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Abstract

In the paper the extended individual ergodic theorem for B-structures with a state is
presented. The classical ergodic theorem is formulated for ergodic mapping on Ω, where
(Ω, S, P ) is a probability space and ξ : Ω→ R is an integrable random variable. In our case
S is replaced by a B-structure B and integrable random variable is replaced by an integrable
observable.
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1 Introduction

A B-structures were introduced by B. Riečan and K. Čunderĺıková in [1]. By the B-structure we
understand some bounded structure, where a partial ordering and a partial binary operation are
defined. Many examples of this structure can be found in the fuzzy sets theory and in quantum
structures. B-structures can be seen as a generalization of many algebraic structures. The aim
of their introduction is a generalization of the probability theory for all these structures.

Definition 1 A B-structure is a system
(
B, ⊕̂,≤, 0B, 1B

)
such that

(i) ⊕̂ is a partial binary operation on B;
(ii) ≤ is a partial ordering on B;
(iii) 0B is the smallest, 1B is the largest element in (B,≤).

Definition 2 A state on B is a mapping m : B → [0, 1] satisfying the following conditions:
(I) m (1B) = 1, m (0B) = 0
(II) if a = b⊕̂c, then m (a) = m (b) +m (c)
(III) if an ↗ a, then m (an)↗ m (a).

We will show some examples of B-structures. We can find some in the theory of fuzzy ssts
or there are some quantum structures satisfying all properties for B-structures.

Example 1 The first example is the  Lukasiewicz square M = [0, 1]2. It is a poset with the
ordering ((x1, y1) ≤ (x2, y2) iff x1 ≤ x2, y1 ≥ y2). The following partially binary operations are
used

(x1, y1)⊕ (x2, y2) = (x1 ⊕ x2, y1 ⊗ y2)
(x1, y1)⊗ (x2, y2) = (x1 ⊗ x2, y1 ⊕ y2),

where the operations ⊕,⊗ are defined by the following equalities:
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x1 ⊕ x2 = (x1 + x2) ∧ 1, x1 ⊗ x2 = (x1 + x2 − 1) ∨ 0.

The smallest element is (0, 1) and the largest element is (1, 0) here.

Example 2 The one of the most important examples of B-structure is the system B = (M,+,≤, 0M , 1M )
depends on a pseudo-MV-algebra M = (M,⊕,�, ∗,′ , 0M , 1M ) by the following way:

a partial binary operation + on M is defined by

a+ b is defined iff a ≤ b∗ and then: a+ b := a⊕ b,

We can say that B = (M,+,≤, 0M , 1M ) is a B-structure coinciding with the pseudo-MV-
algebra M and the states on B are corresponding with the states on pseudo-MV-algebra M defined
in [4]. Similarly we can define a B-structure from MV-algebra, which is a commutative case of
a pseudo-MV-algebra.

2 Probability on B-structures

Let (Ω,S, P ) be a probability space. The random variable is a mapping from Ω to R such that:

if A ∈ B (R) then ξ−1 (A) ∈ S.

We denote a family of all Borrel sets by the B (R).
If we define the mapping x : B (R) → S by the law: x : A → ξ−1 (A) then x is a σ-

homomorphism. This mapping substituting random variable on B-structures will be called an
observable.

Definition 3 Let B =
(
B, ⊕̂,≤, 0B, 1B

)
be a B-structure. An observable of B is a mapping

x : B (R)→ B satisfying the following conditions:
(i) x (R) = 1B, x (∅) = 0B;
(ii) if A,B ∈ B (R) and A ∩B = ∅, then x (A ∪B) = x (A) ⊕̂x (B);
(iii) if An ∈ B (R), An ↗ A, then x (An)↗ x (A).

Theorem 1 Let x : B (R) → B be an observable and m : B → [0, 1] be a state. Then the
transformation m ◦ x = mx : B (R)→ [0, 1] is a probability measure.

Proof: Let m : B → [0, 1] be a state on B and x : B (R) → B be an observable. Then we
will prove, that the map mx = m ◦ x is probability, so this map is continuous, additive and the
boundary conditions are satisfied. So

(i) mx (R) = m (x (R)) = m (1B) = 1, mx (∅) = m (x (∅)) = m (0B) = 0
(ii) let A,B be two arbitrary disjoint sets from B (R), then
mx (A ∪B) = m (x (A ∪B)) = m

(
x (A) ⊕̂x (B)

)
= m (x (A))+m (x (B)) = mx (A)+mx (B)

(iii) let An ∈ B, n ∈ N that An ↗ A, so x (An)↗ x (A) and then:
mx (An) = m (x (An))↗ m (x (A)) = mx (A)
and so mx is σ-additive.

Definition 4 Let x : B (R) → B be an observable on a B-structure B with a state m. The
mapping x is integrable if there exists the expected value of the observable defined by the equation:

E (x) =
∫
R
t dmx (t);

where mx : B (R)→ [0, 1] is the transformation mx = m ◦ x.
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3 Ergodic theorem

Let us recall the classical definition of a dynamical system with an ergodic transformation. By
the dynamical system we mean a system (Ω,S, P, T ), where (Ω,S, P ) is a probability space and
T : Ω→ Ω is a probability preserving mapping.

The mapping T : Ω→ Ω is called ergodic, if the following statements are satisfied:
(i) if A ∈ S, then T−1 (A) ∈ S and P

(
T−1 (A)

)
= P (A),

(ii) if A = T−1 (A) then P (A) = 0 or P (A) = 1.
The following proposition is very well known.

Proposition 1 Let (Ω, S, P, T ) be a dynamical system, T : Ω → Ω be an ergodic mapping and
ξ : Ω→ R be an integrable random variable. Then P-almost everywhere there holds:

lim
n→∞

1
n

n−1∑
i=0

ξ ◦ T i = E (ξ).

We can define the ergodicity of the mapping on B-structures similarly to the classical case.

Definition 5 Let B be a B-structure with a state m. A mapping λ : B → B is called m-
preserving map, if for all elements a from B there holds:

m (λ (a)) = m (a).

Definition 6 A mapping λ : B → B is called ergodic with respect to an observable x, if the
following rules are satisfied:

(i) λ is m-preserving map,
(ii) for all n ∈ N there exists σ-homomorphism hn : B (Rn) → B, such that the equalities

holds

m (hn (A1 ×A2...×An)) = m
(
x (A1) ∧ (λ ◦ x) (A2) ∧ ... ∧

(
λn−1 ◦ x

)
(An)

)
=

m (x (A1)) ·m ((λ ◦ x) (A2)) · ... ·m
((
λn−1 ◦ x

)
(An)

)
.

Kolmogorov’s construction:
Let x be an observable on a B-structure B with a state m.
Let λ : B → B be an ergodic mapping with respect to the observable x.
Let C =

{
π−1
n (B) ;B ∈ B (Rn) , n ∈ N

}
be the set of all cylinders, where the function πn :

RN → Rn defined by πn ((ui)
∞
n=1) = (u1, u2, ..., un) is called the n-th coordinate projection of

random vector.
The Kolmogorov’s construction P of the measures m◦hi, i = 1, 2, ... on the space

(
RN , σ (C)

)
is defined by

P
{

(ui)
∞
1 ∈ RN ;u1 ∈ A1, ..., un ∈ An

}
= m (hn (A1 ×A2...×An))

for each n ∈ N and every A1, ..., An ∈ B (R).
It is easy to see that the function ξ : RN → R given by ξ ((ui)

∞
1 ) = u1 is a random variable

of
(
RN , σ (C) ,P

)
and Pξ = mx.

In the classical theory with a probability space (Ω,S, P ), we say that the sequence of random
variables ξn converges to 0 P-almost everywhere, if
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P ({ω, ξn (ω)→ 0}) = 1.

This property can be rewritten by the following form:

(∀ε < 0) (∀ω ∈ D) (∃k ∈ N) (∀n ≥ k) (|ξn (ω)| < ε)

If we denote by D the set {ξn (ω)→ 0}, then the previous equality means:

(∀l ∈ N) (∃k ∈ N) (∀n ≥ k)
(
ξ−1
n

(
−1
l ,

1
l

))
⊂ D.

Then we can define the analogous type of convergence for the sequence of random variables
(ξn)∞n=1 by this formula:

lim
l→∞

lim
k→∞

lim
i→∞

P

(
k+i⋂
n=k

ξ−1
n

(
−1
l ,

1
l

))
= 1.

Similarly we define the convergence m-almost everywhere for a sequence of observables on
B-structures.

Definition 7 Let (yi)
∞
i=1 be the sequence of the observables on a B-structure B with a state m

on B. We say, that the sequence converges m-almost everywhere to 0, if there holds:

lim
l→∞

lim
k→∞

lim
i→∞

m

(
k+i∧
n=1

yn
(
−1
l ,

1
l

))
= 1.

Proposition 2 Let x be an observable on a B-structure B with a state m and λ : B → B
be an ergodic mapping with respect to the observable x. A mapping hn : B (Rn) → B is the σ-
homomorphism from the definition of the ergodic map. Let P be the probability measure generates
by the Kolmogorov construction. For all natural numbers n gn is a Borrel function from Rn to R.
We define an observable yn = gn

(
x, λ ◦ x, ..., λn−1 ◦ x

)
: B (R)→ B by the equality yn = hn◦g−1

n .
If πn is the projection RN to Rn given by the equality: πn ((ui)

∞
i=1) = (u1, u2, ..., un), then there

holds: P ◦ π−1
n ◦ g−1

n = m ◦ hn ◦ g−1
n = m ◦ yn. If the sequence (gn ◦ πn)∞n=1 converges P -almost

everywhere to 0, then the sequence (yi)
∞
i=1 converges m-almost everywhere to 0.

Proof: The equality P ◦ π−1
n ◦ g−1

n = m ◦ hn ◦ g−1
n = m ◦ yn follows from the Kolmogorov’s

construction by the following way:

P
(
π−1
n (A1 ×A2 × ...×An)

)
= P (A1 ×A2 × ...×An ×R×R....) =

= m
(
x (A1) ∧ (λ ◦ x) (A2) ∧ ... ∧

(
λn−1 ◦ x

)
(An)

)
=

= m (hn (A1 ×A2...×An)).

It follows P ◦ π−1
n = m ◦ hn, hence also P ◦ π−1

n ◦ g−1
n = m ◦ hn ◦ g−1

n = m ◦ yn.
Next we show the second property. So let the sequence (gn ◦ πn)∞n=1 converges P -almost

everywhere to 0 that is:

lim
l→∞

lim
k→∞

lim
i→∞

P

(
k+i⋂
n=k

(gn ◦ πn)−1
(
−1
l ,

1
l

))
= 1.

Then the following holds:
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P

(
k+i⋂
n=k

(gn ◦ πn)−1
(
−1
l ,

1
l

))
= P

(
k+i⋂
n=k

(
π−1
n ◦ g−1

n

) (
−1
l ,

1
l

))
=

= P

(
k+i⋂
n=k

π−1
n

(
g−1
n

(
−1
l ,

1
l

)))
= P

(
π−1
k+i

(
k+i⋂
n=k

g−1
n

(
−1
l ,

1
l

)))
=

=
(
P ◦ π−1

k+i

)(k+i⋂
n=k

g−1
n

(
−1
l ,

1
l

))
= (m ◦ hk+i)

(
k+i⋂
n=k

g−1
n

(
−1
l ,

1
l

))
=

= m

(
hk+i

(
k+i⋂
n=k

g−1
n

(
−1
l ,

1
l

)))
≤ m

(
k+i∧
n=k

hk+i ◦ g−1
n

(
−1
l ,

1
l

))
=

= m

(
k+i∧
n=k

yn
(
−1
l ,

1
l

))
.

Then it holds:

P

(
k+i⋂
n=k

(gn ◦ πn)−1
(
−1
l ,

1
l

))
≤ m

(
k+i∧
n=k

yn
(
−1
l ,

1
l

))

and since:

lim
l→∞

lim
k→∞

lim
i→∞

P

(
k+i⋂
n=k

(gn ◦ πn)−1
(
−1
l ,

1
l

))
= 1,

the following is satisfied:

lim
l→∞

lim
k→∞

lim
i→∞

m

(
k+i∧
n=k

yn
(
−1
l ,

1
l

))
= 1.

Now we recall the classical ergodic theorem for ergodic mapping and then can be introduce
the ergodic theorem for the ergodic mapping on B-structures.

Let (Ω,S, P ) be a probability space and the mapping T : Ω→ Ω be an ergodic transforma-
tion. Let x : Ω→ R be an integrable random variable with the mean value E (x), then

1
n

n−1∑
i=0

x ◦ T i → E (x) P-almost everywhere.

Theorem 2 (Ergodic theorem) Let B be a B-structure with a state m which satisfies: ∀a, b ∈
B : ∃a∧b. Let x be an integrable observable on B. Let the map λ : B → B be an ergodic mapping
according to the observable x for which holds: λ (a ∧ b) = λ (a)∧λ (b). Then the sequence (yn)∞n=1

defined by a formula:

yn = 1
n

n−1∑
i=0

λi ◦ x− E (x)

converges m-almost everywhere to 0.

Proof: For a proof of this theorem we use the previous propositions. So we have the
observable x with an ergodic mapping λ. The sequence yn is equal to gn

(
x, λ ◦ x, ..., λn−1 ◦ x

)
,

where gn is the Borel function defined by the following formula gn (u1, u2, ..., un) = 1
n

n∑
i=1

ui −

E (x). Then we have the observable yn from previous proposition.
Let hn : B (Rn)→ B be the mapping from Definition 6 given by the equality:

m (hn (A1 ×A2 × ...×An)) = m
(
x (A1) ∧ (λ ◦ x) (A2) ∧ ... ∧

(
λn−1 ◦ x

)
(An)

)
.
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Let
(
RN , σ (C)

)
be the probability space, on which we define a mapping T : Rn → Rn by

this way:

T ((ui)
∞
i=1) = (vi)

∞
i=1 , vi = ui+1.

We shall prove that T is an ergodic transformation.
At first T is a measure preserving transformation.

P
(
T−1

(
π−1
n (A1 ×A2 × ...×An)

))
=

= P
(
T−1 (A1 ×A2 × ...×An ×R×R...)

)
=

= P (R×A1 ×A2 × ...×An ×R×R...) =
= m (x (R) ∧ (λ ◦ x) (A1) ∧ ... ∧ (λn ◦ x) (An)) =

= m
(
λ
(
x (A1) ∧ (λ ◦ x) (A2) ∧ ... ∧

(
λn−1 ◦ x

)
(An)

))
=

= m
(
x (A1) ∧ (λ ◦ x) (A2) ∧ ... ∧

(
λn−1 ◦ x

)
(An)

)
=

= P
(
π−1
n (A1 ×A2 × ...×An)

)
.

So the equality P ◦ T−1 = P holds.
By the definition of ergodicity we obtain that:(
RN , σ (C) , P, T

)
is the Bernoulli scheme, hence T is ergodic transformation.

Then we define an integrable random variable:
ξ : RN → R, ξ ((ui)

∞
i=1) = u1 and it holds E (ξ) = E (x).

By results from proposition 1 and the equality:

gn
(
ξ, ξ ◦ T, ..., ξ ◦ Tn−1

)
= 1

n

n−1∑
i=0

ξ ◦ T i − E (ξ)

we have that P-almost everywhere the following holds:

lim
n→∞

n−1∑
i=0

ξ ◦ T i = E (ξ).

By using the proposition 2 we can write:

lim
n→∞

n−1∑
i=0

λi ◦ x = E (x).
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