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1 Basic definitions

The following definition (in another form) is contained in [1]:

Definition 1. Let A C Fand s : £ — [0,1] and v4 : E — [0, 1] are mappings such that for
any = € I the inequality

pa(r) +va(z) <1

holds. The set
A= {(w,pa(), va(@))le € E}

is called intuitionistic fuzzy set (or Atanassov set) over .
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The mappings 14 and v4 are called membership and non-membership function, respectively.
The map 74 : £ — [0, 1], that for x € E is introduced by

Ta(@) B 1 pa(z) — val),

is called hesitancy function.
The class of all intuitionistic fuzzy sets over £ is denoted by IFS(F).

Definition 2. An R?-norm ¢ is called normalized norm if the equality

v((1,0)) = ¢((0,1)) =1
holds. The class of all normalized R*-norms is denoted by Ns.

Definition 3. An R?-norm ¢ is called absolute norm if for any (u, v) € R? the equality

(1, v)) = @((lul, V1)
holds. The class of all absolute normalized R*-norms is denoted by AN5.

Let ¢ € Ny. Then ¢ induced R?-metric d,, by the formula

do (1, 1), (2, v2)) = o((|p1 — pal, |1 — 12])).

Let d is R?-metric. In [8], for the first time, the notion d-intuitionistic fuzzy set (d-IFS) over
E was introduced. Below we give the following

Definition 4. Let p € No, A C Fand puy : E — [0,1] and vy : E — [0, 1] are mappings such
that for any x € E the inequality

o((na(z),va(z))) <1

holds. The set
A= {{z,pa(x),vaz))|z € E}

is called d-intuitionistic fuzzy set (d,-IFS) over I. The mappings 4 and v, are called mem-
bership and non-membership function, respectively. The map 74 : £ — [0, 1], that for z € F'is

introduced by
def

ma() = 1= ¢((pa(r),va(z))),

is called hesitancy function.
The class of all d-intuitionistic fuzzy sets over F is denoted by d-IFS(E).

Definition 5. By U, is denoted the class of all convex functions ¢ € C|0, 1] that for ¢t € [0, 1]
satisfy the condition
max (1 —¢,t) < () < 1.
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2 Introduction

The class AN, is well studied but yet still being investigated. For example, one may see: [3-7,9].
Here we must note that for the R?-norm

def
o((n,v)) = sup |u—tv|
te(0,1]

we have ¢ € Ny but ¢ ¢ AN,, since p((1,—1)) =2 # 1 = ¢((|1],]| — 1])).
The fundamental result for the class AN, is given by Bonsall and Duncan [2, p. 37, Lemma
3]. Below we give in the following form:

Theorem 1. There exists a bijection between ANy and V4. Moreover, for any 1) € W, there exist
a unique ¢ € AN, such that

(vt € [0, 1)) (& (t) = (1 = 1,1))) (1)

and for any ¢ € AN, there exists a unique 1 € Wy, such that for (u,v) € R* we have

(ul + Wy () - if () # (0,0)

o((p,v)) = 0. i (1) = (0.0).

2)

3 Main result

The following is the main result of the paper, showing the connection between d,-IFS(FE) and
IFS(E).

Theorem 2. Let ¢ € AN,. Then there exists a bijective isomorphism between d,-IFS(E) and
IFS(E).

Proof. Let ¢ € AN, be a fixed norm, i) € W, be given by (1) and let T, be the mapping which

juxtaposes to the set

AY (@, pu(x), v(x))|x € E} € d,-IFS(E)

the set B, that is given by

BE {(z,u*(x),v*(x))|z € E},

where:

oy = [0 (80 i) 40 >0 )
0, if pu(z) +v(z) =0

sy [0 ). e
0, if u(z) + v(x) = 0.

We will show that T}, is a bijective isomorphism between d,-IFS(E) and IFS(E).
First we must establish that B € IFS(FE).
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The condition A € d,-IFS(E) implies:

(Vo € E)(p((u(z),v(r))) < 1). )

From (2), (3) and (4) it follows

() + 07 (x) = (M(‘x) (@) (e ) s it (@) + @) >0
0, if u(x) +v(z)=0

o((u(z),v(z))) < 1.

Hence B € IFS(E).
Second, we will prove that 7, is injection.
Let us assume the opposite. Then there would exist mappings y; : £ — [0,1], v; : E —
[0,1], ¢ = 1,2, such that:
(1, 1) # (p2, v2); (6)

(1, v7) = (3, v3) @)

Obviously, (6) means that the following condition holds:
(1) There exists xg € F, such that at least one of the equalities:
p1(zo) = p2(20); vi(zo) = va(wo)
is violated.
On the other hand, (7) means that for any x € F it is fulfilled:
(@) = ps(x); vi(z) = vy(x).

In particular:
p1(wo) = pa(zo); vi(wo) = v3 (o). @®)

For zy we have
(i2) At least one of the equalities:
p1 (o) + vi(o) = 05 pa(xo) + v2(20) = 0,
is violated.
The assumption that (z5) is not true, yields:
p1(zo) = 11(xo) = pa(xo) = v2(wo) = 0,

which contradicts to (i1).
Therefore, because of (i2), there are only three possible cases:

(D pa(zo) + vi(wo) > 0 & pa(o) + v2(0) = 05
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(H) ,Uq(l’o) —+ 1/1<CC0) =0& /LQ(IL‘[)) + VQ(ZE()) > 0;
(III) ,LL1(LL’0) + I/1<$0) >0& ,ug(l’o) + Vg(.l‘o) > 0.
Let (I) hold. Then
p2(@o) = va(xo) = 0.
From (3) and (4) with: 1 = po; p* = p3; v = 19 v* = V3, © = x, it follows:
p3(x0) = v3 (o) = 0.
The above equalities and (8) yield:
11 (o) = pa(wo) = 0; vy (o) = 15 (o). ©)
Definition 5 provides
(i3) (Vt €[0,1])(¥(t) > 0).
Putting ;o = p; p* = pij; v = v1; v* = v{; x = 29 in (3) and (4), from (9) and (¢3) we obtain
p1(o) = vi(zo) = 0.

But the last contradicts to (I).
In the same manner the case (II) leads us to contradiction.
Let (IIT) hold. We put:

’ (“1(x$1$(21(x0)) Sy <M2(950V)2(EOV)2(xo)) o 10)

From (3), for: p = p1; v = vy; W = puj; © = xy, we obtain

111 (o) = pa(zo)2 (11
and for: 1 = po; v = v9; u* = pi; x = x, we obtain
f15(z0) = —pa(o)w. (12)
From (4), for: p = pu1; v = vy; v* = v]; © = xy, we obtain
vy (o) = v1(xo)2 (13)
and for: p = o} v = v9; V* = 13, © = xy, we obtain
vy (x0) = —vo(z0)w. (14)

Then, because of (8) we get the following linear homogeneous system with unknowns z and w :

(o) + pa(zo)w = 0 (15)

v1(x0)z + vo(xg)w = 0.
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Now (i3) and (10) imply z # 0 and w # 0, i.e. the linear homogeneous system has a non-trivial
soslution. Then, because of the well known result of the linear algebra, the determinant:

pa(zo)  pa(wo)
vi(z)  va(wo)

A:

equals to 0.
This means that the vector-columns of A are linearly dependent. Then, due to (III), these
vectors are different from the zero-vector. Hence, there exists a real number & # 0, such that:

p2(@o) = kpa(wo); va(wo) = kv (o).

The last two equalities imply:

v <M2($0V)2$0V>2(130)) —v (kﬂl(xlzl;fz)”l(%)) - <M1($:)1f0V)1(560)> .

The above equalities and (10) yield —w = z. Hence, from (11)-(14), we obtain:

3 (0) = zpua(o); (o) = 2pa(w0); Vi (o) = 21 (w0); V3 (o) = zva(ao).

The last equalities and (8) yield:

zp1 (o) = zpo(xo); 211 (0) = 212(20).

Hence:
(o) = pa(wo); vi(zo) = va(z0),

since z # (. But the last contradicts to (z1), and therefore to (6).
Thus, we proved that 7, is injection.
Third, we will prove that 7, is surjection.
Let BY {{z, p*(x),v*(z))|x € E} € IFS(E). For any « € E we put:

w* () if 1t *
ot , Af p* () +v*(x) >0
u(z) = { YEwiem) (=) (@) (16)
0, if u*(x) + v*(x) = 0;

V*(CC) lf * *
Paae ;i p* () +v*(z) >0
v(z) = { (o) i) (17)
0, if u*(x) + v*(x) = 0.
We will show that:
p:E—10,1;v: E—[0,1]. (18)

Let x € FE is such that p*(z) + v*(x) = 0. Then (16) and (17) imply: p(z) = 0 and v(z) = 0,
ie. p(x),v(z) €10,1].
Let x € F is such that u*(z) 4+ v*(x) > 0. Then (16) and (17) yield:

v (x)

/1/(.’,17) = v*(z) ; V(QZ) = v*(z) :
v <w(w>+u*<m)> W <u*(x)+v*(x)>

(19)



We put

Since ¢ € Wy, then Definition 5 implies:
v'(z) v*(z) p ()
(0 (—) =(t) > max(t,1 —t) = max ( , .
() + v (x) pr(x) + v () p*(z) + v (x)
The last and (19) imply that (18) will be proved if the following inequalities hold:
v (z) p(x) )
pe(a) +vi(z) pr(x) + v+ (z)
V*(IE)SmaX( . v (.I')* , — 2 (l‘)* )
pr(x) +vi(x)” p(x) + v ()
But these inequalities follow from the inequality

oy

pi(z) +v(z) <1, (20)

which is true, since B € IFS(E).
We will prove that x(z) and v(z), given by (16) and (17), satisfy (5).
According to (2) we have

o(p(x), v(x)) = W@3+V@D¢<M5@@J,ﬁM@g+y@)>O
0, if p(z) + v(x) = 0.

21)

Equalities (16) , (17) and (¢3) imply that
p(x) + v(z) = 0if and only if p*(z) + v*(x) = 0.

From the last it follows that (21) may be rewritten as

vix _ (@) if 0t (x U (
w(u(:ﬁ)w(:v)){(u(mH (@) (7355) « if () + v () > 0 -

0, if p*(x) + v*(x) = 0.
Let z € E is such that p*(x) + v*(x) = 0. Then p(z) + v(z) = 0. Hence: p(z) = 0; v(z) =0
and p(u(z),v(z)) =0, i.e. (5) holds.
Let x € F is such that p*(z) 4+ v*(x) > 0. Then (16), (17) and (22) yield

“(x) + v*(x) v(x)
pple), () = Ty () 3)
v (75%s) (u( )+ v >)
Equalities (16) and (17) imply
i
¢( v(x) >:¢ ¢<M*(x+V*(w))
(@) + () @) N (



Hence (because of (i3))

)\ V()
w(u(xwu(x)) ¢<u*(:v)+v*(x))' (4
Equalities (23) and (24) yield
o), v(x)) = 1 () + v*(2).

The last equality and (20) immediately prove (5).
Let ALY {(z, u(z),v(z))|z € E'}. From the proved (5) and (18) it follows: A € d,-IFS(E).
Equalities (3), (4) and (24) immediately yield

T,(A) = B.

Hence: T, is surjection. Therefore, T, is bijection.
Theorem 2 is proved. O]

Remark 1. From the proof of Theorem 2 it is seen that 7, is injection also for the case: ¢ €
N\ AN,. But in this case it is not guaranteed that T, is surjection. The last means that for
¢ € N\ AN, it is not certain (in the general case) that 7T, is bijection.

From the proof of Theorem 2 we obtain the following

Corollary 1. The mappings T, and T,; L admit the representations:

(M(x),f((xﬁ)(’;)(x)))> V(x),‘f((;l;i?(:)(z)))>> ifu(a:) + u(m) £ 0

To(u(x),v(z)) =
et (0,0), if p(z) = v(z) =0,

where . and v are the membership and non-membership functions of an element from the class
d,-IFS(E);

u(x)+v() pa)tr(@) \
(u(x), v(x)) = @) G V) sttt ) I 1) +v(z) >0

(0,0), if p(z) = v(z) =0,

where i and v are the membership and non-membership functions of an element from the class

IFS(E).
Another Corollary from Theorem 2 is:

Theorem 3. Let ¢, p* € AN,. Then the mapping T, : d,-IFS(E) — d-IFS(E), which is
given by

def 1
Topr = Tgo* T,

is a bijective isomorphism between d,-IFS(E) and d+-IFS(E).
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