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1 Basic definitions

The following definition (in another form) is contained in [1]:

Definition 1. Let A ⊂ E and µA : E → [0, 1] and νA : E → [0, 1] are mappings such that for
any x ∈ E the inequality

µA(x) + νA(x) ≤ 1

holds. The set
Ã = {〈x, µA(x), νA(x)〉|x ∈ E}

is called intuitionistic fuzzy set (or Atanassov set) over E.
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The mappings µA and νA are called membership and non-membership function, respectively.
The map πA : E → [0, 1], that for x ∈ E is introduced by

πA(x)
def
= 1− µA(x)− νA(x),

is called hesitancy function.
The class of all intuitionistic fuzzy sets over E is denoted by IFS(E).

Definition 2. AnR2-norm ϕ is called normalized norm if the equality

ϕ((1, 0)) = ϕ((0, 1)) = 1

holds. The class of all normalizedR2-norms is denoted by N2.

Definition 3. AnR2-norm ϕ is called absolute norm if for any (µ, ν) ∈ R2 the equality

ϕ((µ, ν)) = ϕ((|µ|, |ν|))

holds. The class of all absolute normalizedR2-norms is denoted by AN2.

Let ϕ ∈ N2. Then ϕ inducedR2-metric dϕ by the formula

dϕ((µ1, ν1), (µ2, ν2)) = ϕ((|µ1 − µ2|, |ν1 − ν2|)).

Let d is R2-metric. In [8], for the first time, the notion d-intuitionistic fuzzy set (d-IFS) over
E was introduced. Below we give the following

Definition 4. Let ϕ ∈ N2, A ⊂ E and µA : E → [0, 1] and νA : E → [0, 1] are mappings such
that for any x ∈ E the inequality

ϕ((µA(x), νA(x))) ≤ 1

holds. The set
Ã = {〈x, µA(x), νA(x)〉|x ∈ E}

is called dϕ-intuitionistic fuzzy set (dϕ-IFS) over E. The mappings µA and νA are called mem-
bership and non-membership function, respectively. The map πA : E → [0, 1], that for x ∈ E is
introduced by

πA(x)
def
= 1− ϕ((µA(x), νA(x))),

is called hesitancy function.
The class of all dϕ-intuitionistic fuzzy sets over E is denoted by dϕ-IFS(E).

Definition 5. By Ψ2 is denoted the class of all convex functions ψ ∈ C[0, 1] that for t ∈ [0, 1]

satisfy the condition
max(1− t, t) ≤ ψ(t) ≤ 1.

31



2 Introduction

The class AN2 is well studied but yet still being investigated. For example, one may see: [3–7,9].
Here we must note that for theR2-norm

ϕ((µ, ν))
def
= sup

t∈[0,1]
|µ− tν|

we have ϕ ∈ N2 but ϕ /∈ AN2, since ϕ((1,−1)) = 2 6= 1 = ϕ((|1|, | − 1|)).
The fundamental result for the class AN2 is given by Bonsall and Duncan [2, p. 37, Lemma

3]. Below we give in the following form:

Theorem 1. There exists a bijection between AN2 and Ψ2. Moreover, for any ψ ∈ Ψ2 there exist
a unique ϕ ∈ AN2 such that

(∀t ∈ [0, 1])(ψ(t) = ϕ((1− t, t))) (1)

and for any ϕ ∈ AN2 there exists a unique ψ ∈ Ψ2, such that for (µ, ν) ∈ R2 we have

ϕ((µ, ν)) =

(|µ|+ |ν|)ψ
(
|ν|
|µ|+|ν|

)
, if (µ, ν) 6= (0, 0)

0, if (µ, ν) = (0, 0).
(2)

3 Main result

The following is the main result of the paper, showing the connection between dϕ-IFS(E) and
IFS(E).

Theorem 2. Let ϕ ∈ AN2. Then there exists a bijective isomorphism between dϕ-IFS(E) and
IFS(E).

Proof. Let ϕ ∈ AN2 be a fixed norm, ψ ∈ Ψ2 be given by (1) and let Tϕ be the mapping which
juxtaposes to the set

A
def
= {〈x, µ(x), ν(x)〉|x ∈ E} ∈ dϕ-IFS(E)

the set B, that is given by
B

def
= {〈x, µ∗(x), ν∗(x)〉|x ∈ E},

where:

µ∗(x) =

µ(x)ψ
(

ν(x)
µ(x)+ν(x)

)
, if µ(x) + ν(x) > 0

0, if µ(x) + ν(x) = 0
; (3)

ν∗(x) =

ν(x)ψ
(

ν(x)
µ(x)+ν(x)

)
, if µ(x) + ν(x) > 0

0, if µ(x) + ν(x) = 0.
(4)

We will show that Tϕ is a bijective isomorphism between dϕ-IFS(E) and IFS(E).

First we must establish that B ∈ IFS(E).
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The condition A ∈ dϕ-IFS(E) implies:

(∀x ∈ E)(ϕ((µ(x), ν(x))) ≤ 1). (5)

From (2), (3) and (4) it follows

µ∗(x) + ν∗(x) =

(µ(x) + ν(x))ψ
(

ν(x)
µ(x)+ν(x)

)
, if µ(x) + ν(x) > 0

0, if µ(x) + ν(x) = 0
=

ϕ((µ(x), ν(x))) ≤ 1.

Hence B ∈ IFS(E).

Second, we will prove that Tϕ is injection.
Let us assume the opposite. Then there would exist mappings µi : E → [0, 1], νi : E →

[0, 1], i = 1, 2, such that:
(µ1, ν1) 6= (µ2, ν2); (6)

(µ∗1, ν
∗
1) = (µ∗2, ν

∗
2) (7)

Obviously, (6) means that the following condition holds:

(i1) There exists x0 ∈ E, such that at least one of the equalities:

µ1(x0) = µ2(x0); ν1(x0) = ν2(x0)

is violated.

On the other hand, (7) means that for any x ∈ E it is fulfilled:

µ∗1(x) = µ∗2(x); ν∗1(x) = ν∗2(x).

In particular:
µ∗1(x0) = µ∗2(x0); ν

∗
1(x0) = ν∗2(x0). (8)

For x0 we have

(i2) At least one of the equalities:

µ1(x0) + ν1(x0) = 0 ; µ2(x0) + ν2(x0) = 0,

is violated.

The assumption that (i2) is not true, yields:

µ1(x0) = ν1(x0) = µ2(x0) = ν2(x0) = 0,

which contradicts to (i1).
Therefore, because of (i2), there are only three possible cases:

(I) µ1(x0) + ν1(x0) > 0 & µ2(x0) + ν2(x0) = 0;
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(II) µ1(x0) + ν1(x0) = 0 & µ2(x0) + ν2(x0) > 0;

(III) µ1(x0) + ν1(x0) > 0 & µ2(x0) + ν2(x0) > 0.

Let (I) hold. Then
µ2(x0) = ν2(x0) = 0.

From (3) and (4) with: µ = µ2; µ
∗ = µ∗2; ν = ν2; ν

∗ = ν∗2 ; x = x0, it follows:

µ∗2(x0) = ν∗2(x0) = 0.

The above equalities and (8) yield:

µ∗1(x0) = µ∗2(x0) = 0; ν∗1(x0) = ν∗2(x0). (9)

Definition 5 provides

(i3) (∀t ∈ [0, 1])(ψ(t) > 0).

Putting µ = µ1; µ
∗ = µ∗1; ν = ν1; ν

∗ = ν∗1 ; x = x0 in (3) and (4), from (9) and (i3) we obtain

µ1(x0) = ν1(x0) = 0.

But the last contradicts to (I).
In the same manner the case (II) leads us to contradiction.
Let (III) hold. We put:

ψ

(
ν1(x0)

µ1(x0) + ν1(x0)

)
= z; ψ

(
ν2(x0)

µ2(x0) + ν2(x0)

)
= −w. (10)

From (3), for: µ = µ1; ν = ν1; µ
∗ = µ∗1; x = x0, we obtain

µ∗1(x0) = µ1(x0)z (11)

and for: µ = µ2; ν = ν2; µ
∗ = µ∗2; x = x0, we obtain

µ∗2(x0) = −µ2(x0)w. (12)

From (4), for: µ = µ1; ν = ν1; ν
∗ = ν∗1 ; x = x0, we obtain

ν∗1(x0) = ν1(x0)z (13)

and for: µ = µ2; ν = ν2; ν
∗ = ν∗2 ; x = x0, we obtain

ν∗2(x0) = −ν2(x0)w. (14)

Then, because of (8) we get the following linear homogeneous system with unknowns z and w :µ1(x0)z + µ2(x0)w = 0

ν1(x0)z + ν2(x0)w = 0.
(15)
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Now (i3) and (10) imply z 6= 0 and w 6= 0, i.e. the linear homogeneous system has a non-trivial
soslution. Then, because of the well known result of the linear algebra, the determinant:

∆ =

∣∣∣∣∣µ1(x0) µ2(x0)

ν1(x0) ν2(x0)

∣∣∣∣∣
equals to 0.

This means that the vector-columns of ∆ are linearly dependent. Then, due to (III), these
vectors are different from the zero-vector. Hence, there exists a real number k 6= 0, such that:

µ2(x0) = kµ1(x0); ν2(x0) = kν1(x0).

The last two equalities imply:

ψ

(
ν2(x0)

µ2(x0) + ν2(x0)

)
= ψ

(
kν1(x0)

kµ1(x0) + kν1(x0)

)
= ψ

(
ν1(x0)

µ1(x0) + ν1(x0)

)
.

The above equalities and (10) yield −w = z. Hence, from (11)-(14), we obtain:

µ∗1(x0) = zµ1(x0); µ
∗
2(x0) = zµ2(x0); ν

∗
1(x0) = zν1(x0); ν

∗
2(x0) = zν2(x0).

The last equalities and (8) yield:

zµ1(x0) = zµ2(x0); zν1(x0) = zν2(x0).

Hence:
µ1(x0) = µ2(x0); ν1(x0) = ν2(x0),

since z 6= 0. But the last contradicts to (i1), and therefore to (6).
Thus, we proved that Tϕ is injection.
Third, we will prove that Tϕ is surjection.
Let B def

= {〈x, µ∗(x), ν∗(x)〉|x ∈ E} ∈ IFS(E). For any x ∈ E we put:

µ(x) =


µ∗(x)

ψ( ν∗(x)
µ∗(x)+ν∗(x))

, if µ∗(x) + ν∗(x) > 0

0, if µ∗(x) + ν∗(x) = 0;
(16)

ν(x) =


ν∗(x)

ψ( ν∗(x)
µ∗(x)+ν∗(x))

, if µ∗(x) + ν∗(x) > 0

0, if µ∗(x) + ν∗(x) = 0.
(17)

We will show that:
µ : E → [0, 1]; ν : E → [0, 1]. (18)

Let x ∈ E is such that µ∗(x) + ν∗(x) = 0. Then (16) and (17) imply: µ(x) = 0 and ν(x) = 0,

i.e. µ(x), ν(x) ∈ [0, 1].

Let x ∈ E is such that µ∗(x) + ν∗(x) > 0. Then (16) and (17) yield:

µ(x) =
µ∗(x)

ψ
(

ν∗(x)
µ∗(x)+ν∗(x)

) ; ν(x) =
ν∗(x)

ψ
(

ν∗(x)
µ∗(x)+ν∗(x)

) . (19)
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We put

t =
ν∗(x)

µ∗(x) + ν∗(x)
.

Since ψ ∈ Ψ2, then Definition 5 implies:

ψ

(
ν∗(x)

µ∗(x) + ν∗(x)

)
= ψ(t) ≥ max(t, 1− t) = max

(
ν∗(x)

µ∗(x) + ν∗(x)
,

µ∗(x)

µ∗(x) + ν∗(x)

)
.

The last and (19) imply that (18) will be proved if the following inequalities hold:

µ∗(x) ≤ max

(
ν∗(x)

µ∗(x) + ν∗(x)
,

µ∗(x)

µ∗(x) + ν∗(x)

)
ν∗(x) ≤ max

(
ν∗(x)

µ∗(x) + ν∗(x)
,

µ∗(x)

µ∗(x) + ν∗(x)

)
.

But these inequalities follow from the inequality

µ∗(x) + ν∗(x) ≤ 1, (20)

which is true, since B ∈ IFS(E).

We will prove that µ(x) and ν(x), given by (16) and (17), satisfy (5).
According to (2) we have

ϕ(µ(x), ν(x)) =

(µ(x) + ν(x))ψ
(

ν(x)
µ(x)+ν(x)

)
, if µ(x) + ν(x) > 0

0, if µ(x) + ν(x) = 0.
(21)

Equalities (16) , (17) and (i3) imply that

µ(x) + ν(x) = 0 if and only if µ∗(x) + ν∗(x) = 0.

From the last it follows that (21) may be rewritten as

ϕ(µ(x), ν(x)) =

(µ(x) + ν(x))ψ
(

ν(x)
µ(x)+ν(x)

)
, if µ∗(x) + ν∗(x) > 0

0, if µ∗(x) + ν∗(x) = 0.
(22)

Let x ∈ E is such that µ∗(x) + ν∗(x) = 0. Then µ(x) + ν(x) = 0. Hence: µ(x) = 0; ν(x) = 0

and ϕ(µ(x), ν(x)) = 0, i.e. (5) holds.
Let x ∈ E is such that µ∗(x) + ν∗(x) > 0. Then (16), (17) and (22) yield

ϕ(µ(x), ν(x)) =
µ∗(x) + ν∗(x)

ψ
(

ν∗(x)
µ∗(x)+ν∗(x)

)ψ( ν(x)

µ(x) + ν(x)

)
. (23)

Equalities (16) and (17) imply

ψ

(
ν(x)

µ(x) + ν(x)

)
= ψ



ν∗(x)

ψ

(
ν∗(x)

µ∗(x) + ν∗(x)

)
µ∗(x)

ψ

(
ν∗(x)

µ∗(x) + ν∗(x)

) +
ν∗(x)

ψ

(
ν∗(x)

µ∗(x) + ν∗(x)

)

 .
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Hence (because of (i3))

ψ

(
ν(x)

µ(x) + ν(x)

)
= ψ

(
ν∗(x)

µ∗(x) + ν∗(x)

)
. (24)

Equalities (23) and (24) yield

ϕ(µ(x), ν(x)) = µ∗(x) + ν∗(x).

The last equality and (20) immediately prove (5).
Let A def

= {〈x, µ(x), ν(x)〉|x ∈ E}. From the proved (5) and (18) it follows: A ∈ dϕ-IFS(E).

Equalities (3), (4) and (24) immediately yield

Tϕ(A) = B.

Hence: Tϕ is surjection. Therefore, Tϕ is bijection.
Theorem 2 is proved.

Remark 1. From the proof of Theorem 2 it is seen that Tϕ is injection also for the case: ϕ ∈
N \ AN2. But in this case it is not guaranteed that Tϕ is surjection. The last means that for
ϕ ∈ N \ AN2 it is not certain (in the general case) that Tϕ is bijection.

From the proof of Theorem 2 we obtain the following

Corollary 1. The mappings Tϕ and T−1ϕ admit the representations:

Tϕ〈µ(x), ν(x)〉 =

〈
µ(x)ϕ((µ(x),ν(x)))

µ(x)+ν(x)
, ν(x)ϕ((µ(x),ν(x)))

µ(x)+ν(x)
〉, if µ(x) + ν(x) 6= 0

〈0, 0〉, if µ(x) = ν(x) = 0,

where µ and ν are the membership and non-membership functions of an element from the class
dϕ-IFS(E);

T−1ϕ 〈µ(x), ν(x)〉 =

〈µ(x) µ(x)+ν(x)
ϕ((µ(x),ν(x)))

, ν(x) µ(x)+ν(x)
ϕ((µ(x),ν(x)))

〉, if µ(x) + ν(x) > 0

〈0, 0〉, if µ(x) = ν(x) = 0,

where µ and ν are the membership and non-membership functions of an element from the class
IFS(E).

Another Corollary from Theorem 2 is:

Theorem 3. Let ϕ, ϕ∗ ∈ AN2. Then the mapping Tϕ,ϕ∗ : dϕ-IFS(E) → dϕ∗-IFS(E), which is
given by

Tϕ,ϕ∗
def
= T−1ϕ∗ Tϕ,

is a bijective isomorphism between dϕ-IFS(E) and dϕ∗-IFS(E).
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