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Abstract

In the paper the extended individual ergodic theorem for B-structures with a state is
presented. The classical ergodic theorem is formulated for ergodic mapping on €2, where
(Q, S, P) is a probability space and & : Q — R is an integrable random variable. In our case
S is replaced by a B-structure B and integrable random variable is replaced by an integrable
observable.
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1 Introduction

A B-structures were introduced by B. Rie¢an and K. Cunderlikov4 in . By the B-structure we
understand some bounded structure, where a partial ordering and a partial binary operation are
defined. Many examples of this structure can be found in the fuzzy sets theory and in quantum
structures. B-structures can be seen as a generalization of many algebraic structures. The aim
of their introduction is a generalization of the probability theory for all these structures.

Definition 1 A B-structure is a system (B,®,<,0p,1p) such that

(i) & is a partial binary operation on B;
(ii) < is a partial ordering on B;
(iii) Op is the smallest, 1p is the largest element in (B, <).

Definition 2 A state on B is a mapping m : B — [0, 1] satisfying the following conditions:
(I) m(1p) :Al, m(0g) =0
(II) if a = bdc, then m (a) = m (b) +m (c)
(111) if a,, /" a, then m (a,) / m(a).

We will show some examples of B-structures. We can find some in the theory of fuzzy ssts
or there are some quantum structures satisfying all properties for B-structures.
Example 1 The first example is the Lukasiewicz square M = [0, 1]2. It is a poset with the
ordering ((z1,y1) < (x2,y2) iff z1 < x2,41 > y2). The following partially binary operations are
used

(x1,71) @ (z2,¥2) = (21 B 22,71 @ Y2)
(351,?/1) & (:1:27:1/2) - (l‘l & T2,Y1 @ y2);

where the operations ©, R are defined by the following equalities:
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r1 DX = (:U1+.CU2)/\1, r1 QR T2 = (x1—|-332—1)\/0.
The smallest element is (0,1) and the largest element is (1,0) here.

Example 2 The one of the most important ezamples of B-structure is the system B = (M, +, <,0u, 13)
depends on a pseudo-MV-algebra M = (M, ®,®, x,", 051, 151) by the following way:
a partial binary operation + on M is defined by

a+ b is defined iff a < b* and then: a+b:=a®b,

We can say that B = (M,+,<,0u,15) is a B-structure coinciding with the pseudo-MV-
algebra M and the states on B are corresponding with the states on pseudo-MV-algebra M defined
mn . Similarly we can define a B-structure from MV-algebra, which is a commutative case of
a pseudo-MV-algebra.

2 Probability on B-structures

Let (2,8, P) be a probability space. The random variable is a mapping from 2 to R such that:
if A€ B(R) then (71 (A) € S.

We denote a family of all Borrel sets by the B (R).

If we define the mapping = : B(R) — S by the law: z : A — ¢ 1(A) then z is a o-
homomorphism. This mapping substituting random variable on B-structures will be called an
observable.

Definition 3 Let B = (B,@,S,Og,lg) be a B-structure. An observable of B is a mapping
x : B(R) — B satisfying the following conditions:

(i) z(R) =1p, = (0) = 0p; A

(it) if A,B € B(R) and ANB =1, then x (AU B) =z (A) &z (B);

(iii) if A, € B(R), Ap, /A, then x (A,) / x(A).

Theorem 1 Let x : B(R) — B be an observable and m : B — [0,1] be a state. Then the
transformation m o x = mg : B(R) — [0, 1] is a probability measure.

Proof: Let m : B — [0,1] be a state on B and = : B(R) — B be an observable. Then we
will prove, that the map m, = m o x is probability, so this map is continuous, additive and the
boundary conditions are satisfied. So

(i) ma (R) = m(z (R)) = m (1) =1, my (0) = m (z (1)) =

(ii) let A, B be two arbitrary disjoint sets from B (R), the

my (AU B) = m (2 (AU B)) = m (& (A) bz (B)) = m (¢ (A)+m (« (B)) = m, (A)+m, (B)

(iii) let A, € B,n € N that A, / A, so z(Ay) / = (A) and then:

mg (An) = m(z (Ayn)) /" m(z(A)) = mg (A)

and so m, is o-additive.

m(OB) =0

=

Definition 4 Let x : B(R) — B be an observable on a B-structure B with a state m. The
mapping x s integrable if there exists the expected value of the observable defined by the equation:

E (z) :Igtdmz (t);

where my, : B(R) — [0, 1] is the transformation my, = m o x.
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3 Ergodic theorem

Let us recall the classical definition of a dynamical system with an ergodic transformation. By
the dynamical system we mean a system (2, S, P,T), where (2, S, P) is a probability space and
T : Q — Q is a probability preserving mapping.

The mapping T : Q — € is called ergodic, if the following statements are satisfied:

(i) if A€ S, then T-1(A) € S and P (T~1(A)) = P (A),

(i) if A=T"1(A) then P(A)=0o0r P(A) =1

The following proposition is very well known.

Proposition 1 Let (2,5, P,T) be a dynamical system, T : Q@ — Q be an ergodic mapping and
£ :Q — R be an integrable random variable. Then P-almost everywhere there holds:

hm*Zé oT" = E(§).

n—oo
We can define the ergodicity of the mapping on B-structures similarly to the classical case.

Definition 5 Let B be a B-structure with a state m. A mapping A : B — B is called m-
preserving map, if for all elements a from B there holds:

m (X (a)) =m(a).

Definition 6 A mapping A : B — B is called ergodic with respect to an observable x, if the
following rules are satisfied:

(i) X is m-preserving map,

(ii) for all n € N there exists o-homomorphism hy,, : B(R™) — B, such that the equalities
holds

m (hyp (A1 X As... m( A(Aoz)(A2) A ..o A ()x"‘loa:) (An)) —
m(z (Al)) m ((Aox) (A2)) o (AT o) (Ay)).

Kolmogorov’s construction:

Let x be an observable on a B-structure B with a state m.

Let A : B — B be an ergodic mapping with respect to the observable .

Let C = {m, 1 (B); B € B(R"),n € N} be the set of all cylinders, where the function m, :
RN — R™ defined by 7, ((u;)52,) = (u1,u2, ..., uy) is called the n-th coordinate projection of
random vector.

The Kolmogorov’s construction P of the measures moh;, 7 = 1,2, ... on the space (RN, o (C))
is defined by

P {(u)7° € RN;u1 € Ay, ooiup € Ag} = m (h (A1 X Ap... X Ay))

for each n € N and every Ay, ..., A, € B(R).
It is easy to see that the function ¢ : RN — R given by & ((u;){°) = w1 is a random variable

of (RN,O'(C) ,P) and Pz = m,

In the classical theory with a probability space (€2, S, P), we say that the sequence of random
variables &, converges to 0 P-almost everywhere, if
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P ({w,&, (w) — 0}) = 1.
This property can be rewritten by the following form:
(Ve <0) (Vw e D) (Fk € N) (Yn > k) (|&n (w)] <€)

If we denote by D the set {,, (w) — 0}, then the previous equality means:
(¥l € N)(3k € N) (¥n> k) (&1 (-1.1)) € D.

Then we can define the analogous type of convergence for the sequence of random variables
(&n),—, by this formula:

k41 11
lim lim lim P | ) &;! (—7,7) =
l—00 k—00 t—00 n=>k
Similarly we define the convergence m-almost everywhere for a sequence of observables on
B-structures.

Definition 7 Let (y;);2, be the sequence of the observables on a B-structure B with a state m
on B. We say, that the sequence converges m-almost everywhere to 0, if there holds:

k41
lim lim lim m (=1 1)) =1.
J (n/\ly ( ! l)>

l—00 k—o0 i—00

Proposition 2 Let © be an observable on a B-structure B with a state m and A\ : B — B
be an ergodic mapping with respect to the observable x. A mapping h, : B(R") — B s the o-
homomorphism from the definition of the ergodic map. Let P be the probability measure generates
by the Kolmogorov construction. For all natural numbers n g, is a Borrel function from R™ to R.
We define an observable y, = gn, (x, oz, ..., Ao z) : B(R) — B by the equality y, = hpogit.
If m, is the projection RN to R™ given by the equality: m, ((u;)52,) = (uy,u2, ..., uy,), then there
holds: Pom,tog -t =moh,og,! =mouy,. If the sequence (g o Tn)oey converges P-almost
everywhere to 0, then the sequence (y;);—, converges m-almost everywhere to 0.

-1

1 =mohyog,t=mouy, follows from the Kolmogorov’s

Proof: The equality Por, log
construction by the following way:

P(m (A1 x Ag x ... x Ap)) = P(A1 x Ay X .. X Ay x RX R....) =

=m(z (A1) A(Noz)(A) A ... AN\ Lox)(4,)) =
= m(hn (Al X A2 X An))

It follows P o, ! =mo hy, hence also Pom,tog,l =moh,og, ' =moy,.

Next we show the second property. So let the sequence (g o my,),, converges P-almost
everywhere to 0 that is:

k+i
lim lim lim P ( N (gnomn) ™" (_%, })) =1.

l—00 k—o0 i—00 n—=>k

Then the following holds:
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Then it holds:

and since:

k+i
lim lim lim P < N (gnomn) " (7%, })) —1,
k

l—00 k—00 t—00

the following is satisfied:

k+i
lim lim lim m (=1 1)) =1.
J <n/—\ky ( ! Z)>

l—00 k—00 t—00

Now we recall the classical ergodic theorem for ergodic mapping and then can be introduce
the ergodic theorem for the ergodic mapping on B-structures.

Let (€2, S, P) be a probability space and the mapping 7" : 2 — € be an ergodic transforma-
tion. Let x : Q — R be an integrable random variable with the mean value F (z), then

n—1 .
% 'Zo xoT" — F (z) P-almost everywhere.
1=

Theorem 2 (Ergodic theorem) Let B be a B-structure with a state m which satisfies: Ya,b €
B :danb. Let x be an integrable observable on B. Let the map A : B — B be an ergodic mapping
according to the observable x for which holds: X (a Ab) = A (a)AX(b). Then the sequence (ypn),- 4
defined by a formula:

n—1
yn:%Z:O)\ZO-x_E(w)
1=

converges m-almost everywhere to 0.

Proof: For a proof of this theorem we use the previous propositions. So we have the
observable x with an ergodic mapping A. The sequence ¥, is equal to g, (z, Ao z,..., A"t ox),

n
where g, is the Borel function defined by the following formula g, (u1,ug, ..., u,) = % S u; —
i=1

E (x). Then we have the observable y,, from previous proposition.
Let hy, : B(R"™) — B be the mapping from Definition 6 given by the equality:

m (hy (A1 X Ag X .. X Ap)) =m (z (A1) A (N ox) (A2) Ao A (A Loz) (Ay)).
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Let (RN , O (C’)) be the probability space, on which we define a mapping T : R — R™ by
this way:

T((Ui)ioiﬁ = (Uz')?; , Vi = Ujy1.

We shall prove that T is an ergodic transformation.
At first T is a measure preserving transformation.

P (T (1 (A1 x Ay x .. x A4y))) =
=P (T 1 (A1 x Ay x .. ><A x Rx R..)) =
=P(Rx A1 x Ay x ... x A, X RX R...)

=m(x(R)ANAoz) (A1) AN... AN ox)(4y)) =
=m(A(z (A1) ANox)(A2) A A(NToz) (4))) =
=m (z (A1) A ()\ox)(Ag)/\ /\()\" 1oac) (Ay)) =
_P( (A1><A2>< )

So the equality P o T~! = P holds.
By the definition of ergodicity we obtain that:
(RN ,o(C), P, T) is the Bernoulli scheme, hence T is ergodic transformation.

Then we define an integrable random variable:
¢€:RY — R ¢((u;)2,) = up and it holds E (§) = E (z).
By results from proposition [I| and the equality:

n—1 .
gn (6,60 T, s EoTH 1) =& ;}EoT% - E(¢)

we have that P-almost everywhere the following holds:

lim z EoTi=E ().

n—>oo

By using the proposition 2| we can write:

nhn;oz Nox=FE(z).
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