 21–26]).

The purpose of the present paper is to study the structural characteristics of the concept of
intuitionistic fuzzy almost prime ideals and intuitionistic fuzzy almost prime submodules. In
Section 3, we define intuitionistic fuzzy almost prime ideals as a new generalisation of intuitionistic
fuzzy prime ideals in a commutative ring with unity. We gave a non-trivial example of an
intuitionistic fuzzy almost prime ideal that is not an intuitionistic fuzzy prime ideal. Apart from
these, we have investigated various properties of intuitionistic fuzzy almost prime ideals and
obtained many results. In section 4, we define intuitionistic fuzzy almost prime submodules
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as a new generalisation of intuitionistic fuzzy prime submodules of unitary modules over a
commutative ring with identity. We studied some basic properties of intuitionistic fuzzy almost
prime submodules and gave some characterizations of them, especially for finitely generated
faithful multiplication modules.

2 Preliminaries

Throughout this paper R is a commutative ring with identity.

Definition 2.1. ( [2–4]) An intuitionistic fuzzy set (IFS) A in X can be represented as an object
of the form A = {⟨x, µA(x), νA(x)⟩ : x ∈ X}, where the functions µA, νA : X → [0, 1] denote
the degree of membership (namely, µA(x)) and the degree of non-membership (namely, νA(x))
of each element x ∈ X to A respectively and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

Remark 2.2. ([3, 4]) (i) When µA(x) + νA(x) = 1, for all x ∈ X , then A is called a fuzzy set.

(ii) An IFS A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} is briefly written as A(x) = (µA(x), νA(x)), for all
x ∈ X . We denote by IFS(X) the set of all IFSs of X .

(iii) If p, q ∈ [0, 1] such that p+ q ≤ 1. Then A ∈ IFS(X) defined by µA(x) = p and νA(x) = q,
for all x ∈ X , is called a constant intuitionistic fuzzy set of X . Any IFS of X defined other than
this is referred to as a non-constant intuitionistic fuzzy set.

If A,B ∈ IFS(X), then A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x), for all
x ∈ X and A = B ⇔ A ⊆ B and B ⊆ A. For any subset Y of X , the intuitionistic fuzzy
characteristic function χY is an intuitionistic fuzzy set of X , defined as χY (x) = (1, 0), for all
x ∈ Y and χY (x) = (0, 1), for all x ∈ X\Y . Let α, β ∈ [0, 1] with α + β ≤ 1. Then the crisp
set A(α,β) = {x ∈ X : µA(x) ≥ α and νA(x) ≤ β} is called the (α, β)-level cut subset of A.
Also the IFS x(α,β) of X defined as x(α,β)(y) = (α, β), if y = x, otherwise (0, 1) is called the
intuitionistic fuzzy point (IFP) in X with support x. By x(α,β) ∈ A we mean µA(x) ≥ α and
νA(x) ≤ β. Further, if f : X → Y is a mapping and A,B be respectively IFS of X and Y . Then
the image f(A) is an IFS of Y is defined as µf(A)(y) = sup{µA(x) : f(x) = y}, νf(A)(y) =

inf{νA(x) : f(x) = y}, for all y ∈ Y and the inverse image f−1(B) is an IFS of X is defined as
µf−1(B)(x) = µB(f(x)), νf−1(B)(x) = νB(f(x)), for all x ∈ X , i.e., f−1(B)(x) = B(f(x)), for
all x ∈ X .

Definition 2.3. ([6,7,17]) Let A ∈ IFS(R). Then A is called an intuitionistic fuzzy ideal (IFI)

of ring R, if for all x, y ∈ R, the followings are satisfied

(i) µA(x− y) ≥ µA(x) ∧ µA(y);

(ii) µA(xy) ≥ µA(x) ∨ µA(y);

(iii) νA(x− y) ≤ νA(x) ∨ νA(y);

(iv)νA(xy) ≤ νA(x) ∧ νA(y).
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Note that µA(0R) ≥ µA(x) ≥ µA(1R), µA(0R) ≤ µA(x) ≤ νA(1R), for all x ∈ R. The set of
all intuitionistic fuzzy ideals of R is denoted by IFI(R).

Definition 2.4. ( [6, 7, 17]) Let A,B ∈ IFI(R). Then the intuitionistic fuzzy product AB of A
and B are defined as: For all x ∈ R

(µAB(x), νAB(x)) =

(supx=yz(µA(y) ∧ µB(z)), infx=yz(νA(y) ∨ νB(z)), if x = yz

(0, 1), otherwise,

where as usual supremum and infimum of an empty set are taken to be 0 and 1 respectively.

Remark 2.5. ([17]) Let R be a commutative ring. Then for any x(p,q), y(t,s) ∈ IFP (R)

(i) x(p,q) + y(t,s) = (x+ y)(p∧t,q∨s);

(ii) x(p,q)y(t,s) = (xy)(p∧t,q∨s).

Theorem 2.6. ([7]) Let A ∈ IFS(R). Then A is an intuitionistic fuzzy ideal if and only if A(α,β)

is an ideal of R, for all α ≤ µA(0), β ≥ νA(0) with α + β ≤ 1. In particular, if A is an IFI of R,
then A∗ = {x ∈ R : µA(x) = µA(0), νA(x) = νA(0)} is always an ideal of R.

Definition 2.7. ([6, 25]) Let P be a non-constant IFI of a ring R. Then P is said to be an
intuitionistic fuzzy prime ideal (IFPI) of R, if for any two IFIs A,B of R such that AB ⊆ P

implies that either A ⊆ P or B ⊆ P .

Theorem 2.8. ( [6]) Let P be an IFI of a ring R. Then for any x(p,q), y(t,s) ∈ IFP (R) the
following are equivalent:

(i) P is an intuitionistic fuzzy prime ideal of R

(ii) x(p,q)y(t,s) ⊆ P implies x(p,q) ⊆ P or y(t,s) ⊆ P .

Theorem 2.9. ( [17]) If P is an intuitionistic fuzzy prime ideal of a ring R, then the following
conditions hold:

(i) P (0R) = (1, 0),

(ii) P∗ is a prime ideal of R,

(iii) Img(P ) = {(1, 0), (t, s)}, where t, s ∈ [0, 1) such that t+ s ≤ 1.

Proposition 2.10. Let A be an IFI of ring R. Then

(1)A is a non-constant IFPI if for every IFIs B,C of R whenever BC ⊆ A implies either B ⊆ A

or C ⊆ A.

(2) If A is an IFPI, then for all x, y ∈ R, either µA(xy) = µA(x) and νA(xy) = νA(x) or
µA(xy) = µA(y) and νA(xy) = νA(y) [In other words µA(xy) = µA(x) ∨ µA(y) and νA(xy) =

νA(x) ∧ νA(y)]

(3) If A is an IFPI of R, then for all x, y ∈ R, µA(xy) = µA(0R) and νA(xy) = νA(0R) implies
either µA(x) = µA(0R) and νA(x) = νA(0R) or µA(y) = µA(0R) and νA(y) = νA(0R).
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Proof. (1) Let B,C be two IFIs of R such that BC ⊆ A. Suppose that B ⊈ A and C ⊈ A,
then there exists x, y ∈ R such that µB(x) > µA(x) or νB(x) < νA(x) and µC(y) > µA(y) or
νC(y) < νA(y). Hence x(µB(x),νB(x)) /∈ A and y(µC(y),νC(y)) /∈ A. But

µA(xy) ≥ µBC(xy)

≥ µB(x) ∧ µC(y)

= µ(xy)µB(x)∧µC (y)
(xy)

= µx(µB(x),νB(x))y(µC(y),νC(y))(xy)

Similarly, we can show that νA(xy) ≤ νx(µB(x),νB(x))y(µC(y),νC(y))(xy), i.e.,
x(µB(x),νB(x))y(µC(y),νC(y)) ∈ A so either x(µB(x),νB(x)) ∈ A or y(µC(y),νC(y)) ∈ A, which is a
contradiction. Hence either B ⊆ A or C ⊆ A.

(2) Suppose A is an IFPI of R. Then by Theorem (2.9), A is of the form

µA(x) =

1, if x ∈ I

t, if x /∈ I
, νA(x) =

0, if x ∈ I

s, if x /∈ I
,

where I is prime ideal of R and t, s ∈ (0, 1) such that t + s ≤ 1. Let x, y ∈ R. If xy ∈ I . Then
as I is prime ideal, therefore, either x ∈ I or y ∈ I .
This further implies, either µA(x) = 1 and νA(x) = 0 or µA(y) = 1 and νA(y) = 0. Thus, either
µA(xy) = µA(x) and νA(xy) = νA(x) or µA(xy) = µA(y) and νA(xy) = νA(y).

If xy /∈ I , then µA(xy) = t and νA(xy) = s. But µA(xy) ≥ µA(x) ∨ µA(y) and
νA(xy) ≤ νA(x) ∧ µA(y).

Now, if either µA(x) = 1 or µA(y) = 1, then t ≥ 1 which is not possible. Alternatively, if
either νA(x) = 0 or νA(y) = 0, then s ≤ 0 which is not possible. Therefore, at least one of the
values of µA(x) or µA(y) must be t. Similarly, at least one of the values of νA(x) or νA(y) must
be s. This implies that either µA(xy) = µA(x) and νA(xy) = νA(x), or µA(xy) = µA(y) and
νA(xy) = νA(y).

(3) Let A be an IFPI of R. Suppose that µA(xy) = µA(0R) and νA(xy) = νA(0R) for some
x, y ∈ R. Then we have µA(x) ∨ µA(y) = µA(0R) and νA(x) ∧ νA(y) = νA(0R). So, we infer
that either µA(x) = µA(0R) and νA(x) = νA(0R), or µA(y) = µA(0R) and νA(y) = νA(0R).

3 Intuitionistic fuzzy almost prime ideal

In this section, some definitions and examples for the intuitionistic fuzzy almost prime ideals are
constructed. Also, it has been shown that intuitionistic fuzzy almost prime ideals are generalisations
of intuitionistic fuzzy prime ideals. Moreover, its relationships between intuitionistic fuzzy prime
ideals have been established, and the rings were classified in such a way that every proper
intuitionistic fuzzy almost prime ideal is an intuitionistic fuzzy prime ideal.
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Definition 3.1. An intuitionistic fuzzy ideal P of a ring R is called an intuitionistic fuzzy almost
prime ideal (IFAPI) if for any x, y ∈ R with µP (xy) > µP (1R) and νP (xy) < νP (1R) whenever
µP 2(xy) = µP (1R) and νP 2(xy) = νP (1R) ⇒ µP (xy) = µP (x) ∨ µP (y) and νP (xy) = νP (x) ∧
νP (y).

Example 3.2. Let R = Z be the ring of integers. Define an IFS A on Z as follows:

µA(x) =

1, if x ∈ ⟨6⟩
0, otherwise

; νP (x) =

0, if x ∈ ⟨6⟩
1, otherwise .

It is easy to verify that A is an IFI of R. However, A is not an IFAPI, for µA(2.3) = µA(6) = 1 >

0 = µA(1) and νA(2.3) = νA(6) = 0 < 1 = νA(1), also, µA2(6) = µA(2)∧µA(3) = 0∧ 0 = 0 =

µA(1) and νA2(6) = νA(2)∨νA(3) = 1∨1 = 1 = µA(1). But µA(2.3) = 1 ̸= 0 = µA(2)∨µA(3)

and νA(2.3) = 0 ̸= 1 = νA(2) ∧ νA(3).

Proposition 3.3. Every intuitionistic fuzzy prime ideal in a ring R is an intuitionistic fuzzy almost
prime ideal.

Proof. Let P be a non-constant IFPI in R and x, y ∈ R such that µP (xy) > µP (1R) and
νP (xy) < νP (1R). Also, µP 2(xy) = µP (1R) and νP 2(xy) = νP (1R). Since P is an IFPI
therefore, either µP (xy) = µP (x) and νP (xy) = νP (x) or µP (xy) = µP (y) and νP (xy) = νP (y).
Without loss of generality let µP (x) = µP (x) ∧ µP (y) and νP (x) = νP (x) ∨ νP (y). But
then µP 2(xy) ≥ µP (x) ∧ µP (y) = µP (x) and νP 2(xy) ≤ νP (x) ∨ νP (y) = νP (x) implies
that µP (1R) ≥ µP (x) but µP (1R) ≤ µP (x) always implies that µP (1R) = µP (x). Similarly
we get νP (1R) = νP (x). This implies that P is a constant IFPI of R, a contradiction. So,
µP (xy) = µP (y) = µP (x) ∨ µP (y) and νP (xy) = νP (y) = νP (x) ∧ νP (y). Hence P is an IFAPI
in R.

Remark 3.4. The converse of the above proposition need not be true, as seen in the following:

Example 3.5. Let R = (Z,+, .) be the ring of integers and I = ⟨3⟩ be the prime ideal of Z.
Define the IFS P on Z as follows:

µP (x) =


1, if x ∈ I2

α, if x ∈ I − I2

0, otherwise

, νP (x) =


0, if x ∈ I2

β, if x ∈ I − I2

1, otherwise

,

where α, β ∈ (0, 1) such that α + β ≤ 1. First we show that P is an IFI of Z.
Consider x, y ∈ Z, then we have the following cases.

Case (1) When x ∈ I but y /∈ I , then x − y ∈ I but xy /∈ I . Therefore we have µP (x − y) = 0

and νP (x− y) = 1 also µP (y) = 0 and νP (y) = 1 implies that

µP (x− y) = µP (y) = µP (x) ∧ µP (y) and νP (x− y) = νP (y) = νP (x) ∨ νP (y).
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Thus we have

µP (x) =

1, if x ∈ I2

α, if x ∈ I − I2
; νP (x) =

0, if x ∈ I2

β, if x ∈ I − I2
.

If µP (xy) = 1 and νP (xy) = 0, then µP (xy) ≥ µP (x) ∨ µP (y) and νP (xy) ≤ νP (x) ∧ νP (y).
If µP (xy) = α and νP (xy) = β, then xy ∈ I−I2. So, µP (x)∨µP (y) = α and νP (x)∧νP (y) = β.
Thus µP (xy) ≥ µP (x) ∨ µP (y) and νP (xy) ≤ νP (x) ∧ νP (y).

Case (2) When x ∈ I and y ∈ I − I2, then x− y ∈ I and xy ∈ I2. Therefore we have
µP (y) = α and νP (y) = β implies µP (x) ∧ µP (y) = α and νP (x) ∨ νP (y) = β. Therefore,
µP (x− y) = α = µP (y) = µP (x) ∧ µP (y) and νP (x− y) = β = νP (y) = νP (x) ∨ νP (y).
Also, µP (xy) = 1 ≥ µP (x) ∨ µP (y) and νP (xy) = 0 ≤ νP (x) ∧ νP (y).

Case (3) When x /∈ I and y /∈ I , then xy /∈ I [Since I is prime ideal]. Therefore we have
µP (x) = 0 = µP (y) and νP (x) = 1 = νP (y). So, µP (x) ∧ µP (y) = 0 and νP (x) ∨ νP (y) = 1.
Also, µP (x − y) ≥ 0 and νP (x − y) ≤ 1 always implies that µP (x − y) ≥ µP (x) ∧ µP (y) and
νP (x− y) ≤ νP (x) ∨ νP (y).
Also, µP (xy) = 0 and νP (xy) = 1 ⇒ µP (xy) = µP (x) ∨ µP (y) and νP (xy) = νP (x) ∧ νP (y).
Combining all the cases we see that P is an intuitionistic fuzzy ideal of Z.

Next, we show that P is an IFAPI of Z. Let x, y ∈ Z such that µP (xy) = α and νP (xy) = β

and µP 2(xy) = 0 and νP 2(xy) = 1 such x, y exists in Z.
For example: take x = 2, y = 3 ∈ Z then
µP 2(2.3) = µP 2(6) = ∨{µP (1) ∧ µP (6), µP (2) ∧ µP (3)} = ∨{0 ∧ α, 0 ∧ α} = ∨{0, 0} = 0 and
νP 2(2.3) = νP 2(6) = ∧{νP (1) ∨ νP (6), νP (2) ∨ νP (3)} = ∧{1 ∨ β, 1 ∨ β} = ∧{1, 1} = 1.
So, µP (x) ∧ µP (y) = 0 and νP (x) ∨ νP (y) = 1.
Consider µP (x) ∧ µP (y) = µP (x) and νP (x) ∨ νP (y) = νP (x), then µP (x) = 0 and νP (x) = 1.
This implies x /∈ I . But µP (xy) = α and νP (xy) = β implies that xy ∈ I , as I is prime ideal of
Z therefore, y ∈ I .

Assume that y ∈ I2, then there exist a, b ∈ Z with y = ab and µP 2(xy) = 0 and νP 2(xy) = 1.
This contradict the choice of x and y. Thus, y ∈ I − I2 and so xy ∈ I − I2.

Therefore, µP (xy)=µP (y)=α=µP (x) ∨ µP (y) and νP (xy)= νP (y)=β= νP (x) ∧ νP (y).
So, P is an IFAPI of Z. As P has three membership and non-membership values. Hence P is not
an IFPI of Z (By Theorem (2.9)).

Proposition 3.6. Let R be a ring. If P be an IFI in R satisfies that for any x(p,q), y(t,s) ∈ IFP (R)

with x(p,q)y(t,s) ∈ P and x(p,q)y(t,s) /∈ P 2 implies that either x(p,q) ∈ P or y(t,s) ∈ P , then P is an
IFAPI in R.

Proof. Let x, y ∈ R such that xy = 0R, µP 2(xy) = 0, νP 2(xy) = 1 with µP (xy) = p, νP (xy) =
q, where p, t, q, s ∈ (0, 1] such that p = t, q = s, then x(p,q)y(t,s) ∈ P .

Now, since x(p,q)y(t,s) /∈ 0(0,1), then x(p,q)y(t,s) /∈ P 2 so either x(p,q) ∈ P or y(t,s) ∈ P , but
µP 2(xy) = 0, νP 2(xy) = 1 implies that µP (x) ∧ µP (y) = 0, νP (x) ∨ νP (y) = 1.
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Without loss of generality, consider that µP (x) ∨ µP (y) = µP (x), νP (x) ∧ νP (y) = νP (x).
So, µx(p,q)

(x) = p > µP (x), νx(p,q)
(x) = q < νP (x), then x(p,q) /∈ P and y(t,s) /∈ P implies

that µy(t,s)(y) = t ≤ µP (y), νy(t,s)(y) = s ≥ νP (y). Therefore µP (y) ≥ t, νP (y) ≤ s and
µP (xy) ≤ µP (y), νP (xy) ≥ νP (y) implies that µP (xy) = µP (y), νP (xy) = νP (y). Hence, P is
an IFAPI of R.

Proposition 3.7. Let I be a proper ideal in R such that I2 ⊆ I . Define the IFS P of R by

µP (x) =


1, if x ∈ I2

α, if x ∈ I − I2

0, otherwise

; νP (x) =


0, if x ∈ I2

β, if x ∈ I − I2

1, otherwise

;

where α, β ∈ (0, 1) such that α + β ≤ 1. Then
(I) If P is an IFAPI in R, then I is an almost prime ideal in R.
(II) If R is UFD, then I is an almost prime ideal in R if and only if P is an IFAPI in R.

Proof. One can easily show that P is an IFI of R.

(I) Let P be an IFAPI in R. For any x, y∈R with xy ∈ I−I2 we have µP (xy)=α, νP (xy)=β

and µP 2(xy) = 0, νP 2(xy) = 1 implies that either µP (xy) = µP (x), νP (xy) = νP (x) or
µP (xy) = µP (y), νP (xy) = νP (y), i.e., either µP (x) = α, νP (x) = β or µP (y) = α, νP (y) = β.
This implies that either x ∈ I or y ∈ I . Therefore, I is almost prime ideal of R.

(II) Let I be an almost prime ideal in R. Let x, y ∈ R with µP (xy) > 0, νP (xy) < 1 and
µP 2(xy) = 0, νP 2(xy) = 1. Then there exists d ∈ R with I = ⟨d⟩ and xy ∈ ⟨d⟩. Assume that
xy ∈ ⟨d⟩2 = ⟨d2⟩ so we have µP 2(xy) = 0, νP 2(xy) = 1 which contradict the choice of x, y.
Therefore, xy ∈ ⟨d⟩−⟨d2⟩ which implies that µP (xy) = α, νP (xy) = β also either x ∈ ⟨d⟩−⟨d2⟩
or y ∈ ⟨d⟩ − ⟨d2⟩ implies that µP (x) ∨ µP (y) = α = µP (xy) or νP (x) ∧ νP (y) = β = νP (xy).
Therefore, P is an IFAPI in R.

The converse part follows as in (I).

Proposition 3.8. Let R be a PID and P be an IFAPI in R. If µP (0R) = 1, νP (0R) = 0 and
there exists a non-zero element xo ∈ R with µP (xo) = 1, νP (xo) = 0 and µP 2(xo) = µP (1R),

νP 2(xo) = νP (1R), then P is an IFPI in R.

Proof. Let P be an IFAPI of the ring R, where R is PID. Let P∗ = {r ∈ R : µP (r) = 1 and
νP (r) = 0} be a (1, 0)-cut set with respect to P .

Since 0R ∈ P∗ then P∗ ̸= ∅. So for any x, y ∈ P∗ we have µP (x − y) ≥ µP (x) ∧ µP (y)

and νP (x − y) ≤ νP (x) ∨ νP (y). Also, µP (x) = 1 = µP (y) and νP (x) = 0 = νP (y), then
µP (x− y) = 1 and νP (x− y) = 0. Hence x− y ∈ P∗. Also for every r ∈ R and every x ∈ P∗,
we have µP (rx) ≥ µP (r)∨µP (x) and νP (rx) ≤ νP (r)∧νP (x). Also, µP (x) = 1 and νP (x) = 0

implies that µP (rx) = 1 and νP (rx) = 0. Therefore, rx ∈ P∗ and so P∗ is an ideal in R. As R is
PID, so there exists d ∈ R with P∗ = ⟨d⟩. We claim that d is a prime element in R.

If possible, let d = ab for some a, b ∈ R. Now, assume that there exists xo ∈ R with
xo ̸= 0R such that µP (xo) = 1, νP (xo) = 0 and µP 2(xo) = µP (1R), νP 2(xo) = νP (1R), then
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xo ∈ P∗ and there exists r ∈ R with xo = rd. Now, µP 2(xo) = µP 2(rab) = µP (1R) and
νP 2(x) = νP 2(rab) = νP (1R). So either µP (ra) = µP (1R), νP (ra) = νP (1R) which implies that
µP (a) = µP (1R) and νP (a) = νP (1R) or µP (b) = µP (1R) and νP (b) = νP (1R) which implies
µP (d) = 1, νP (d) = 0 and µP 2(d) = µP (1R) and νP 2(d) = νP (1R), then µP (d) = µP (a)∨µP (b)

and νP (d) = νP (a) ∧ νP (b).
Now, assume that µP (a) ∨ µP (b) = µP (b) and νP (a) ∧ νP (b) = νP (b), then µP (b) = 1 and

νP (b) = 0 which implies that b ∈ ⟨d⟩. Therefore, d|b, but b|d and so b = ud for some unit u ∈ R

and d is prime in R, then P∗ = ⟨d⟩ is a prime ideal in R.
Now, let y ∈ R with µP (y) < 1 and νP (y) > 0. Define

P(µP (y),νP (y)) = {r ∈ R : µP (r) > µP (y) and νP (r) < νP (y)}.

Clearly, P(µP (y),νP (y)) is an ideal in R as did with P∗. So it is µP (d) = 1 > µP (y) and
νP (d) = 0 < νP (y), then d ∈ P(µP (y),νP (y)) implies that ⟨d⟩ ⊆ P(µP (y),νP (y)), but it has obtained
that ⟨d⟩ is a prime ideal in R and R is PID. So ⟨d⟩ is a maximal ideal in R, then P(µP (y),νP (y)) = R,
µP (1R) ≥ µP (y) and νP (1R) ≤ νP (y) implies that µP (1R) = µP (y) and νP (1R) = νP (y). Hence
P takes only two values

µP (x) =

1, if x ∈ ⟨d⟩
α, otherwise

, νP (x) =

0, if x ∈ ⟨d⟩
β, otherwise

,

where α, β ∈ (0, 1) such that α + β ≤ 1. Hence P is IFPI in R.

Remark 3.9. If P is an IFAPI in a ring R, then P∗ needs not be an almost prime ideal of R, for see
Example (3.5). Here P∗ = ⟨9⟩, which is not an almost prime ideal in Z, for 3.3 = 9 ∈ P∗ − P 2

∗ ,
but 3 /∈ P∗.

Proposition 3.10. Let f : R → R
′

be a ring isomorphism. If P is an IFAPI of R, then f(P ) is
an IFAPI of R

′
.

Proof. As P is a non-constant IFI of R, one can get that f(P ) is also a non-constant IFI of R′ .
Now, consider x, y ∈ R

′ such that µf(P )(xy) > µf(P )(1R′ ) and νf(P )(xy) < νf(P )(1R′ ) and that
µ(f(P ))2(xy) = µf(P )(1R′ ) and ν(f(P ))2(xy) = νf(P )(1R′ ), then x = f(a), y = f(b), for unique
a, b ∈ R so that f(ab) = f(a)f(b) = xy.

Thus, µP (ab) = µP (f
−1(xy)) = µf(P )(xy) > µf(P )(1R′ ) = µP (f

−1(1R′ )) = µP (1R)

and νP (ab) = νP (f
−1(xy)) = νf(P )(xy) < νf(P )(1R′ ) = νP (f

−1(1R′ )) = νP (1R). Also,
µP 2(ab) = µf(P 2)(f(ab)) = µ(f(P ))2(f(ab)) = µ(f(P ))2(xy) = µP (f

−1(1R′ )) = µP (1R) and
νP 2(ab) = νf(P 2)(f(ab)) = ν(f(P ))2(f(ab)) = ν(f(P ))2(xy) = νP (f

−1(1R′ )) = νP (1R). As
P is an IFAPI of R implies that µP (ab) = µP (a) ∨ µP (b) and νP (ab) = νP (a) ∧ νP (b), i.e.,
µP (f

−1(xy)) = µP (f
−1(x)) ∨ µP (f

−1(y)) and νP (f
−1(xy)) = νP (f

−1(x)) ∧ νP (f
−1(y)), i.e.,

µf(P )(xy) = µf(P )(x) ∨ µf(P )(y) and νf(P )(xy) = νf(P )(x) ∧ νf(P )(y). Hence f(P ) is an IFAPI
of R′ .

Proposition 3.11. Let f : R → R
′

be a surjective ring homomorphism. If P
′

is an IFAPI of R
′
,

then f−1(P
′
) is an IFAPI of R.
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Proof. Let P ′ be an IFAPI of R
′ . Then it is easy to see that f−1(P

′
) is an IFI of R. Now

consider x, y ∈ R such that µf−1(P ′ )(xy) > µf−1(P ′ )(1R) and νf−1(P ′ )(xy) < νf−1(P ′ )(1R) and
that µ(f−1(P ′ ))2(xy) = µf−1(P ′ )(1R) and ν(f−1(P ′ ))2(xy) = νf−1(P ′ )(1R).

Now, µ(f−1(P ′ ))2(xy) = µf−1((P ′ )2)(xy) = µ(P ′ )2(f(xy)) = µ(P ′ )2(f(x)f(y)). Therefore,
µ(P ′ )2(f(x)f(y)) = µP ′ (f(1R)) = µP ′ (1R′ ).

Similarly, we get ν(P ′
)2(f(x)f(y)) = νP ′ (1R′ ). As P

′ is an IFAPI of R
′ , we have

µP ′ (f(x)f(y)) = µP ′ (f(x)) ∨ µP ′ (f(y)) and νP ′ (f(x)f(y)) = νP ′ (f(x)) ∧ νP ′ (f(y)) which
implies that µf−1(P ′ )(xy) = µf−1(P ′ )(x)∨µf−1(P ′ )(y) and νf−1(P ′ )(xy) = νf−1(P ′ )(x)∧νf−1(P ′ )(y).
Hence f−1(P

′
) is an IFAPI of R.

4 Intuitionistic fuzzy almost prime submodule

In this section, the definition and examples of the intuitionistic fuzzy almost prime submodule
have been introduced. Also, a relationship between intuitionistic fuzzy almost prime submodules
and almost prime submodules is established, as well as between intuitionistic fuzzy almost prime
submodules and intuitionistic fuzzy almost prime ideals. So, it is necessary to recall some
definitions.

Definition 4.1. ( [14]) Let A ∈ IFS(M). Then A is called an intuitionistic fuzzy submodule
(IFSM) of M if for all x, y ∈ M, r ∈ R, the followings are satisfied

(i) µA(x− y) ≥ µA(x) ∧ µA(y),

(ii) νA(x− y) ≤ νA(x) ∨ νA(y),

(iii) µA(rx) ≥ µA(x),

(iv) νA(rx) ≤ νA(x),

(v) µA(θ) = 1,

(vi) νA(θ) = 0.

Clearly, χ{θ}, χM are IFSMs of M and these are called trivial IFSMs of M . Any IFSM of
M other than these is called non-trivial proper IFSM of M . Let IFSM(M) denote the set of
all intuitionistic fuzzy R-submodules of M and IFI(R) denote the set of all intuitionistic fuzzy
ideals of R. We note that when R = M , then A ∈ IFSM(M) if and only if µA(θ) = 1,

νA(θ) = 0 and A ∈ IFI(R).

Definition 4.2. ([26]) A non-constant intuitionistic fuzzy submodule A of an R-module is said to
be an intuitionistic fuzzy prime submodule (IFPSM) if for any C ∈ IFI(R) and D ∈ IFSM(M)

such that C ·D ⊆ A then either D ⊆ A or C ⊆ (A : χM).
In terms of intuitionistic fuzzy point, a non-constant intuitionistic fuzzy submodule A of an

R-module M is called an intuitionistic fuzzy prime submodule if for r(s,t) ∈ IFP (R), x(p,q) ∈
IFP (M) such that r(s,t)x(p,q) ∈ A implies that either x(p,q) ∈ A or r(s,t) ∈ (A : χM).
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Definition 4.3. ([25]) Suppose A and B be two IFSMs of an R-module M . Then

(A : B) =
⋃
{r(α,β) : r ∈ R,α, β ∈ (0, 1] with α + β ≤ 1, r(α,β)B ⊆ A}

is an IFI in R. Further, if A is a non-constant IFPSM of M , then (A : χM) is an IFPI of R.

Theorem 4.4. ([26]) (a) Let N be a prime submodule of an R-module M and α, β ∈ (0, 1) such
that α + β < 1. If A is an IFS of M defined by

µA(x) =

1, if x ∈ N

α, otherwise
; νA(x) =

0, if x ∈ N

β, otherwise

for all x ∈ M . Then, A is an intuitionistic fuzzy prime submodule of M .

(b) Conversely, any intuitionistic fuzzy prime submodule can be obtained as in (a).

Definition 4.5. ( [23]) An R-module M is called an intuitionistic fuzzy multiplication module if
and only if for each intuitionistic fuzzy submodule A of M : there exists an intuitionistic fuzzy
ideal C of R with C(0R) = (1, 0) such that A = CχM . One can easily show that if A = CχM

then A = (A : χM)χM .

Theorem 4.6. ( [23]) Let M be an R-module. Then M is a multiplication module if and only if
M is an intuitionistic fuzzy multiplication module.

Now, will introduce the definition of intuitionistic fuzzy almost prime submodules.

Definition 4.7. A non-constant IFSM A of an R-module M is said to be an intuitionistic fuzzy
almost prime submodule (IFAPSM) of M , if for r ∈ R, x ∈ M with µA(rx) > miny∈M{µA(y)},
νA(rx)<maxy∈M{νA(y)} and µ(IA◦A)(rx)=miny∈M{µA(y)} and ν(IA◦A)(rx)=maxy∈M{νA(y)},
then µA(rx) = µA(x), νA(rx) = νA(x) or µIA(r) > miny∈M{µA(y)}, νIA(r) < maxy∈M{νA(y)},
where IA is an IFS of R defined by

µIA(r) =

miny∈M{µA(ry)}, if for all x ∈ M,µA(rx) > miny∈M{µA(y)}
miny∈M{µA(y)}, otherwise,

νIA(r) =

maxy∈M{νA(ry)}, if for all x ∈ M, νA(rx) < maxy∈M{νA(y)}
maxy∈M{νA(y)}, otherwise.

Next, it has been shown that every IFPSM is an IFAPSM but the converse needs not to be
true.

Proposition 4.8. If A is an IFPSM of an R-module M , then A is also an IFAPSM of M .

Proof. Let A be an IFPSM of an R-module M , then by Theorem (4.3) there exists a prime
submodule N of M such that

µA(x) =

1, if x ∈ N

α, otherwise
; νP (x) =

0, if x ∈ N

β, otherwise

where α, β ∈ (0, 1) such that α + β < 1.
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Let r ∈ R, x ∈ M with µA(rx) > miny∈M{µA(y)} = α, νA(rx) < maxy∈M{νA(y)} = β

and µ(IA◦A)(rx) = miny∈M{µA(y)} = α and ν(IA◦A)(rx) = maxy∈M{νA(y)} = β, then rx ∈ N

and sup{µIA(r1) ∧ µA(x1) : r1 ∈ R, x1 ∈ M} = α and inf{νIA(r1) ∨ νA(x1) : r1 ∈ R, x1 ∈
M} = β. So, either µIA(r) = α, νIA(r) = β or µA(x) = α, νA(x) = β. The first case yields
that there exists y ∈ M such that µA(ry) = α, νA(ry) = β, which further implies that ry /∈ N ,
i.e., r /∈ (N : M), as N is a prime ideal, we get x ∈ N and then µA(x) = µA(rx) = 1, νA(x) =

νA(rx) = 0. Also, the second case yields that r ∈ (N : M).
So, for every y ∈ M, ry ∈ N and µA(ry) = 1, νA(ry) = 0, which implies that

µIA(r) = 1 > α = miny∈M{µA(y)}, νIA(r) = 0 < β = maxy∈M{νA(y)}. Therefore, A is
an IFAPSM of M .

Example 4.9. Consider R = Z, and M = Z9 is an R-module. Define the IFS A of M as

µA(x) =


1, if x ∈ ⟨0̄⟩
α, if x ∈ ⟨3̄⟩ − ⟨0̄⟩
0, otherwise

; νP (x) =


0, if x ∈ ⟨0̄⟩
β, if x ∈ ⟨3̄⟩ − ⟨0̄⟩
1, otherwise

,

where α, β ∈ (0, 1) such that α+β < 1. It is easy to check that A is an IFSM of M . Now, before
showing that A is an IFAPSM of M , we shall define IFS IA of R by

µIA(r) =

miny∈Z9{µA(ry)}, if ∀x ∈ M,µA(rx) > miny∈Z9{µA(y)}
miny∈Z9{µA(y)}, otherwise

νIA(r) =

maxy∈Z9{νA(ry)}, if ∀x ∈ M, νA(rx) < maxy∈Z9{νA(y)}
maxy∈Z9{νA(y)}, otherwise

,

and we shall consider the following three cases.

Case (i) When r /∈ ⟨3⟩, then r.1̄ /∈ ⟨3̄⟩ and µA(r.1̄) = 0 = miny∈Z9{µA(y)}, νA(r.1̄) = 1 =

maxy∈Z9{νA(y)}. Hence µIA(r) = 0, νIA(r) = 1.

Case (ii) If r ∈ ⟨3⟩ − ⟨9⟩, then r = 3k, where k ∈ Z− 3Z so rx = 3kx ∈ ⟨3̄⟩, for every x ∈ Z9.
It follows that miny∈Z9{µA(y)} = α, maxy∈Z9{νA(y)} = β and µIA(r) = α, νIA(r) = β.

Case (iii) If r ∈ ⟨9⟩, then r = 9k with k ∈ Z also rx = 9kx ∈ ⟨0̄⟩, for x ∈ Z9, it follows that
miny∈Z9{µA(y)} = 1,maxy∈Z9{νA(y)} = 0 and µIA(r) = 0, νIA(r) = 1, where IA is defined as

µIA(r) =


1, if x ∈ ⟨9⟩
α, if x ∈ ⟨3⟩ − ⟨9⟩
0, otherwise

; νIA(r) =


0, if x ∈ ⟨9⟩
β, if x ∈ ⟨3⟩ − ⟨9⟩
1, otherwise .

Moreover, it is required to show that (⟨3̄⟩ : Z9) = ⟨3⟩ and ⟨3̄⟩ is a prime submodule in Z9. So, let
r ∈ (⟨3̄⟩ : Z9), then r.1̄ ∈ ⟨3⟩ also r(1 + 3p) = 3q; p, q ∈ Z. It follows that r = 3k with k ∈ Z
and r ∈ ⟨3⟩. Therefore, (⟨3̄⟩ : Z9) ⊆ ⟨3⟩. Now, let r ∈ ⟨3⟩ and x ∈ Z9, then rx = 3kx ∈ ⟨3̄⟩
and r ∈ (⟨3̄⟩ : Z9) ⊆ ⟨3⟩. Now, let r ∈ Z, x ∈ Z9 with rx ∈ ⟨3̄⟩ and x /∈ ⟨3̄⟩, then x = p + 3q

with 3 . p and p, q ∈ Z and rx = 3k; k ∈ Z, also rx = rp+ 3rq = 3k implies that rp = 3k1 and
3|rp. So, 3|r, then r ∈ ⟨3⟩ = (⟨3̄⟩ : Z9) and ⟨3̄⟩ is a prime submodule of Z9.
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Now, we shall show that A is an IFAPSM in Z9.

Let r ∈ Z, x ∈ Z9 with µA(rx) > 0, νA(rx) < 1 and µ(IA◦A)(rx) = 0, ν(IA◦A)(rx) = 1, then
rx ∈ ⟨3̄⟩. Therefore, there will be two cases.

Case (i) When µIA(r) = 0, νIA(r) = 1 implies that r /∈ ⟨3⟩ and x ∈ ⟨3̄⟩ . If rx ∈ ⟨0̄⟩, then
x = 9k with k ∈ Z also rx = (3r)(3k) implies that there exists r1 = 3r ∈ (⟨3̄⟩ : Z9), x1 = 3k;
µIA(r1)∧µA(x1) > 0, νIA(r1)∨νA(x1) < 1. It follows that sup{µIA(r1)∧µA(x1) : r1 ∈ R, x1 ∈
M} ≠ 0 and inf{νIA(r1)∨νA(x1) : r1 ∈ R, x1 ∈ M} ≠ 1 which is not true by the choice of r and
x, then x ∈ ⟨3̄⟩− ⟨0̄⟩ and rx ∈ ⟨3̄⟩− ⟨0̄⟩, therefore, µA(rx) = µA(x) = α, νA(rx) = νA(x) = β.

Case (ii) When µA(x) = 0, νA(x) = 1, implies that x /∈ ⟨3̄⟩ and r ∈ (⟨3̄⟩ : Z9) = ⟨3⟩. It
follows that µIA(r) ≥ α > 0, νIA(r) ≤ β < 1. Hence A is an IFAPSM in Z9.

Proposition 4.10. Let R be a PID and M be a finitely generated faithful multiplication R-module,
and N be a proper submodule of M . Then the following are equivalent:

1. N is an almost prime submodule of M .

2. Let

µA(x) =


1, if x ∈ (N : M)N

α, if x ∈ N − (N : M)N

0, otherwise

; νA(x) =


0, if x ∈ (N : M)N

β, if x ∈ N − (N : M)N

1, otherwise

where α, β ∈ (0, 1) such that α + β < 1. Then A is an IFAPSM of M .

3. IA is an IFAPI of R.

Proof. (1) ⇒ (2) Let r ∈ R, x ∈ M ,

µA(rx) > min
y∈M

{µA(y)} = 0, νA(rx) < max
y∈M

{νA(y)} = 1

and µ(IA◦A)(rx) = 0 and ν(IA◦A)(rx) = 1. Assume that rx ∈ (N : M)N , then µIA(r) > 0,
νIA(r) < 1. So µ(IA◦A)(rx) = 0 and ν(IA◦A)(rx) = 1 which is not true by the choice of r and x,
then rx ∈ N − (N : M)N also either µIA(r) = 0, νIA(r) = 1, which implies r /∈ (N : M), x ∈
N − (N : M)N and µA(rx) = µA(x) = α, νA(rx) = νA(x) = β or µA(x) = 0, νA(x) = 1

implies x /∈ N and r ∈ (N : M). Therefore, µIA(r) > 0, νIA(r) < 1. Hence A is an IFAPSM of
M .

(2) ⇒ (1) Let r ∈ R, x ∈ M with rx ∈ N − (N : M)N , then µA(rx) = α, νA(rx) = β

and µIA(r) = 0, νIA(r) = 1 also either µA(rx) = µA(x) = α, νA(rx) = νA(x) = β implies
x ∈ N or µIA(r) > 0, νIA(r) < 1. implies µA(ry) > 0, νA(ry)) < 1, ∀y ∈ M and r ∈ (N : M).
Therefore, N is an almost prime submodule of M .

(2) ⇔ (3) For every r ∈ R

µIA(r) =

miny∈M{µA(ry)}, if for all x ∈ M,µA(rx) > miny∈M{µA(y)}
miny∈M{µA(y)}, otherwise,
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νIA(r) =

maxy∈M{νA(ry)}, if for all x ∈ M, νA(rx) < maxy∈M{νA(y)}
maxy∈M{νA(y)}, otherwise.

Now, if r ∈ (N : M), then there exists y ∈ M with ry /∈ N , µA(ry) = 0, νA(ry)) = 1 and
µIA(r) = 0, νIA(r) = 1. If r ∈ (N : M) − (N : M)2 (since N ⊂ M implies that there exists
y ∈ M −N ; ry ∈ N − (N : M)N ), then µA(ry) = α, νA(ry)) = β and µA(rx) > α, νA(rx)) <

β, for all x ∈ M , which implies that µIA(r) = α, νIA(r) = 1β. If r ∈ (N : M)2, then for
every x ∈ M , rx = r1(r2x) ∈ (N : M)N and then r1(r2x) ∈ (N : M)N , which implies that
µA(rx) = 1, νA(rx)) = 0, for all x ∈ M . It follows that µIA(r) = 1, νIA(r) = 0.

µIA(r) =


1, if r ∈ (N : M)2

α, if r ∈ (N : M)− (N : M)2

0, otherwise

, νIA(r) =


0, if r ∈ (N : M)N

β, if r ∈ N − (N : M)N

1, otherwise

,

where r ∈ R. Now, N is an almost prime submodule in M if and only if (N : M) is an almost
prime ideal in R (see Theorem (3.5) of [10]) if and only if IA is IFAPI in R (by Proposition (3.7))
which completes the proof.

5 Conclusion

In this paper we have introduced and studied the notions of intuitionistic fuzzy almost prime ideals
of a commutative ring with unity and intuitionistic fuzzy almost prime submodules of a unitary
module. Examples are used to show that the two notions are generalizations of intuitionistic
fuzzy prime ideals and of intuitionistic fuzzy prime submodules, respectively. Relationships were
established between the intuitionistic fuzzy prime ideals (submodules) and the intuitionistic fuzzy
prime ideals (submodules). Many other related concepts have been defined and discussed. Further
study of these concepts will open a new door to investigate new concepts such as intuitionistic
fuzzy almost semiprime ideals and intuitionistic fuzzy almost semiprime submodules.
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