Ergodic theorem on B-structures

Lenka Lašová, Magdaléna Renčová Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica, Slovakia E-mail: lasova@fpv.umb.sk, rencova@fpv.umb.sk

Abstract

In the paper the extended individual ergodic theorem for B-structures with a state is presented. The classical ergodic theorem is formulated for ergodic mapping on Ω , where (Ω, S, P) is a probability space and $\xi : \Omega \to R$ is an integrable random variable. In our case S is replaced by a B-structure B and integrable random variable is replaced by an integrable observable.

Keywords: B-structure, ergodic theorem.

1 Introduction

A B-structures were introduced by B. Riečan and K. Cunderlíková in [1]. By the B-structure we understand some bounded structure, where a partial ordering and a partial binary operation are defined. Many examples of this structure can be found in the fuzzy sets theory and in quantum structures. B-structures can be seen as a generalization of many algebraic structures. The aim of their introduction is a generalization of the probability theory for all these structures.

Definition 1 A B-structure is a system $(B, \hat{\oplus}, \leq, 0_B, 1_B)$ such that

(i) ⊕ is a partial binary operation on B;
(ii) ≤ is a partial ordering on B;
(iii) 0_B is the smallest, 1_B is the largest element in (B,≤).

Definition 2 A state on B is a mapping $m : B \to [0, 1]$ satisfying the following conditions: (I) $m(1_B) = 1, m(0_B) = 0$ (II) if $a = b \oplus c$, then m(a) = m(b) + m(c)(III) if $a_n \nearrow a$, then $m(a_n) \nearrow m(a)$.

We will show some examples of B-structures. We can find some in the theory of fuzzy ssts or there are some quantum structures satisfying all properties for B-structures.

Example 1 The first example is the Lukasiewicz square $M = [0,1]^2$. It is a poset with the ordering $((x_1, y_1) \leq (x_2, y_2)$ iff $x_1 \leq x_2, y_1 \geq y_2)$. The following partially binary operations are used

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 \oplus x_2, y_1 \otimes y_2) (x_1, y_1) \otimes (x_2, y_2) = (x_1 \otimes x_2, y_1 \oplus y_2),$$

where the operations \oplus , \otimes are defined by the following equalities:

$$x_1 \oplus x_2 = (x_1 + x_2) \land 1, \ x_1 \otimes x_2 = (x_1 + x_2 - 1) \lor 0.$$

The smallest element is (0,1) and the largest element is (1,0) here.

Example 2 The one of the most important examples of B-structure is the system $B = (M, +, \le, 0_M, 1_M)$ depends on a pseudo-MV-algebra $M = (M, \oplus, \odot, *, ', 0_M, 1_M)$ by the following way: a partial binary operation + on M is defined by

a + b is defined iff $a \leq b^*$ and then: $a + b := a \oplus b$,

We can say that $B = (M, +, \leq, 0_M, 1_M)$ is a B-structure coinciding with the pseudo-MValgebra M and the states on B are corresponding with the states on pseudo-MV-algebra M defined in [4]. Similarly we can define a B-structure from MV-algebra, which is a commutative case of a pseudo-MV-algebra.

2 Probability on B-structures

Let (Ω, \mathcal{S}, P) be a probability space. The random variable is a mapping from Ω to R such that:

if $A \in \mathcal{B}(R)$ then $\xi^{-1}(A) \in \mathcal{S}$.

We denote a family of all Borrel sets by the $\mathcal{B}(R)$.

If we define the mapping $x : \mathcal{B}(R) \to \mathcal{S}$ by the law: $x : A \to \xi^{-1}(A)$ then x is a σ -homomorphism. This mapping substituting random variable on B-structures will be called an observable.

Definition 3 Let $B = (B, \hat{\oplus}, \leq, 0_B, 1_B)$ be a B-structure. An observable of B is a mapping $x : \mathcal{B}(R) \to B$ satisfying the following conditions:

(i) $x(R) = 1_B, x(\emptyset) = 0_B;$ (ii) if $A, B \in \mathcal{B}(R)$ and $A \cap B = \emptyset$, then $x(A \cup B) = x(A) \oplus x(B);$ (iii) if $A_n \in \mathcal{B}(R), A_n \nearrow A$, then $x(A_n) \nearrow x(A).$

Theorem 1 Let $x : \mathcal{B}(R) \to B$ be an observable and $m : B \to [0,1]$ be a state. Then the transformation $m \circ x = m_x : \mathcal{B}(R) \to [0,1]$ is a probability measure.

Proof: Let $m : B \to [0,1]$ be a state on B and $x : \mathcal{B}(R) \to B$ be an observable. Then we will prove, that the map $m_x = m \circ x$ is probability, so this map is continuous, additive and the boundary conditions are satisfied. So

(i) $m_x(R) = m(x(R)) = m(1_B) = 1, m_x(\emptyset) = m(x(\emptyset)) = m(0_B) = 0$ (ii) let A, B be two arbitrary disjoint sets from $\mathcal{B}(R)$, then $m_x(A \cup B) = m(x(A \cup B)) = m(x(A) \oplus x(B)) = m(x(A)) + m(x(B)) = m_x(A) + m_x(B)$ (iii) let $A_n \in \mathcal{B}, n \in N$ that $A_n \nearrow A$, so $x(A_n) \nearrow x(A)$ and then: $m_x(A_n) = m(x(A_n)) \nearrow m(x(A)) = m_x(A)$ and so m_x is σ -additive.

Definition 4 Let $x : \mathcal{B}(R) \to B$ be an observable on a B-structure B with a state m. The mapping x is integrable if there exists the expected value of the observable defined by the equation:

$$E(x) = \int_{R} t \, dm_x(t);$$

where $m_x : \mathcal{B}(R) \to [0,1]$ is the transformation $m_x = m \circ x$.

3 Ergodic theorem

Let us recall the classical definition of a dynamical system with an ergodic transformation. By the dynamical system we mean a system $(\Omega, \mathcal{S}, P, T)$, where (Ω, \mathcal{S}, P) is a probability space and $T: \Omega \to \Omega$ is a probability preserving mapping.

The mapping $T: \Omega \to \Omega$ is called ergodic, if the following statements are satisfied:

(i) if $A \in \mathcal{S}$, then $T^{-1}(A) \in \mathcal{S}$ and $P(T^{-1}(A)) = P(A)$,

(ii) if $A = T^{-1}(A)$ then P(A) = 0 or P(A) = 1.

The following proposition is very well known.

Proposition 1 Let (Ω, S, P, T) be a dynamical system, $T: \Omega \to \Omega$ be an ergodic mapping and $\xi: \Omega \to R$ be an integrable random variable. Then P-almost everywhere there holds:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \xi \circ T^i = E(\xi).$$

We can define the ergodicity of the mapping on B-structures similarly to the classical case.

Definition 5 Let B be a B-structure with a state m. A mapping $\lambda : B \to B$ is called mpreserving map, if for all elements a from B there holds:

$$m\left(\lambda\left(a\right)\right) = m\left(a\right).$$

Definition 6 A mapping $\lambda : B \to B$ is called ergodic with respect to an observable x, if the following rules are satisfied:

(i) λ is m-preserving map,

(ii) for all $n \in N$ there exists σ -homomorphism $h_n : \mathcal{B}(\mathbb{R}^n) \to B$, such that the equalities holds

$$m(h_n(A_1 \times A_2 \dots \times A_n)) = m(x(A_1) \wedge (\lambda \circ x)(A_2) \wedge \dots \wedge (\lambda^{n-1} \circ x)(A_n)) = m(x(A_1)) \cdot m((\lambda \circ x)(A_2)) \cdot \dots \cdot m((\lambda^{n-1} \circ x)(A_n)).$$

Kolmogorov's construction:

Let x be an observable on a B-structure B with a state m.

Let $\lambda: B \to B$ be an ergodic mapping with respect to the observable x.

Let $C = \{\pi_n^{-1}(B); B \in \mathcal{B}(\mathbb{R}^n), n \in N\}$ be the set of all cylinders, where the function $\pi_n : \mathbb{R}^N \to \mathbb{R}^n$ defined by $\pi_n((u_i)_{n=1}^\infty) = (u_1, u_2, ..., u_n)$ is called the n-th coordinate projection of random vector.

The Kolmogorov's construction **P** of the measures $m \circ h_i$, i = 1, 2, ... on the space $(R^N, \sigma(C))$ is defined by

$$\mathbf{P}\left\{(u_{i})_{1}^{\infty} \in \mathbb{R}^{N}; u_{1} \in A_{1}, ..., u_{n} \in A_{n}\right\} = m\left(h_{n}\left(A_{1} \times A_{2} ... \times A_{n}\right)\right)$$

for each $n \in N$ and every $A_1, ..., A_n \in \mathcal{B}(R)$. It is easy to see that the function $\xi : \mathbb{R}^N \to \mathbb{R}$ given by $\xi((u_i)_1^\infty) = u_1$ is a random variable of $(R^N, \sigma(C), \mathbf{P})$ and $P_{\xi} = m_x$.

In the classical theory with a probability space (Ω, \mathcal{S}, P) , we say that the sequence of random variables ξ_n converges to 0 P-almost everywhere, if

$$P\left(\left\{\omega,\xi_n\left(\omega\right)\to 0\right\}\right)=1.$$

This property can be rewritten by the following form:

$$(\forall \varepsilon < 0) \ (\forall \omega \in D) \ (\exists k \in N) \ (\forall n \ge k) \ (|\xi_n (\omega)| < \varepsilon)$$

If we denote by D the set $\{\xi_n(\omega) \to 0\}$, then the previous equality means:

$$(\forall l \in N) (\exists k \in N) (\forall n \ge k) \left(\xi_n^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) \subset D.$$

Then we can define the analogous type of convergence for the sequence of random variables $(\xi_n)_{n=1}^{\infty}$ by this formula:

$$\lim_{l \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} P\left(\bigcap_{n=k}^{k+i} \xi_n^{-1}\left(-\frac{1}{l}, \frac{1}{l}\right)\right) = 1.$$

Similarly we define the convergence m-almost everywhere for a sequence of observables on **B**-structures.

Definition 7 Let $(y_i)_{i=1}^{\infty}$ be the sequence of the observables on a B-structure B with a state m on B. We say, that the sequence converges m-almost everywhere to 0, if there holds:

$$\lim_{l \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} m\left(\bigwedge_{n=1}^{k+i} y_n\left(-\frac{1}{l}, \frac{1}{l}\right)\right) = 1.$$

Proposition 2 Let x be an observable on a B-structure B with a state m and $\lambda : B \to B$ be an ergodic mapping with respect to the observable x. A mapping $h_n: \mathcal{B}(\mathbb{R}^n) \to B$ is the σ homomorphism from the definition of the ergodic map. Let P be the probability measure generates by the Kolmogorov construction. For all natural numbers $n g_n$ is a Borrel function from \mathbb{R}^n to \mathbb{R} . We define an observable $y_n = g_n(x, \lambda \circ x, ..., \lambda^{n-1} \circ x) : \mathcal{B}(R) \to B$ by the equality $y_n = h_n \circ g_n^{-1}$. If π_n is the projection R^N to R^n given by the equality: $\pi_n((u_i)_{i=1}^{\infty}) = (u_1, u_2, ..., u_n)$, then there holds: $P \circ \pi_n^{-1} \circ g_n^{-1} = m \circ h_n \circ g_n^{-1} = m \circ y_n$. If the sequence $(g_n \circ \pi_n)_{n=1}^{\infty}$ converges P-almost everywhere to 0, then the sequence $(y_i)_{i=1}^{\infty}$ converges m-almost everywhere to 0.

Proof: The equality $P \circ \pi_n^{-1} \circ g_n^{-1} = m \circ h_n \circ g_n^{-1} = m \circ y_n$ follows from the Kolmogorov's construction by the following way:

$$P\left(\pi_n^{-1}\left(A_1 \times A_2 \times \dots \times A_n\right)\right) = P\left(A_1 \times A_2 \times \dots \times A_n \times R \times R\dots\right) =$$
$$= m\left(x\left(A_1\right) \wedge \left(\lambda \circ x\right)\left(A_2\right) \wedge \dots \wedge \left(\lambda^{n-1} \circ x\right)\left(A_n\right)\right) =$$
$$= m\left(h_n\left(A_1 \times A_2 \dots \times A_n\right)\right).$$

It follows $P \circ \pi_n^{-1} = m \circ h_n$, hence also $P \circ \pi_n^{-1} \circ g_n^{-1} = m \circ h_n \circ g_n^{-1} = m \circ y_n$. Next we show the second property. So let the sequence $(g_n \circ \pi_n)_{n=1}^{\infty}$ converges *P*-almost everywhere to 0 that is:

$$\lim_{l \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} P\left(\bigcap_{n=k}^{k+i} (g_n \circ \pi_n)^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) = 1.$$

Then the following holds:

$$P\left(\bigcap_{n=k}^{k+i} (g_{n} \circ \pi_{n})^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) = P\left(\bigcap_{n=k}^{k+i} (\pi_{n}^{-1} \circ g_{n}^{-1}) \left(-\frac{1}{l}, \frac{1}{l}\right)\right) = P\left(\bigcap_{n=k}^{k+i} \pi_{n}^{-1} \left(g_{n}^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right)\right) = P\left(\pi_{k+i}^{-1} \left(\bigcap_{n=k}^{k+i} g_{n}^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right)\right) = \left(P \circ \pi_{k+i}^{-1}\right) \left(\bigcap_{n=k}^{k+i} g_{n}^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) = (m \circ h_{k+i}) \left(\bigcap_{n=k}^{k+i} g_{n}^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) = m\left(h_{k+i} \left(\bigcap_{n=k}^{k+i} g_{n}^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right)\right) \leq m\left(\bigwedge_{n=k}^{k+i} h_{k+i} \circ g_{n}^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) = m\left(\bigwedge_{n=k}^{k+i} y_{n} \left(-\frac{1}{l}, \frac{1}{l}\right)\right).$$

Then it holds:

$$P\left(\bigcap_{n=k}^{k+i} \left(g_n \circ \pi_n\right)^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) \le m\left(\bigwedge_{n=k}^{k+i} y_n\left(-\frac{1}{l}, \frac{1}{l}\right)\right)$$

and since:

$$\lim_{l \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} P\left(\bigcap_{n=k}^{k+i} (g_n \circ \pi_n)^{-1} \left(-\frac{1}{l}, \frac{1}{l}\right)\right) = 1,$$

the following is satisfied:

$$\lim_{l \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} m\left(\bigwedge_{n=k}^{k+i} y_n\left(-\frac{1}{l}, \frac{1}{l}\right)\right) = 1.$$

Now we recall the classical ergodic theorem for ergodic mapping and then can be introduce the ergodic theorem for the ergodic mapping on B-structures.

Let (Ω, \mathcal{S}, P) be a probability space and the mapping $T : \Omega \to \Omega$ be an ergodic transformation. Let $x : \Omega \to R$ be an integrable random variable with the mean value E(x), then

$$\frac{1}{n}\sum_{i=0}^{n-1} x \circ T^{i} \to E(x)$$
 P-almost everywhere.

Theorem 2 (Ergodic theorem) Let B be a B-structure with a state m which satisfies: $\forall a, b \in B : \exists a \land b$. Let x be an integrable observable on B. Let the map $\lambda : B \to B$ be an ergodic mapping according to the observable x for which holds: $\lambda (a \land b) = \lambda (a) \land \lambda (b)$. Then the sequence $(y_n)_{n=1}^{\infty}$ defined by a formula:

$$y_n = \frac{1}{n} \sum_{i=0}^{n-1} \lambda^i \circ x - E(x)$$

converges m-almost everywhere to 0.

Proof: For a proof of this theorem we use the previous propositions. So we have the observable x with an ergodic mapping λ . The sequence y_n is equal to $g_n(x, \lambda \circ x, ..., \lambda^{n-1} \circ x)$, where g_n is the Borel function defined by the following formula $g_n(u_1, u_2, ..., u_n) = \frac{1}{n} \sum_{i=1}^n u_i - E(x)$. Then we have the observable y_n from previous proposition.

Let $h_n: \mathcal{B}(\mathbb{R}^n) \to B$ be the mapping from Definition 6 given by the equality:

$$m\left(h_n\left(A_1 \times A_2 \times \ldots \times A_n\right)\right) = m\left(x\left(A_1\right) \land \left(\lambda \circ x\right)\left(A_2\right) \land \ldots \land \left(\lambda^{n-1} \circ x\right)\left(A_n\right)\right).$$

Let $(R^N, \sigma(C))$ be the probability space, on which we define a mapping $T: R^n \to R^n$ by this way:

$$T((u_i)_{i=1}^{\infty}) = (v_i)_{i=1}^{\infty}, v_i = u_{i+1}.$$

We shall prove that T is an ergodic transformation. At first T is a measure preserving transformation.

$$P\left(T^{-1}\left(\pi_{n}^{-1}\left(A_{1}\times A_{2}\times \ldots \times A_{n}\right)\right)\right) =$$

$$= P\left(T^{-1}\left(A_{1}\times A_{2}\times \ldots \times A_{n}\times R\times R\ldots\right)\right) =$$

$$= P\left(R\times A_{1}\times A_{2}\times \ldots \times A_{n}\times R\times R\ldots\right) =$$

$$= m\left(x\left(R\right)\wedge\left(\lambda\circ x\right)\left(A_{1}\right)\wedge\ldots\wedge\left(\lambda^{n}\circ x\right)\left(A_{n}\right)\right) =$$

$$= m\left(\lambda\left(x\left(A_{1}\right)\wedge\left(\lambda\circ x\right)\left(A_{2}\right)\wedge\ldots\wedge\left(\lambda^{n-1}\circ x\right)\left(A_{n}\right)\right)\right) =$$

$$= m\left(x\left(A_{1}\right)\wedge\left(\lambda\circ x\right)\left(A_{2}\right)\wedge\ldots\wedge\left(\lambda^{n-1}\circ x\right)\left(A_{n}\right)\right) =$$

$$= P\left(\pi_{n}^{-1}\left(A_{1}\times A_{2}\times \ldots \times A_{n}\right)\right).$$

So the equality $P \circ T^{-1} = P$ holds. By the definition of ergodicity we obtain that: $(R^N, \sigma(C), P, T)$ is the Bernoulli scheme, hence T is ergodic transformation. Then we define an integrable random variable: $\xi : R^N \to R, \xi ((u_i)_{i=1}^{\infty}) = u_1$ and it holds $E(\xi) = E(x)$. By results from proposition 1 and the equality:

$$g_n(\xi, \xi \circ T, ..., \xi \circ T^{n-1}) = \frac{1}{n} \sum_{i=0}^{n-1} \xi \circ T^i - E(\xi)$$

we have that P-almost everywhere the following holds:

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \xi \circ T^i = E(\xi).$$

By using the proposition 2 we can write:

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \lambda^i \circ x = E(x)$$

Acknowledgment

The paper was kindly supported by Grants VEGA 1/0539/08 and APVV LPP-0046-06.

References

- K. Čunderlíková-Lendelová and B. Riečan. Probability on B-structures. Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Academic Publishing House EXIT, pp. 33- 60, 2008.
- [2] T. Neubrunn and B. Riečan. Integral, measure and ordering, Dordrecht, Kluwer, 1997.
- B. Riečan. Representation of probabilities on IFS events. Advances in Soft Computing Soft Methodology and Random Information Systems, Springer, Berlin 234-246, 2004.
- [4] A. Dvurečenskij. States on pseudo-MV-algebras. Studia logica, 68, 301–327, 2001.