On the intuitionistic fuzzy sets

 with metric type relation between the membership and non-membership functionsPeter Vassilev
Bioinformatics and Mathematical Modelling Department
Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
e-mail: peter.vassilev@gmail.com

Abstract

In the paper the so-called d_{φ}-intuitionistic fuzzy set ($d_{\varphi}-I F S$), over the non-empty universe E, are considered for the case when d_{φ} is \mathcal{R}^{2}-metric induced by an arbitrary fixed absolute normalized \mathcal{R}^{2}-norm φ. It is proved that there exists a bijective isomorphism between the class of all such sets and the class of all intuitionistic fuzzy sets over E. Keywords: Intuitionistic fuzzy set, d-intuitionistic fuzzy set, d_{φ}-intuitionistic fuzzy set, Norm, Absolute norm, Normalized norm, Absolute normalized norm, Injection, Surjection, Bijection, Isomorphism AMS Classification: 03E72.

1 Basic definitions

The following definition (in another form) is contained in [1]:
Definition 1. Let $A \subset E$ and $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ are mappings such that for any $x \in E$ the inequality

$$
\mu_{A}(x)+\nu_{A}(x) \leq 1
$$

holds. The set

$$
\tilde{A}=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}
$$

is called intuitionistic fuzzy set (or Atanassov set) over E.

The mappings μ_{A} and ν_{A} are called membership and non-membership function, respectively. The map $\pi_{A}: E \rightarrow[0,1]$, that for $x \in E$ is introduced by

$$
\pi_{A}(x) \stackrel{\text { def }}{=} 1-\mu_{A}(x)-\nu_{A}(x),
$$

is called hesitancy function.
The class of all intuitionistic fuzzy sets over E is denoted by $\operatorname{IFS}(E)$.
Definition 2. An \mathcal{R}^{2}-norm φ is called normalized norm if the equality

$$
\varphi((1,0))=\varphi((0,1))=1
$$

holds. The class of all normalized \mathcal{R}^{2}-norms is denoted by N_{2}.
Definition 3. An \mathcal{R}^{2}-norm φ is called absolute norm if for any $(\mu, \nu) \in \mathcal{R}^{2}$ the equality

$$
\varphi((\mu, \nu))=\varphi((|\mu|,|\nu|))
$$

holds. The class of all absolute normalized \mathcal{R}^{2}-norms is denoted by $A N_{2}$.
Let $\varphi \in N_{2}$. Then φ induced \mathcal{R}^{2}-metric d_{φ} by the formula

$$
d_{\varphi}\left(\left(\mu_{1}, \nu_{1}\right),\left(\mu_{2}, \nu_{2}\right)\right)=\varphi\left(\left(\left|\mu_{1}-\mu_{2}\right|,\left|\nu_{1}-\nu_{2}\right|\right)\right) .
$$

Let d is \mathcal{R}^{2}-metric. In [8], for the first time, the notion d-intuitionistic fuzzy set (d-IFS) over E was introduced. Below we give the following

Definition 4. Let $\varphi \in N_{2}, A \subset E$ and $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ are mappings such that for any $x \in E$ the inequality

$$
\varphi\left(\left(\mu_{A}(x), \nu_{A}(x)\right)\right) \leq 1
$$

holds. The set

$$
\tilde{A}=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}
$$

is called d_{φ}-intuitionistic fuzzy set $\left(d_{\varphi}-I F S\right)$ over E. The mappings μ_{A} and ν_{A} are called membership and non-membership function, respectively. The map $\pi_{A}: E \rightarrow[0,1]$, that for $x \in E$ is introduced by

$$
\pi_{A}(x) \stackrel{\text { def }}{=} 1-\varphi\left(\left(\mu_{A}(x), \nu_{A}(x)\right)\right),
$$

is called hesitancy function.
The class of all d_{φ}-intuitionistic fuzzy sets over E is denoted by $d_{\varphi}-\operatorname{IFS}(E)$.
Definition 5. By Ψ_{2} is denoted the class of all convex functions $\psi \in C[0,1]$ that for $t \in[0,1]$ satisfy the condition

$$
\max (1-t, t) \leq \psi(t) \leq 1
$$

2 Introduction

The class $A N_{2}$ is well studied but yet still being investigated. For example, one may see: [3-7,9]. Here we must note that for the \mathcal{R}^{2}-norm

$$
\varphi((\mu, \nu)) \stackrel{\text { def }}{=} \sup _{t \in[0,1]}|\mu-t \nu|
$$

we have $\varphi \in N_{2}$ but $\varphi \notin A N_{2}$, since $\varphi((1,-1))=2 \neq 1=\varphi((|1|,|-1|))$.
The fundamental result for the class $A N_{2}$ is given by Bonsall and Duncan [2, p. 37, Lemma 3]. Below we give in the following form:

Theorem 1. There exists a bijection between $A N_{2}$ and Ψ_{2}. Moreover, for any $\psi \in \Psi_{2}$ there exist a unique $\varphi \in A N_{2}$ such that

$$
\begin{equation*}
(\forall t \in[0,1])(\psi(t)=\varphi((1-t, t))) \tag{1}
\end{equation*}
$$

and for any $\varphi \in A N_{2}$ there exists a unique $\psi \in \Psi_{2}$, such that for $(\mu, \nu) \in \mathcal{R}^{2}$ we have

$$
\varphi((\mu, \nu))=\left\{\begin{array}{l}
(|\mu|+|\nu|) \psi\left(\frac{|\nu|}{|\mu|+|\nu|}\right), \text { if }(\mu, \nu) \neq(0,0) \tag{2}\\
0, \text { if }(\mu, \nu)=(0,0) .
\end{array}\right.
$$

3 Main result

The following is the main result of the paper, showing the connection between $d_{\varphi}-\operatorname{IFS}(E)$ and IFS(E).

Theorem 2. Let $\varphi \in A N_{2}$. Then there exists a bijective isomorphism between $d_{\varphi}-\operatorname{IFS}(E)$ and $\operatorname{IFS}(E)$.

Proof. Let $\varphi \in A N_{2}$ be a fixed norm, $\psi \in \Psi_{2}$ be given by (1) and let T_{φ} be the mapping which juxtaposes to the set

$$
A \stackrel{\text { def }}{=}\{\langle x, \mu(x), \nu(x)\rangle \mid x \in E\} \in d_{\varphi}-\operatorname{IFS}(E)
$$

the set B, that is given by

$$
B \stackrel{\text { def }}{=}\left\{\left\langle x, \mu^{*}(x), \nu^{*}(x)\right\rangle \mid x \in E\right\},
$$

where:

$$
\begin{align*}
& \mu^{*}(x)=\left\{\begin{array}{l}
\mu(x) \psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right), \text { if } \mu(x)+\nu(x)>0 \\
0, \text { if } \mu(x)+\nu(x)=0
\end{array}\right. \tag{3}\\
& \nu^{*}(x)=\left\{\begin{array}{l}
\nu(x) \psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right), \text { if } \mu(x)+\nu(x)>0 \\
0, \text { if } \mu(x)+\nu(x)=0
\end{array}\right. \tag{4}
\end{align*}
$$

We will show that T_{φ} is a bijective isomorphism between $d_{\varphi}-\operatorname{IFS}(E)$ and $\operatorname{IFS}(E)$.
First we must establish that $B \in \operatorname{IFS}(E)$.

The condition $A \in d_{\varphi}-\operatorname{IFS}(E)$ implies:

$$
\begin{equation*}
(\forall x \in E)(\varphi((\mu(x), \nu(x))) \leq 1) . \tag{5}
\end{equation*}
$$

From (2), (3) and (4) it follows

$$
\begin{aligned}
& \mu^{*}(x)+\nu^{*}(x)=\left\{\begin{array}{l}
(\mu(x)+\nu(x)) \psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right), \text { if } \mu(x)+\nu(x)>0 \\
0, \text { if } \mu(x)+\nu(x)=0
\end{array}=\right. \\
& \varphi((\mu(x), \nu(x))) \leq 1 .
\end{aligned}
$$

Hence $B \in \operatorname{IFS}(E)$.
Second, we will prove that T_{φ} is injection.
Let us assume the opposite. Then there would exist mappings $\mu_{i}: E \rightarrow[0,1], \nu_{i}: E \rightarrow$ $[0,1], i=1,2$, such that:

$$
\begin{align*}
& \left(\mu_{1}, \nu_{1}\right) \neq\left(\mu_{2}, \nu_{2}\right) ; \tag{6}\\
& \left(\mu_{1}^{*}, \nu_{1}^{*}\right)=\left(\mu_{2}^{*}, \nu_{2}^{*}\right) \tag{7}
\end{align*}
$$

Obviously, (6) means that the following condition holds:
(i_{1}) There exists $x_{0} \in E$, such that at least one of the equalities:

$$
\mu_{1}\left(x_{0}\right)=\mu_{2}\left(x_{0}\right) ; \nu_{1}\left(x_{0}\right)=\nu_{2}\left(x_{0}\right)
$$

is violated.
On the other hand, (7) means that for any $x \in E$ it is fulfilled:

$$
\mu_{1}^{*}(x)=\mu_{2}^{*}(x) ; \nu_{1}^{*}(x)=\nu_{2}^{*}(x) .
$$

In particular:

$$
\begin{equation*}
\mu_{1}^{*}\left(x_{0}\right)=\mu_{2}^{*}\left(x_{0}\right) ; \nu_{1}^{*}\left(x_{0}\right)=\nu_{2}^{*}\left(x_{0}\right) . \tag{8}
\end{equation*}
$$

For x_{0} we have
(i_{2}) At least one of the equalities:

$$
\mu_{1}\left(x_{0}\right)+\nu_{1}\left(x_{0}\right)=0 ; \mu_{2}\left(x_{0}\right)+\nu_{2}\left(x_{0}\right)=0,
$$

is violated.
The assumption that $\left(i_{2}\right)$ is not true, yields:

$$
\mu_{1}\left(x_{0}\right)=\nu_{1}\left(x_{0}\right)=\mu_{2}\left(x_{0}\right)=\nu_{2}\left(x_{0}\right)=0,
$$

which contradicts to $\left(i_{1}\right)$.
Therefore, because of $\left(i_{2}\right)$, there are only three possible cases:
(I) $\mu_{1}\left(x_{0}\right)+\nu_{1}\left(x_{0}\right)>0 \& \mu_{2}\left(x_{0}\right)+\nu_{2}\left(x_{0}\right)=0$;
(II) $\mu_{1}\left(x_{0}\right)+\nu_{1}\left(x_{0}\right)=0 \& \mu_{2}\left(x_{0}\right)+\nu_{2}\left(x_{0}\right)>0$;
(III) $\mu_{1}\left(x_{0}\right)+\nu_{1}\left(x_{0}\right)>0 \& \mu_{2}\left(x_{0}\right)+\nu_{2}\left(x_{0}\right)>0$.

Let (I) hold. Then

$$
\mu_{2}\left(x_{0}\right)=\nu_{2}\left(x_{0}\right)=0 .
$$

From (3) and (4) with: $\mu=\mu_{2} ; \mu^{*}=\mu_{2}^{*} ; \nu=\nu_{2} ; \nu^{*}=\nu_{2}^{*} ; x=x_{0}$, it follows:

$$
\mu_{2}^{*}\left(x_{0}\right)=\nu_{2}^{*}\left(x_{0}\right)=0 .
$$

The above equalities and (8) yield:

$$
\begin{equation*}
\mu_{1}^{*}\left(x_{0}\right)=\mu_{2}^{*}\left(x_{0}\right)=0 ; \nu_{1}^{*}\left(x_{0}\right)=\nu_{2}^{*}\left(x_{0}\right) . \tag{9}
\end{equation*}
$$

Definition 5 provides

$$
\left(i_{3}\right)(\forall t \in[0,1])(\psi(t)>0) .
$$

Putting $\mu=\mu_{1} ; \mu^{*}=\mu_{1}^{*} ; \nu=\nu_{1} ; \nu^{*}=\nu_{1}^{*} ; x=x_{0}$ in (3) and (4), from (9) and (i_{3}) we obtain

$$
\mu_{1}\left(x_{0}\right)=\nu_{1}\left(x_{0}\right)=0 .
$$

But the last contradicts to (I).
In the same manner the case (II) leads us to contradiction.
Let (III) hold. We put:

$$
\begin{equation*}
\psi\left(\frac{\nu_{1}\left(x_{0}\right)}{\mu_{1}\left(x_{0}\right)+\nu_{1}\left(x_{0}\right)}\right)=z ; \psi\left(\frac{\nu_{2}\left(x_{0}\right)}{\mu_{2}\left(x_{0}\right)+\nu_{2}\left(x_{0}\right)}\right)=-w . \tag{10}
\end{equation*}
$$

From (3), for: $\mu=\mu_{1} ; \nu=\nu_{1} ; \mu^{*}=\mu_{1}^{*} ; x=x_{0}$, we obtain

$$
\begin{equation*}
\mu_{1}^{*}\left(x_{0}\right)=\mu_{1}\left(x_{0}\right) z \tag{11}
\end{equation*}
$$

and for: $\mu=\mu_{2} ; \nu=\nu_{2} ; \mu^{*}=\mu_{2}^{*} ; x=x_{0}$, we obtain

$$
\begin{equation*}
\mu_{2}^{*}\left(x_{0}\right)=-\mu_{2}\left(x_{0}\right) w . \tag{12}
\end{equation*}
$$

From (4), for: $\mu=\mu_{1} ; \nu=\nu_{1} ; \nu^{*}=\nu_{1}^{*} ; x=x_{0}$, we obtain

$$
\begin{equation*}
\nu_{1}^{*}\left(x_{0}\right)=\nu_{1}\left(x_{0}\right) z \tag{13}
\end{equation*}
$$

and for: $\mu=\mu_{2} ; \nu=\nu_{2} ; \nu^{*}=\nu_{2}^{*} ; x=x_{0}$, we obtain

$$
\begin{equation*}
\nu_{2}^{*}\left(x_{0}\right)=-\nu_{2}\left(x_{0}\right) w . \tag{14}
\end{equation*}
$$

Then, because of (8) we get the following linear homogeneous system with unknowns z and w :

$$
\left\{\begin{array}{l}
\mu_{1}\left(x_{0}\right) z+\mu_{2}\left(x_{0}\right) w=0 \tag{15}\\
\nu_{1}\left(x_{0}\right) z+\nu_{2}\left(x_{0}\right) w=0
\end{array}\right.
$$

Now (i_{3}) and (10) imply $z \neq 0$ and $w \neq 0$, i.e. the linear homogeneous system has a non-trivial soslution. Then, because of the well known result of the linear algebra, the determinant:

$$
\Delta=\left|\begin{array}{ll}
\mu_{1}\left(x_{0}\right) & \mu_{2}\left(x_{0}\right) \\
\nu_{1}\left(x_{0}\right) & \nu_{2}\left(x_{0}\right)
\end{array}\right|
$$

equals to 0 .
This means that the vector-columns of Δ are linearly dependent. Then, due to (III), these vectors are different from the zero-vector. Hence, there exists a real number $k \neq 0$, such that:

$$
\mu_{2}\left(x_{0}\right)=k \mu_{1}\left(x_{0}\right) ; \nu_{2}\left(x_{0}\right)=k \nu_{1}\left(x_{0}\right) .
$$

The last two equalities imply:

$$
\psi\left(\frac{\nu_{2}\left(x_{0}\right)}{\mu_{2}\left(x_{0}\right)+\nu_{2}\left(x_{0}\right)}\right)=\psi\left(\frac{k \nu_{1}\left(x_{0}\right)}{k \mu_{1}\left(x_{0}\right)+k \nu_{1}\left(x_{0}\right)}\right)=\psi\left(\frac{\nu_{1}\left(x_{0}\right)}{\mu_{1}\left(x_{0}\right)+\nu_{1}\left(x_{0}\right)}\right) .
$$

The above equalities and (10) yield $-w=z$. Hence, from (11)-(14), we obtain:

$$
\mu_{1}^{*}\left(x_{0}\right)=z \mu_{1}\left(x_{0}\right) ; \mu_{2}^{*}\left(x_{0}\right)=z \mu_{2}\left(x_{0}\right) ; \nu_{1}^{*}\left(x_{0}\right)=z \nu_{1}\left(x_{0}\right) ; \nu_{2}^{*}\left(x_{0}\right)=z \nu_{2}\left(x_{0}\right) .
$$

The last equalities and (8) yield:

$$
z \mu_{1}\left(x_{0}\right)=z \mu_{2}\left(x_{0}\right) ; z \nu_{1}\left(x_{0}\right)=z \nu_{2}\left(x_{0}\right) .
$$

Hence:

$$
\mu_{1}\left(x_{0}\right)=\mu_{2}\left(x_{0}\right) ; \nu_{1}\left(x_{0}\right)=\nu_{2}\left(x_{0}\right),
$$

since $z \neq 0$. But the last contradicts to (i_{1}), and therefore to (6).
Thus, we proved that T_{φ} is injection.
Third, we will prove that T_{φ} is surjection.
Let $B \stackrel{\text { def }}{=}\left\{\left\langle x, \mu^{*}(x), \nu^{*}(x)\right\rangle \mid x \in E\right\} \in \operatorname{IFS}(E)$. For any $x \in E$ we put:

$$
\left.\begin{array}{l}
\mu(x)=\left\{\begin{array}{l}
\frac{\mu^{*}(x)}{\psi\left(\nu^{*}(x)\right.}, \text { if } \mu^{*}(x)+\nu^{*}(x)>0 \\
0, \text { if } \mu^{*}(x)+\nu^{*}(x)
\end{array} \nu^{*}(x)=0 ;\right.
\end{array}\right\} \begin{aligned}
& \nu(x)=\left\{\begin{array}{l}
\frac{\nu^{*}(x)}{\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)}, \text { if } \mu^{*}(x)+\nu^{*}(x)>0 \\
0, \text { if } \mu^{*}(x)+\nu^{*}(x)=0 .
\end{array}\right.
\end{aligned}
$$

We will show that:

$$
\begin{equation*}
\mu: E \rightarrow[0,1] ; \nu: E \rightarrow[0,1] . \tag{18}
\end{equation*}
$$

Let $x \in E$ is such that $\mu^{*}(x)+\nu^{*}(x)=0$. Then (16) and (17) imply: $\mu(x)=0$ and $\nu(x)=0$, i.e. $\mu(x), \nu(x) \in[0,1]$.

Let $x \in E$ is such that $\mu^{*}(x)+\nu^{*}(x)>0$. Then (16) and (17) yield:

$$
\begin{equation*}
\mu(x)=\frac{\mu^{*}(x)}{\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)} ; \nu(x)=\frac{\nu^{*}(x)}{\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)} . \tag{19}
\end{equation*}
$$

We put

$$
t=\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)} .
$$

Since $\psi \in \Psi_{2}$, then Definition 5 implies:

$$
\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)=\psi(t) \geq \max (t, 1-t)=\max \left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}, \frac{\mu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)
$$

The last and (19) imply that (18) will be proved if the following inequalities hold:

$$
\begin{aligned}
& \mu^{*}(x) \leq \max \left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}, \frac{\mu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right) \\
& \nu^{*}(x) \leq \max \left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}, \frac{\mu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right) .
\end{aligned}
$$

But these inequalities follow from the inequality

$$
\begin{equation*}
\mu^{*}(x)+\nu^{*}(x) \leq 1, \tag{20}
\end{equation*}
$$

which is true, since $B \in \operatorname{IFS}(E)$.
We will prove that $\mu(x)$ and $\nu(x)$, given by (16) and (17), satisfy (5).
According to (2) we have

$$
\varphi(\mu(x), \nu(x))=\left\{\begin{array}{l}
(\mu(x)+\nu(x)) \psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right), \text { if } \mu(x)+\nu(x)>0 \tag{21}\\
0, \text { if } \mu(x)+\nu(x)=0
\end{array}\right.
$$

Equalities (16) , (17) and (i_{3}) imply that

$$
\mu(x)+\nu(x)=0 \text { if and only if } \mu^{*}(x)+\nu^{*}(x)=0 .
$$

From the last it follows that (21) may be rewritten as

$$
\varphi(\mu(x), \nu(x))=\left\{\begin{array}{l}
(\mu(x)+\nu(x)) \psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right), \text { if } \mu^{*}(x)+\nu^{*}(x)>0 \tag{22}\\
0, \text { if } \mu^{*}(x)+\nu^{*}(x)=0
\end{array}\right.
$$

Let $x \in E$ is such that $\mu^{*}(x)+\nu^{*}(x)=0$. Then $\mu(x)+\nu(x)=0$. Hence: $\mu(x)=0 ; \nu(x)=0$ and $\varphi(\mu(x), \nu(x))=0$, i.e. (5) holds.

Let $x \in E$ is such that $\mu^{*}(x)+\nu^{*}(x)>0$. Then (16), (17) and (22) yield

$$
\begin{equation*}
\varphi(\mu(x), \nu(x))=\frac{\mu^{*}(x)+\nu^{*}(x)}{\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)} \psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right) . \tag{23}
\end{equation*}
$$

Equalities (16) and (17) imply

$$
\psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right)=\psi\left(\frac{\frac{\nu^{*}(x)}{\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)}}{\frac{\mu^{*}(x)}{\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)}+\frac{\nu^{*}(x)}{\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right)}}\right)
$$

Hence (because of $\left(i_{3}\right)$)

$$
\begin{equation*}
\psi\left(\frac{\nu(x)}{\mu(x)+\nu(x)}\right)=\psi\left(\frac{\nu^{*}(x)}{\mu^{*}(x)+\nu^{*}(x)}\right) . \tag{24}
\end{equation*}
$$

Equalities (23) and (24) yield

$$
\varphi(\mu(x), \nu(x))=\mu^{*}(x)+\nu^{*}(x) .
$$

The last equality and (20) immediately prove (5).
Let $A \xlongequal{\text { def }}\{\langle x, \mu(x), \nu(x)\rangle \mid x \in E\}$. From the proved (5) and (18) it follows: $A \in d_{\varphi}$-IFS (E). Equalities (3), (4) and (24) immediately yield

$$
T_{\varphi}(A)=B
$$

Hence: T_{φ} is surjection. Therefore, T_{φ} is bijection.
Theorem 2 is proved.
Remark 1. From the proof of Theorem 2 it is seen that T_{φ} is injection also for the case: $\varphi \in$ $N \backslash A N_{2}$. But in this case it is not guaranteed that T_{φ} is surjection. The last means that for $\varphi \in N \backslash A N_{2}$ it is not certain (in the general case) that T_{φ} is bijection.

From the proof of Theorem 2 we obtain the following
Corollary 1. The mappings T_{φ} and T_{φ}^{-1} admit the representations:

$$
T_{\varphi}\langle\mu(x), \nu(x)\rangle=\left\{\begin{array}{l}
\left\langle\frac{\mu(x) \varphi((\mu(x), \nu(x)))}{\mu(x)+\nu(x)}, \frac{\nu(x) \varphi((\mu(x), \nu(x)))}{\mu(x)+\nu(x)}\right\rangle, \text { if } \mu(x)+\nu(x) \neq 0 \\
\langle 0,0\rangle, \text { if } \mu(x)=\nu(x)=0,
\end{array}\right.
$$

where μ and ν are the membership and non-membership functions of an element from the class $d_{\varphi}-\operatorname{IFS}(E)$;

$$
T_{\varphi}^{-1}\langle\mu(x), \nu(x)\rangle=\left\{\begin{array}{l}
\left\langle\mu(x) \frac{\mu(x)+\nu(x)}{\varphi((\mu(x), \nu(x)))}, \nu(x) \frac{\mu(x)+\nu(x)}{\varphi((\mu(x), \nu(x)))}\right\rangle, \text { if } \mu(x)+\nu(x)>0 \\
\langle 0,0\rangle, \text { if } \mu(x)=\nu(x)=0,
\end{array}\right.
$$

where μ and ν are the membership and non-membership functions of an element from the class $\operatorname{IFS}(E)$.

Another Corollary from Theorem 2 is:
Theorem 3. Let $\varphi, \varphi^{*} \in A N_{2}$. Then the mapping $T_{\varphi, \varphi^{*}}: d_{\varphi}-\operatorname{IFS}(E) \rightarrow d_{\varphi^{*}}-\operatorname{IFS}(E)$, which is given by

$$
T_{\varphi, \varphi^{*}} \stackrel{\text { def }}{=} T_{\varphi^{*}}^{-1} T_{\varphi},
$$

is a bijective isomorphism between $d_{\varphi}-\operatorname{IFS}(E)$ and $d_{\varphi^{*}}-\operatorname{IFS}(E)$.

Acknowledgements

The author is grateful for the support provided by the National Science Fund of Bulgaria under grants DID-02-29/2009 and DMU-03-38/2011.

References

[1] Atanassov, K. Intuitionistic Fuzzy Sets. Springer Physica-Verlag, Heidelberg, 1999.
[2] Bonsall, F., J. Duncan. Numerical Ranges II, London Math. Soc., Lecture Notes Ser., Vol. 10, 1973.
[3] Kato, M., T. Tamura. Weakly nearly uniform smoothness and worth property of Ψ-direct sums of Banach spaces. Comment. Math. Prace Mat., Vol. 46, 2006, 113-129
[4] Mitani K., K. Saito, T. Suzuki. Smoothness of absolute norms on \mathbb{C}^{n}, J. Convex Anal. Vol. 10, 2003, 89--107.
[5] Saito, K.-S., M. Kato, Y. Takahashi. Absolute norms on \mathbb{C}^{n}, J. Math. Anal. Appl., Vol. 252, 2000, 879--905.
[6] Suzuki, T., A. Yamano, M. Kato. The James Constant of 2-Dimensional Lorentz Sequence Spaces. Bull. Kyushu Inst. Tech. Pure Appl. Math. Vol. 53, 2006, 15-24
[7] Takahashi, Y., M. Kato, K.-S. Saito. Strict convexity of absolute norms on \mathbb{C}^{2} and direct sums of Banach spaces, J. Inequal. Appl. Vol. 7, 2002, 179-186.
[8] Vassilev, P. A Metric Approach To Fuzzy Sets And Intuitionistic Fuzzy Sets. Proc. of. First Int. Workshop on IFSs, GNs, KE, Sept. 2006, 31-38.
[9] Zuo, Z. The Ptolemy constant of absolute normalized norms on \mathbb{R}^{2}. Journal of Inequalities and Applications, 2012, 2012:107

