Ergodic theorem on B-structures

Lenka Lašová, Magdaléna Renčová
Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica, Slovakia
E-mail: lasova@fpv.umb.sk, rencova@fpv.umb.sk

Abstract

In the paper the extended individual ergodic theorem for B-structures with a state is presented. The classical ergodic theorem is formulated for ergodic mapping on Ω, where (Ω, S, P) is a probability space and $\xi: \Omega \rightarrow R$ is an integrable random variable. In our case S is replaced by a B-structure B and integrable random variable is replaced by an integrable observable.

Keywords: B-structure, ergodic theorem.

1 Introduction

A B-structures were introduced by B. Riečan and K. Čunderlíková in [1]. By the B-structure we understand some bounded structure, where a partial ordering and a partial binary operation are defined. Many examples of this structure can be found in the fuzzy sets theory and in quantum structures. B-structures can be seen as a generalization of many algebraic structures. The aim of their introduction is a generalization of the probability theory for all these structures.

Definition $1 A B$-structure is a system $\left(B, \hat{\oplus}, \leq, 0_{B}, 1_{B}\right)$ such that
(i) $\hat{\oplus}$ is a partial binary operation on B;
(ii) \leq is a partial ordering on B;
(iii) 0_{B} is the smallest, 1_{B} is the largest element in (B, \leq).

Definition $2 A$ state on B is a mapping $m: B \rightarrow[0,1]$ satisfying the following conditions:
(I) $m\left(1_{B}\right)=1, m\left(0_{B}\right)=0$
(II) if $a=b \hat{\oplus} c$, then $m(a)=m(b)+m(c)$
(III) if $a_{n} \nearrow a$, then $m\left(a_{n}\right) \nearrow m(a)$.

We will show some examples of B-structures. We can find some in the theory of fuzzy ssts or there are some quantum structures satisfying all properties for B-structures.

Example 1 The first example is the Eukasiewicz square $M=[0,1]^{2}$. It is a poset with the ordering $\left(\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)\right.$ iff $\left.x_{1} \leq x_{2}, y_{1} \geq y_{2}\right)$. The following partially binary operations are used

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1} \oplus x_{2}, y_{1} \otimes y_{2}\right) \\
& \left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right)=\left(x_{1} \otimes x_{2}, y_{1} \oplus y_{2}\right)
\end{aligned}
$$

where the operations \oplus, \otimes are defined by the following equalities:

$$
x_{1} \oplus x_{2}=\left(x_{1}+x_{2}\right) \wedge 1, x_{1} \otimes x_{2}=\left(x_{1}+x_{2}-1\right) \vee 0
$$

The smallest element is $(0,1)$ and the largest element is $(1,0)$ here.
Example 2 The one of the most important examples of B-structure is the system $B=\left(M,+, \leq, 0_{M}, 1_{M}\right)$ depends on a pseudo-MV-algebra $M=\left(M, \oplus, \odot, *,{ }^{\prime}, 0_{M}, 1_{M}\right)$ by the following way:
a partial binary operation + on M is defined by

$$
a+b \text { is defined iff } a \leq b^{*} \text { and then }: a+b:=a \oplus b
$$

We can say that $B=\left(M,+, \leq, 0_{M}, 1_{M}\right)$ is a B-structure coinciding with the pseudo-MValgebra M and the states on B are corresponding with the states on pseudo-MV-algebra M defined in [4]. Similarly we can define a B-structure from MV-algebra, which is a commutative case of a pseudo-MV-algebra.

2 Probability on B-structures

Let (Ω, \mathcal{S}, P) be a probability space. The random variable is a mapping from Ω to R such that:

$$
\text { if } A \in \mathcal{B}(R) \text { then } \xi^{-1}(A) \in \mathcal{S}
$$

We denote a family of all Borrel sets by the $\mathcal{B}(R)$.
If we define the mapping $x: \mathcal{B}(R) \rightarrow \mathcal{S}$ by the law: $x: A \rightarrow \xi^{-1}(A)$ then x is a σ homomorphism. This mapping substituting random variable on B-structures will be called an observable.

Definition 3 Let $B=\left(B, \hat{\oplus}, \leq, 0_{B}, 1_{B}\right)$ be a B-structure. An observable of B is a mapping $x: \mathcal{B}(R) \rightarrow B$ satisfying the following conditions:
(i) $x(R)=1_{B}, x(\emptyset)=0_{B}$;
(ii) if $A, B \in \mathcal{B}(R)$ and $A \cap B=\emptyset$, then $x(A \cup B)=x(A) \hat{\oplus} x(B)$;
(iii) if $A_{n} \in \mathcal{B}(R), A_{n} \nearrow A$, then $x\left(A_{n}\right) \nearrow x(A)$.

Theorem 1 Let $x: \mathcal{B}(R) \rightarrow B$ be an observable and $m: B \rightarrow[0,1]$ be a state. Then the transformation $m \circ x=m_{x}: \mathcal{B}(R) \rightarrow[0,1]$ is a probability measure.

Proof: Let $m: B \rightarrow[0,1]$ be a state on B and $x: \mathcal{B}(R) \rightarrow B$ be an observable. Then we will prove, that the map $m_{x}=m \circ x$ is probability, so this map is continuous, additive and the boundary conditions are satisfied. So
(i) $m_{x}(R)=m(x(R))=m\left(1_{B}\right)=1, m_{x}(\emptyset)=m(x(\emptyset))=m\left(0_{B}\right)=0$
(ii) let A, B be two arbitrary disjoint sets from $\mathcal{B}(R)$, then
$m_{x}(A \cup B)=m(x(A \cup B))=m(x(A) \hat{\oplus} x(B))=m(x(A))+m(x(B))=m_{x}(A)+m_{x}(B)$
(iii) let $A_{n} \in \mathcal{B}, n \in N$ that $A_{n} \nearrow A$, so $x\left(A_{n}\right) \nearrow x(A)$ and then:
$m_{x}\left(A_{n}\right)=m\left(x\left(A_{n}\right)\right) \nearrow m(x(A))=m_{x}(A)$
and so m_{x} is σ-additive.

Definition 4 Let $x: \mathcal{B}(R) \rightarrow B$ be an observable on a B-structure B with a state m. The mapping x is integrable if there exists the expected value of the observable defined by the equation:

$$
E(x)=\int_{R} t d m_{x}(t)
$$

where $m_{x}: \mathcal{B}(R) \rightarrow[0,1]$ is the transformation $m_{x}=m \circ x$.

3 Ergodic theorem

Let us recall the classical definition of a dynamical system with an ergodic transformation. By the dynamical system we mean a system $(\Omega, \mathcal{S}, P, T)$, where (Ω, \mathcal{S}, P) is a probability space and $T: \Omega \rightarrow \Omega$ is a probability preserving mapping.

The mapping $T: \Omega \rightarrow \Omega$ is called ergodic, if the following statements are satisfied:
(i) if $A \in \mathcal{S}$, then $T^{-1}(A) \in \mathcal{S}$ and $P\left(T^{-1}(A)\right)=P(A)$,
(ii) if $A=T^{-1}(A)$ then $P(A)=0$ or $P(A)=1$.

The following proposition is very well known.
Proposition 1 Let (Ω, S, P, T) be a dynamical system, $T: \Omega \rightarrow \Omega$ be an ergodic mapping and $\xi: \Omega \rightarrow R$ be an integrable random variable. Then P-almost everywhere there holds:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \xi \circ T^{i}=E(\xi) .
$$

We can define the ergodicity of the mapping on B-structures similarly to the classical case.
Definition 5 Let B be a B-structure with a state m. A mapping $\lambda: B \rightarrow B$ is called m preserving map, if for all elements a from B there holds:

$$
m(\lambda(a))=m(a) .
$$

Definition $6 A$ mapping $\lambda: B \rightarrow B$ is called ergodic with respect to an observable x, if the following rules are satisfied:
(i) λ is m-preserving map,
(ii) for all $n \in N$ there exists σ-homomorphism $h_{n}: \mathcal{B}\left(R^{n}\right) \rightarrow B$, such that the equalities holds

$$
\begin{gathered}
m\left(h_{n}\left(A_{1} \times A_{2} \ldots \times A_{n}\right)\right)=m\left(x\left(A_{1}\right) \wedge(\lambda \circ x)\left(A_{2}\right) \wedge \ldots \wedge\left(\lambda^{n-1} \circ x\right)\left(A_{n}\right)\right)= \\
m\left(x\left(A_{1}\right)\right) \cdot m\left((\lambda \circ x)\left(A_{2}\right)\right) \cdot \ldots \cdot m\left(\left(\lambda^{n-1} \circ x\right)\left(A_{n}\right)\right) .
\end{gathered}
$$

Kolmogorov's construction:

Let x be an observable on a B-structure B with a state m.
Let $\lambda: B \rightarrow B$ be an ergodic mapping with respect to the observable x.
Let $C=\left\{\pi_{n}^{-1}(B) ; B \in \mathcal{B}\left(R^{n}\right), n \in N\right\}$ be the set of all cylinders, where the function π_{n} : $R^{N} \rightarrow R^{n}$ defined by $\pi_{n}\left(\left(u_{i}\right)_{n=1}^{\infty}\right)=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is called the n-th coordinate projection of random vector.

The Kolmogorov's construction \mathbf{P} of the measures $m \circ h_{i}, i=1,2, \ldots$ on the space $\left(R^{N}, \sigma(C)\right)$ is defined by

$$
\mathbf{P}\left\{\left(u_{i}\right)_{1}^{\infty} \in R^{N} ; u_{1} \in A_{1}, \ldots, u_{n} \in A_{n}\right\}=m\left(h_{n}\left(A_{1} \times A_{2} \ldots \times A_{n}\right)\right)
$$

for each $n \in N$ and every $A_{1}, \ldots, A_{n} \in \mathcal{B}(R)$.
It is easy to see that the function $\xi: R^{N} \rightarrow R$ given by $\xi\left(\left(u_{i}\right)_{1}^{\infty}\right)=u_{1}$ is a random variable of $\left(R^{N}, \sigma(C), \mathbf{P}\right)$ and $P_{\xi}=m_{x}$.

In the classical theory with a probability space (Ω, \mathcal{S}, P), we say that the sequence of random variables ξ_{n} converges to 0 P -almost everywhere, if

$$
P\left(\left\{\omega, \xi_{n}(\omega) \rightarrow 0\right\}\right)=1
$$

This property can be rewritten by the following form:

$$
(\forall \varepsilon<0)(\forall \omega \in D)(\exists k \in N)(\forall n \geq k)\left(\left|\xi_{n}(\omega)\right|<\varepsilon\right)
$$

If we denote by D the set $\left\{\xi_{n}(\omega) \rightarrow 0\right\}$, then the previous equality means:

$$
(\forall l \in N)(\exists k \in N)(\forall n \geq k)\left(\xi_{n}^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right) \subset D .
$$

Then we can define the analogous type of convergence for the sequence of random variables $\left(\xi_{n}\right)_{n=1}^{\infty}$ by this formula:

$$
\lim _{l \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} P\left(\bigcap_{n=k}^{k+i} \xi_{n}^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)=1 .
$$

Similarly we define the convergence m-almost everywhere for a sequence of observables on B-structures.

Definition 7 Let $\left(y_{i}\right)_{i=1}^{\infty}$ be the sequence of the observables on a B-structure B with a state m on B. We say, that the sequence converges m-almost everywhere to 0 , if there holds:

$$
\lim _{l \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} m\left(\bigwedge_{n=1}^{k+i} y_{n}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)=1
$$

Proposition 2 Let x be an observable on a B-structure B with a state m and $\lambda: B \rightarrow B$ be an ergodic mapping with respect to the observable x. A mapping $h_{n}: \mathcal{B}\left(R^{n}\right) \rightarrow B$ is the σ homomorphism from the definition of the ergodic map. Let P be the probability measure generates by the Kolmogorov construction. For all natural numbers $n g_{n}$ is a Borrel function from R^{n} to R. We define an observable $y_{n}=g_{n}\left(x, \lambda \circ x, \ldots, \lambda^{n-1} \circ x\right): \mathcal{B}(R) \rightarrow B$ by the equality $y_{n}=h_{n} \circ g_{n}^{-1}$. If π_{n} is the projection R^{N} to R^{n} given by the equality: $\pi_{n}\left(\left(u_{i}\right)_{i=1}^{\infty}\right)=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, then there holds: $P \circ \pi_{n}^{-1} \circ g_{n}^{-1}=m \circ h_{n} \circ g_{n}^{-1}=m \circ y_{n}$. If the sequence $\left(g_{n} \circ \pi_{n}\right)_{n=1}^{\infty}$ converges P-almost everywhere to 0 , then the sequence $\left(y_{i}\right)_{i=1}^{\infty}$ converges m-almost everywhere to 0 .

Proof: The equality $P \circ \pi_{n}^{-1} \circ g_{n}^{-1}=m \circ h_{n} \circ g_{n}^{-1}=m \circ y_{n}$ follows from the Kolmogorov's construction by the following way:

$$
\begin{gathered}
P\left(\pi_{n}^{-1}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)\right)=P\left(A_{1} \times A_{2} \times \ldots \times A_{n} \times R \times R \ldots\right)= \\
=m\left(x\left(A_{1}\right) \wedge(\lambda \circ x)\left(A_{2}\right) \wedge \ldots \wedge\left(\lambda^{n-1} \circ x\right)\left(A_{n}\right)\right)= \\
=m\left(h_{n}\left(A_{1} \times A_{2} \ldots \times A_{n}\right)\right) .
\end{gathered}
$$

It follows $P \circ \pi_{n}^{-1}=m \circ h_{n}$, hence also $P \circ \pi_{n}^{-1} \circ g_{n}^{-1}=m \circ h_{n} \circ g_{n}^{-1}=m \circ y_{n}$.
Next we show the second property. So let the sequence $\left(g_{n} \circ \pi_{n}\right)_{n=1}^{\infty}$ converges P-almost everywhere to 0 that is:

$$
\lim _{l \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} P\left(\bigcap_{n=k}^{k+i}\left(g_{n} \circ \pi_{n}\right)^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)=1 .
$$

Then the following holds:

$$
\begin{gathered}
P\left(\begin{array}{l}
\left.\bigcap_{n=k}^{k+i}\left(g_{n} \circ \pi_{n}\right)^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)=P\left(\bigcap_{n=k}^{k+i}\left(\pi_{n}^{-1} \circ g_{n}^{-1}\right)\left(-\frac{1}{l}, \frac{1}{l}\right)\right)= \\
= \\
P\left(\begin{array}{l}
k+i \\
n=k
\end{array} \pi_{n}^{-1}\left(g_{n}^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)\right)=P\left(\pi_{k+i}^{-1}\left(\bigcap_{n=k}^{k+i} g_{n}^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)\right)= \\
= \\
\left.=m \circ \pi_{k+i}^{-1}\right)\left(\bigcap_{n=k}^{k+i} g_{n}^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)=\left(m \circ h_{k+i}\right)\left(\bigcap_{n=k}^{k+i} g_{n}^{k+1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)= \\
\left.\left.h_{n}^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)\right) \leq m\left(\bigcap_{n=k}^{k+i} h_{k+i} \circ g_{n}^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)= \\
=m\left(\bigcap_{n=k}^{k+i} y_{n}\left(-\frac{1}{l}, \frac{1}{l}\right)\right) .
\end{array} .\right.
\end{gathered}
$$

Then it holds:

$$
P\left(\bigcap_{n=k}^{k+i}\left(g_{n} \circ \pi_{n}\right)^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right) \leq m\left(\bigwedge_{n=k}^{k+i} y_{n}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)
$$

and since:

$$
\lim _{l \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} P\left(\bigcap_{n=k}^{k+i}\left(g_{n} \circ \pi_{n}\right)^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)=1
$$

the following is satisfied:

$$
\lim _{l \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} m\left(\bigwedge_{n=k}^{k+i} y_{n}\left(-\frac{1}{l}, \frac{1}{l}\right)\right)=1
$$

Now we recall the classical ergodic theorem for ergodic mapping and then can be introduce the ergodic theorem for the ergodic mapping on B-structures.

Let (Ω, \mathcal{S}, P) be a probability space and the mapping $T: \Omega \rightarrow \Omega$ be an ergodic transformation. Let $x: \Omega \rightarrow R$ be an integrable random variable with the mean value $E(x)$, then

$$
\frac{1}{n} \sum_{i=0}^{n-1} x \circ T^{i} \rightarrow E(x) \text { P-almost everywhere. }
$$

Theorem 2 (Ergodic theorem) Let B be a B-structure with a state m which satisfies: $\forall a, b \in$ $B: \exists a \wedge b$. Let x be an integrable observable on B. Let the map $\lambda: B \rightarrow B$ be an ergodic mapping according to the observable x for which holds: $\lambda(a \wedge b)=\lambda(a) \wedge \lambda(b)$. Then the sequence $\left(y_{n}\right)_{n=1}^{\infty}$ defined by a formula:
$y_{n}=\frac{1}{n} \sum_{i=0}^{n-1} \lambda^{i} \circ x-E(x)$
converges m-almost everywhere to 0 .
Proof: For a proof of this theorem we use the previous propositions. So we have the observable x with an ergodic mapping λ. The sequence y_{n} is equal to $g_{n}\left(x, \lambda \circ x, \ldots, \lambda^{n-1} \circ x\right)$, where g_{n} is the Borel function defined by the following formula $g_{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} u_{i}-$ $E(x)$. Then we have the observable y_{n} from previous proposition.

Let $h_{n}: \mathcal{B}\left(R^{n}\right) \rightarrow B$ be the mapping from Definition 6 given by the equality:

$$
m\left(h_{n}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)\right)=m\left(x\left(A_{1}\right) \wedge(\lambda \circ x)\left(A_{2}\right) \wedge \ldots \wedge\left(\lambda^{n-1} \circ x\right)\left(A_{n}\right)\right) .
$$

Let $\left(R^{N}, \sigma(C)\right)$ be the probability space, on which we define a mapping $T: R^{n} \rightarrow R^{n}$ by this way:

$$
T\left(\left(u_{i}\right)_{i=1}^{\infty}\right)=\left(v_{i}\right)_{i=1}^{\infty}, v_{i}=u_{i+1} .
$$

We shall prove that T is an ergodic transformation.
At first T is a measure preserving transformation.

$$
\begin{gathered}
P\left(T^{-1}\left(\pi_{n}^{-1}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)\right)\right)= \\
=P\left(T^{-1}\left(A_{1} \times A_{2} \times \ldots \times A_{n} \times R \times R \ldots\right)\right)= \\
=P\left(R \times A_{1} \times A_{2} \times \ldots \times A_{n} \times R \times R \ldots\right)= \\
=m\left(x(R) \wedge(\lambda \circ x)\left(A_{1}\right) \wedge \ldots \wedge\left(\lambda^{n} \circ x\right)\left(A_{n}\right)\right)= \\
=m\left(\lambda\left(x\left(A_{1}\right) \wedge(\lambda \circ x)\left(A_{2}\right) \wedge \ldots \wedge\left(\lambda^{n-1} \circ x\right)\left(A_{n}\right)\right)\right)= \\
=m\left(x\left(A_{1}\right) \wedge(\lambda \circ x)\left(A_{2}\right) \wedge \ldots \wedge\left(\lambda^{n-1} \circ x\right)\left(A_{n}\right)\right)= \\
=P\left(\pi_{n}^{-1}\left(A_{1} \times A_{2} \times \ldots \times A_{n}\right)\right) .
\end{gathered}
$$

So the equality $P \circ T^{-1}=P$ holds.
By the definition of ergodicity we obtain that:
$\left(R^{N}, \sigma(C), P, T\right)$ is the Bernoulli scheme, hence T is ergodic transformation.
Then we define an integrable random variable:
$\xi: R^{N} \rightarrow R, \xi\left(\left(u_{i}\right)_{i=1}^{\infty}\right)=u_{1}$ and it holds $E(\xi)=E(x)$.
By results from proposition 1 and the equality:

$$
g_{n}\left(\xi, \xi \circ T, \ldots, \xi \circ T^{n-1}\right)=\frac{1}{n} \sum_{i=0}^{n-1} \xi \circ T^{i}-E(\xi)
$$

we have that P-almost everywhere the following holds:

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \xi \circ T^{i}=E(\xi) .
$$

By using the proposition 2 we can write:

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \lambda^{i} \circ x=E(x) .
$$

Acknowledgment

The paper was kindly supported by Grants VEGA 1/0539/08 and APVV LPP-0046-06.

References

[1] K. Čunderlíková-Lendelová and B. Riečan. Probability on B-structures. Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Academic Publishing House EXIT, pp. 33-60, 2008.
[2] T. Neubrunn and B. Riečan. Integral, measure and ordering, Dordrecht, Kluwer, 1997.
[3] B. Riečan. Representation of probabilities on IFS events. Advances in Soft Computing Soft Methodology and Random Information Systems,Springer, Berlin 234-246, 2004.
[4] A. Dvurečenskij. States on pseudo-MV-algebras. Studia logica, 68, 301-327, 2001.

