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1 Introduction

Recently, the theory of fuzzy fractional differential equations was proposed to handle uncertainty
due to incomplete information that appears in many mathematical or computer models of some
deterministic real-world phenomena. This theory was initiated by Agarwal [1] who proposed the
concept of solutions for fractional differential equations with uncertainty. Arshad and Lupulescu
in [5] proved some results on the existence and uniqueness of solution for the fuzzy fractional
differential equations. Later, Alikhani in [3] has proved the existence and uniqueness results for
nonlinear fuzzy fractional integral and integrodifferential equations by using the method of upper
and lower solutions.

The authors in [4,21] discussed the concepts about generalized Hukuhara fractional Riemann–
Liouville and Caputo differentiability of fuzzy-valued functions and the equivalence between
fuzzy fractional differential equation and fuzzy fractional integral equation is discussed in [11].
In this note and by using the work of Diethelm [9], we study the existence and uniqueness results
for the intuitionistic fuzzy nonlinear fractional differential equation.

Stability analysis is also one of the most important issues for differential equations, although
this problem has been investigated over many years. Recently, stability of fractional differential
systems has attracted increasing interest. The earliest study on stability of fractional differential
equations started in [17]. For more details about the stability results and the methods available
to analyze the stability of fractional differential equations, the reader may refer to the recent
papers [2, 8, 20] and the references therein.

For the nonlinear fractional differential systems in the classical case, stability analysis is much
more difficult than Lyapunov stability [9, 15]. Applying Lyapunov’s direct method for a given
nonlinear system means to search for an appropriate Lyapunov function to conclude the stability
for this system. A few results are available in [13, 14, 16]. Motivated by Li in [16], in this paper,
we present the stability of solution for the intuitionistic fuzzy nonlinear fractional differential
equations with the Caputo derivative by using notions of Mittag-Leffler stability.

Our paper is organized as follows: Section 2 gives some basic definitions, lemmas and theo-
rems as preliminaries of intuitionistic fuzzy sets theory. The existence and uniqueness results are
given in Section 3, and finally in Section 4 we introduce the concept of Mittag-Leffler stability of
the trivial solution of our nonlinear intuitionistic fuzzy system.

2 Preliminaries

The concept of fuzzy sets was introduced by Zadeh [26]. Atanassov generalized this idea to
intuitionistic fuzzy sets (IFSs) [6], and later there has been much progress in the study of IFSs. As
a special case of intuitionistic fuzzy sets, intuitionistic fuzzy number was introduced by Xu [25].

We denote by

IF(R) = {〈u, v〉 : R −→ [0, 1]2, 0 ≤ u(x) + v(x) ≤ 1} .

Definition 2.1. [19] An element 〈u, v〉 ∈ IF(R) is called an intuitionistic fuzzy nomber if it
satisfies the following conditions:
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1. 〈u, v〉 is normal, i.e., there exist x0, x1 ∈ R such that u(x0) = 1 and u(x1) = 1.

2. u is fuzzy convex and v is fuzzy concave.

3. u is upper semi-continuous and v is lower semi-continuous.

4. sup〈u, v〉 = {x ∈ R : v(x) < 1} is bounded.

We denote by IF1 the collection of all intuitionistic fuzzy numbers.
Let α ∈ [0, 1] and 〈u, v〉 ∈ IF1, we define the upper and lower α-cuts of 〈u, v〉, respectively, by

[〈u, v〉]α = {x ∈ R : v(x) ≤ 1− α}

and
[〈u, v〉]α = {x ∈ R : u(x) ≥ α} .

We define also the intuitionistic fuzzy zero, denoted by 0IF ∈ IF1, as follows:

0IF(t) =

{
(1, 0), if t = 0

(0, 1), if t 6= 0

Definition 2.2. [19] Let 〈u1, v1〉, 〈u2, v2〉 ∈ IF1, λ ∈ R and α ∈ [0, 1], then:

1. (〈u1, v1〉 ⊕ 〈u2, v2〉)(z) = ( sup
z=x+y

min(u1(x), u2(y)), inf
z=x+y

max(u1(x), u2(y)));

2. λ〈u1, v1〉 = 〈λu1, λv1〉 if λ 6= 0;

3. λ〈u1, v1〉 = 0IF if λ = 0;

4. [〈u1, v1〉 ⊕ 〈u2, v2〉]α = [〈u1, v1〉]α + [〈u2, v2〉]α;

5. [〈u1, v1〉 ⊕ 〈u2, v2〉]α = [〈u1, v1〉]α + [〈u2, v2〉]α;

6. [λ〈u1, v1〉]α = λ[〈u1, v1〉]α;

7. [λ〈u1, v1〉]α = λ[〈u1, v1〉]α.

Let 〈u, v〉 ∈ IF1 and α ∈ [0, 1], then we define the following sets:

[〈u, v〉]+l (α) = inf{x ∈ R : u(x) ≥ α},
[〈u, v〉]+r (α) = sup{x ∈ R : u(x) ≥ α},
[〈u, v〉]−l (α) = inf{x ∈ R : v(x) ≤ 1− α},
[〈u, v〉]−r (α) = sup{x ∈ R : v(x) ≤ 1− α}.

Remark 2.3. Let 〈u, v〉 ∈ IF1 and α ∈ [0, 1], then we have:

[〈u, v〉]α = [[〈u, v〉]−l (α), [〈u, v〉]−r (α)],

[〈u, v〉]α = [[〈u, v〉]+l (α), [〈u, v〉]+r (α)].

Definition 2.4. [19] Let 〈u, v〉 ∈ IF1 and α ∈ [0, 1], we define the diameter of upper and lower
α-cuts of 〈u, v〉, respectively, as follows:

d([〈u, v〉]α) = [〈u, v〉]−r (α)− [〈u, v〉]−l (α),

d([〈u, v〉]α) = [〈u, v〉]+r (α)− [〈u, v〉]+l (α).
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Proposition 2.5. Let α, β ∈ [0, 1] and 〈u, v〉 ∈ IF1, then:

1. [〈u, v〉]α ⊂ [〈u, v〉]α;

2. [〈u, v〉]αet[〈u, v〉]α are nonempty compact convex sets;

3. if α ≤ β, then [〈u, v〉]β ⊂ [〈u, v〉]α and [〈u, v〉]β ⊂ [〈u, v〉]α;

4. if αn ↗ α, then [〈u, v〉]α = ∩n[〈u, v〉]αn and [〈u, v〉]α = ∩n[〈u, v〉]αn .

Conversely, let α ∈ [0, 1], we put

Mα = {x ∈ R : u(x) ≥ α}

and
Mα = {x ∈ R : v(x) ≤ 1− α}.

Lemma 2.6. [19] Let {Mα : α ∈ [0, 1]} and {Mα : α ∈ [0, 1]} be two subsets of R verify (1)–(4)

of Proposition 1, if u and v are defined by

u(x) =

{
0, if x 6∈M0

sup{α ∈ [0, 1] : x ∈Mα}, if x ∈M0

,

v(x) =

{
1, if x 6∈M0

1− sup{α ∈ [0, 1] : x ∈Mα}, if x ∈M0
,

then 〈u, v〉 ∈ IF1.

Lemma 2.7. [3] Let I be a dense subset in [0, 1]. If [〈u, v〉]α = [〈w, z〉]α and [〈u, v〉]α = [〈w, z〉]α,
∀α ∈ I, then 〈u, v〉 = 〈w, z〉.

Definition 2.8. [7] Let 〈u1, v1〉, 〈u2, v2〉 ∈ IF1. If there exists 〈w, z〉 ∈ IF1 such that 〈u1, v1〉 =

〈u2, v2〉 + 〈w, z〉, then 〈w, z〉 is called Hukuhara difference of 〈u1, v1〉 and 〈u2, v2〉 denoted by
〈u1, v1〉 	 〈u2, v2〉.

The concept of intuitionistic fuzzy Hukuhra difference is introduced by the autors in [3].

Definition 2.9. [7, 18] The generalized Hukuhara difference of two intuitionistic fuzzy numbers
〈u1, v1〉, 〈u2, v2〉 ∈ IF1 is as follows:

〈u2, v2〉 	gH 〈u1, v1〉 = 〈u3, v3〉

{
i) 〈u2, v2〉 = 〈u1, v1〉+ 〈u3, v3〉, or

ii) 〈u1, v1〉 = 〈u2, v2〉+ (−1)〈u3, v3〉

Definition 2.10. [2] Let f : [a, b] → IF1 and t0 ∈ [a, b]. We say that f is generalized Hukuhara
differentiable at t0 if there exists f ′(t0) ∈ IF1 such that:

f ′(t0) = lim
h→0+

f(t0 + h)	gH f(t0)

h
= lim

h→0−

f(t0)	gH f(t0 − h)

h
.
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Definition 2.11. [19] F : [a, b] −→ IF1 is strongly measurable if ∀α ∈ [0, 1], the set-valued
mappings Fα : [a, b] −→ PK(R) defined by Fα(t) = [F (t)]α and Fα : [a, b] −→ PK(R) defined
by Fα(t) = [F (t)]α are Lebesgue measurable.

Definition 2.12. [18, 19] Let F : [a, b] −→ IF1. We say that F is integrable on [a, b] if there
exists 〈u, v〉 ∈ IF1 such that for each α ∈ [0, 1] :[∫ b

a

F (t)dt

]α
=

{∫ b

a

f(t)dt | f : [a, b] −→ R is a measurable selection for Fα

}
,[∫ b

a

F (t)dt

]
α

=

{∫ b

a

f(t)dt | f : [a, b] −→ R is a measurable selection for Fα

}
,

[〈u, v〉]α =

[∫ b

a

F (t)dt

]α
,

[〈u, v〉]α =

[∫ b

a

F (t)dt

]
α

,

and we write
∫ b

a

F (t)dt = 〈u, v〉.

Let d∞ : IF1 × IF1 −→ [0,+∞[ be a mapping defined by:

d∞(〈u, v〉, 〈w, z〉) =
1

4
sup

0≤α≤1
|[〈u, v〉]+r (α)− [〈w, z〉]+r (α)|

+
1

4
sup

0≤α≤1
|[〈u, v〉]+l (α)− [〈w, z〉]+l (α)|

+
1

4
sup

0≤α≤1
|[〈u, v〉]−r (α)− [〈w, z〉]−r (α)|

+
1

4
sup

0≤α≤1
|[〈u, v〉]−l (α)− [〈w, z〉]−l (α)|.

Then we have the following result.

Proposition 2.13. [3] (IF1, d∞) is a complet metric space.

2.1 Fractional integral and fractional derivatives
of an intuitionistic fuzzy function

Definition 2.14. [10] Let F (t) ∈ L
(
[0, T ], IF1

)
. The intuitionistic fuzzy fractional integral of

order q ∈ [0, 1] of F denoted by

IqF (t) :=
1

Γ(q)

∫ t

0

(t− s)q−1F (s)ds

is defined by
[IqF (t)]α =

[
IαF−l (t;α), IqF−r (t;α)

]
,

[IqF (t)]α =
[
IαF+

l (t;α), IqF+
r (t;α)

]
,

where Γ(.) is the Euler gamma function.
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Proposition 2.15. [10] Let F,G ∈ L([0, T ], IF1) and a ∈ IF1, then we have

1. Iq(aF )(t) = aIqF (t).

2. Iq(F +G)(t) = IqF (t) + IqG(t).

3. Iq1Iq2F (t) = Iq1+q2F (t),where (q1, q2) ∈ [0, 1]2.

Definition 2.16. [10] Let F ∈ C([0, T ], IF1) ∩ L([0, T ], IF1). The function F is called
intuitionistic fuzzy Caputo fractional differentiable of order 0 < q < 1 at x if there exists an
element cDqF (x) ∈ IF1 such that

cDqF (t) =
1

Γ(q)

∫ t

0

(t− s)q−1F ′(s)ds.

Example 2.17. Consider the intuitionistic fuzzy function 〈u, v〉(t) = tC, where
C = (a1; a2; a3; a4; a

′
1; a2; a3; a

′
4) is a trapezoidal intuitionistic fuzzy number. In this example

we calculate the intuitionistic fuzzy Caputo fractional derivative of the function 〈u, v〉(t). For this
purpose, we start by giving the gH-derivative of 〈u, v〉(t) as follows:

〈u, v〉′(t) = lim
h→0

〈u, v〉(t+ h)	gH 〈u, v〉(t)
h

= lim
h→0

(t+ h)C 	gH tC
h

= C.

This implies that
〈u, v〉′(t) = C.

Since [C]α = [a2 − α(a2 − a′1), a3 + α(a4 − a3)] and [C]α = [a1 + α(a2 − a1), a4 − α(a′4 − a3)]
we have

[cDq〈u, v〉(x)]α =
[
I1−q (〈u, v〉′(t))

]α
=
[
I1−qC

]α
[cDq〈u, v〉(x)]α =

[
I1−q (〈u, v〉′(t))

]α
=
[
I1−qC

]
α[

I1−qC
]α

=
1

Γ(q)

∫ t

0

(t− s)q−1 [a2 − α(a2 − a′1), a3 + α(a4 − a3)] ds[
I1−qC

]
α

=
1

Γ(q)

∫ t

0

(t− s)q−1 [a1 + α(a2 − a1), a4 − α(a′4 − a3)] ds

[
I1−qC

]α
=

tq

Γ(q)× q
[a2 − α(a2 − a′1), a3 + α(a4 − a3)][

I1−qC
]
α

=
tq

Γ(q)× q
[a1 + α(a2 − a1), a4 − α(a′4 − a3)]

[
I1−qC

]α
=

tq

Γ(q + 1)
[C]α[

I1−qC
]
α

=
tq

Γ(q + 1)
[C]α.

Thus
cDq〈u, v〉(t) =

tq

Γ(q + 1)
C

cDq〈u, v〉(t) =
tq−1

Γ(q + 1)
〈u, v〉(t).
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2.2 Laplace transform of Caputo fractional derivative

In order to establish the Laplace transform of Caputo fractional derivative [12], we write the
Caputo derivative under the form

cDαf(t) := In−αf (n)(t).

By using the formula of Laplace transform of Riemann–Liouville fractional integral, we have [1]

L{cDαf(t), s} := L{In−αf (n)(t), s} = sα−nG(s) .

Were G(s) is given by

G(s) = snF (s)−
n−1∑
k=0

sn−k−1f (k)(0) = snF (s)−
n−1∑
k=0

skf (n−k−1)(0) .

Finaly, the Laplace transform of Caputo fractional derivative is,

L{cDαf(t), s} = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0) .

Remark 2.18. [12] For 0 < α < 1 we have

L{cDαf(t), s} = sαF (s)− f(0) . (1)

2.3 Laplace transform of Mittag-Leffler function

The Mittag-Leffler function is an important function that finds widespread use in the world of
fractional calculus. Just as the exponential naturally arises out of the solution to integer order
differential equations, the Mittag-Leffler function plays an analogous role in the solution of non-
integer order differential equations. In fact, the exponential function itself is a very special form,
one of an infinite set of the seemingly ubiquitous functions.

Definition 2.19. [1] We recall that the Mittag-Leffler function is given by

Eα(z) :=
+∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, R(α) > 0, z ∈ C.

The general form is given by

Eα,β(z) :=
+∞∑
k=0

zk

Γ(αk + β)
, β, α ∈ C, R(β) > 0, R(α) > 0, z ∈ C.

Then we have

L{Eα(λtα); s} =
sα−1

sα − λ
, s > λ

1
α .
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Indeed, for s > λ, using the series expansion of the exponential function we have

1

s− λ
=

∫ +∞

0

e−steλtdt

=
∞∑
k=0

λk

k!

∫ +∞

0

e−sttkdt

=
∞∑
k=0

λk

k!

k!

sk+1

=
∞∑
k=0

λk

sk+1
.

Then similarly for the Mittag-Leffler function we obtain

L{Eα(λtα); s} =
∞∑
k=0

λk

Γ(αk + 1)

∫ +∞

0

e−sttαkdt

L{Eα(λtα); s} =
∞∑
k=0

λk

Γ(αk + 1)

Γ(αk + 1)

sαk+1

L{Eα(λtα); s} =
∞∑
k=0

λk

sαk+1
= sα−1

∞∑
k=0

λk

(sα)k+1

L{Eα(λtα); s} ==
sα−1

sα − λ
, s > λ

1
α .

The Laplace transform of Mittag-Leffler function in two parameters is given by

L{tβ−1Eα,β(−λtα); s} =
sα − β
sα + λ

,R(s) > |λ|
1
α . (2)

3 Existence and uniqueness resuts

In this section we study the existence and uniqueness of the solution for the following initial value
problem. {

cDαx(t) = f(t, x(t)); t ∈ [t0, T ]

x(t0) = x0 ∈ IF
, (3)

where cDq is the Caputo derivative of x(t) at order α ∈]0, 1[.
For this purpose, we need some notations and definitions:

• C([t0, T ], IF1) denotes the space of all continuous functions from [t0, T ] to IF1.

• Br(x0, r) = {y ∈ IF1, d∞(x0, y) ≤ r} denotes the closed ball of IF1.

Definition 3.1. A function x : [t0, T ]→ IF1 is said to be a solution of (3) if x is continuous such
that x(t0) = x0 and cDαx(t) = f(t, x(t)), t ∈ [t0, T ].
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Definition 3.2. [11] An intuitionistic fuzzy function x : [t0, T ] → IF1 is called d-increasing
(d-decreasing) on [t0, T ] if for every r ∈ [t0, T ] the real function t → d([x(t)]r ∪ [x(t)]r) is
non-decreasing (non-increasing), respectively.

Remark 3.3. If x : [t0, T ]→ IF1 is d-increasing or d-decreasing on [t0, T ], then we say that x(t)

is d-monotone on [t0, T ].

Lemma 3.4. [11] Let f : [t0, T ] × IF1 → IF1 such that f is continuous with respect to the
first variable t on [t0, T ]. A d-monotone intuitionistic fuzzy function x(t) ∈ C([t0, T ], IF1) is a
solution of initial value problem (3) if and only if

1) x satisfies the integral equation x(t)	gH x0 =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, x(s))ds.

2) The function t→ Iqf(t, x(t))is d-increasing on [t0, T ].

Proof. [11] The proof of this lemma is similar to the proof of Theorem 3 in [11].

Theorem 3.5. [9, 24] Let C be a non-empty closed subset of a Banach space X and let (kn)n≥0

be a sequence such that
∞∑
n>0

kn converges. Moreover, let the operator T : C → C satisfy the

following inequality

‖ T nx− T ny ‖≤ kn ‖ x− y ‖ ∀n ∈ N and ∀x, y ∈ C.

Then the operator T has a uniquely defined fixed point x∗. In addition, the sequence {T nx0}n≥0
converges to x∗ for every x0 ∈ C.

3.1 Fundamental theorem

Theorem 3.6. Let f : [t0, T ]× IF1 → IF1 be a bounded and continuous function on [t0, T ] such
that:

H1) There exists a positive constant M such that

d∞(f(t, x), 0IF1) < M ∀(t, x) ∈ [t0, T ]× C([t0, T ], IF1).

H2) There exists a continuous function k : [t0, T ]→ R+ such that,

d∞(f(t, x), f(t, y) < k(t)d∞(x, y) (x, y) ∈ C([t0, T ], IF1)×C([t0, T ], IF1) and t ∈ [t0, T ].

Then the problem (3) has a unique solution.

Proof. The proof of this theorem will be given in two steps.

Step 1. (Existence of a solution of the problem (3). To show that the problem (3) has at
least one solution defined on [t0, T ] we use the Schauder fixed point theorem, [22].
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Let T : C([t0, T ], IF1)→ C([t0, T ], IF1 be the operator defined as follows:

Tx(t)	gH x0 =
1

Γ(α)

∫ t

t0

(t− s)α−1f(t, x(t))ds .

Let x ∈ C([t0, T ], IF1) then Tx is continuous and one has

d∞(Tx(t), 0IF1) ≤ d∞(x0, 0IF1) +
1

Γ(α)

∫ t

t0

(t− s)α−1d∞(f(t, x(t)), 0IF1)ds,

d∞(Tx(t), 0IF1) ≤ d∞(x0, 0IF1) +
M(T − t0)α

Γ(α + 1)
:= ρ.

Hence, Tx ∈ C([t0, T ], IF1), it follows that T transforms the ball

Bρ(0IF, ρ) = {y ∈ C([t0, T ], IF1) d∞(0IF, y) ≤ ρ} .

into itself.
Let us show that T is continuous.
Let (xn)n ⊂ Bρ such that xn converges to x in Bρ, and t ∈ [t0, T ] we have

d∞(Txn(t),Tx(t)) = d∞(Txn(t)	gH x0,Tx)(t)	gH x0)

≤ 1

Γ(α + 1)

∫ t

t0

(t− s)α−1d∞(f(t, xn(t)), f(t, x(t)))ds.

Since f is continuous and satisfies H2, then we have

d∞(Txn(t),Tx(t)) ≤ 1

Γ(α + 1)

∫ t

t0

(t− s)α−1k(s)d∞(xn(s), x(s))ds .

By going to the limit and using Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

d∞(Txn(t),Tx(t)) = 0.

Let us also show that TBρ is bounded and equicontinuous on [t0, T ].

We have TBρ ⊂ Bρ, then TBρ is bounded.

Let x ∈ Bρ and t1, t2 ∈ [t0, T ] such that t1 < t2, then we have

d∞(Tx(t1),Tx(t2)) ≤
1

Γ(α)
d∞(

∫ t1

t0

(t1 − s)α−1f(s, x(s))ds,

∫ t2

t0

(t2 − s)α−1f(s, x(s))ds).

Since∫ t2

t0

(t2− s)α−1f(s, x(s))ds =

∫ t1

t0

(t2− s)α−1f(s, x(s))ds+

∫ t2

t1

(t2− s)α−1f(s, x(s))ds,

then

d∞((Tx(t1),Tx(t2)) ≤
1

Γ(α)

∫ t1

t0

| (t1 − s)α−1 − (t1 − s)α−1 | d∞(f(s, x(s))ds, 0IF1)

+

∫ t2

t1

(t2 − s)α−1d∞(f(s, x(s))ds, 0IF1)ds.
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It follows that

d∞(Tx(t1),Tx(t2)) ≤
M

Γ(α + 1)
((t2 − t1)α + (tα2 − tα1 )).

Hence,
lim
t1→t2

d∞(Tx(t1),Tx(t2)) = 0,

which shows that TBρ is equicontinuous, by using Arzelà–Ascoli theorem [23] we deduce
that TBρ is relatively compact.

Finally, by using the Schauder fixed point theorem, we can conclude that the operator T
has a fixed point x(t), which is a solution of the problem (3).

Step 2. (Uniqueness of the solution) To show the uniqueness of the solution, we suppose
that there exists another solution y(t) : [t0, T ]→ C([t0, T ], IF1) for the system (3), then we
have

d∞(Tx(t),Ty(t)) = d∞(Tx(t)	gH x0,Ty(t)	gH x0)

≤ 1

Γ(α)

∫ t

t0

(t− s)α−1d∞(f(t, x(t)), f(t, y(t)))ds

≤ 1

Γ(α)

∫ t

t0

(t− s)α−1k(t)d∞(x, y)ds.

Taking K = supt∈[t0,T ] k(t), we obtain

d∞(Tx(t),Ty(t)) ≤ K

Γ(α)

∫ t

t0

(t− s)α−1d∞(x(s), y(s))ds .

We take the sup on both sides of the previous inequality we will have,

sup
t∈[t0,T ]

d∞(Tx(t), (Ty)(t)) ≤ K(t− t0)α

Γ(α + 1)
sup

t∈[t0,T ]
d∞(x(t), y(t)) .

By the induction method one can conclude that for every n ∈ N∗ and for every
x, y ∈ C([t0, T ], IF1):

sup
t∈[t0,T ]

d∞(Tnx(t),Tny(t)) ≤ Kn(t− t0)nα

Γ(nα + 1)
sup

t∈[t0,T ]
d∞(x(t), y(t)),

where Tn : C([t0, T ], IF1)→ C([t0, T ], IF1) is defined by

Tnx(t)	gH x0 =
1

Γ(α)

∫ t

t0

(t− s)α−1f(t, (Tn−1x)x(t))ds.

Now we shall prove that for every n ∈ N∗ we have

sup
t∈[t0,T ]

d∞(Tnx(t),Tny(t)) ≤ Kn(t− t0)nα

Γ(nα + 1)
sup

t∈[t0,T ]
d∞(x(t), y(t)). (4)

• For n = 1 the statement (4) is trivially true.
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•We suppose that

sup
t∈[t0,T ]

d∞(Tnx(t),Tny(t)) ≤ Kn(t− t0)nα

Γ(nα + 1)
sup

t∈[t0,T ]
d∞(x(t), y(t))

and let us show that

sup
t∈[t0,T ]

d∞((Tn+1x)(t), (Tn+1y)(t)) ≤ Kn+1(t− t0)(n+1)α

Γ((n+ 1)α + 1)
sup

t∈[t0,T ]
d∞(x(t), y(t)) .

We have

d∞(Tn+1x(t),Tn+1y(t)) = d∞(Tn+1x(t)	gH x0,Tn+1y(t)	gH x0)

d∞(Tn+1x(t),Tn+1y(t)) = d∞(TTnx(t)	gH x0,TTny(t)	gH x0)

≤ K

Γ(α)

∫ t

t0

(t− s)α−1d∞(Tnx(s),Tny(s))ds.

Taking the sup on t and s, we obtain

sup
t∈[t0,T ]

d∞(Tn+1x(t),Tn+1y(t)) ≤ K

Γ(α)

∫ t

t0

(t− s)α−1 sup
s∈[t0,T ]

d∞(Tnx(s),Tny(s))ds

sup
t∈[t0,T ]

d∞(Tn+1x(t),Tn+1y(t)) ≤ K

Γ(α)

∫ t

t0

(t− s)α−1× K
n(s− t0)nα

Γ(nα+ 1)
sup

s∈[t0,T ]
d∞(x(s), y(s))ds

sup
t∈[t0,T ]

d∞(Tn+1x(t),Tn+1y(t)) ≤ Kn+1

Γ(α)Γ(nα+ 1)

∫ t

t0

(t− s)α−1 × (s− t0)nα sup
s∈[t0,T ]

d∞(x(s), y(s))ds.

Since the Beta function [12] is defined by

B(p, q) =

∫ 1

0

sp−1 × (1− s)q−1 =
Γ(p)Γ(q)

Γ(p+ q)
, p, q > 0 .

It follows that

sup
t∈[t0,T ]

d∞(Tn+1x(t),Tn+1y(t)) ≤ Kn+1

Γ(α)Γ(nα+ 1)
×(t−t0)(n+1)αΓ(α)Γ(nα+ 1)

Γ(α+ nα+ 1)
sup

t∈[t0,T ]

d∞(x(t), y(t))

sup
t∈[t0,T ]

d∞(Tn+1x(t),Tn+1y(t)) ≤ Kn+1(t− a)(n+1)

Γ((1 + n)α + 1)
sup

t∈[t0,T ]
d∞(x(t), y(t)) .

Therefore, the statement (4) is true for all n ∈ N∗.

We observe (see [12]) that the series
∞∑
n>0

(K(t− t0))n

Γ(nα+ 1)
converges to the Mittag-Leffler

function Eα,1(K(t − t0)), then by the Theorem 3.5 we can deduce that the operator T
has a unique fixed point x, which is the solution of our problem (3).
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4 Stability of the solution

Our aim in this section is to study the stability of the solution for the following nonlinear fractional
differential equation. For this purpose, we extend the Lyapunov direct method to introduce the
stability in the Mittag-Leffler sense of the trivial solution (x = 0IF) for the following nonlinear
system: {

cDαx(t) = f(t, x(t)) ; t ∈ [0,+∞[

x(0) = x0
, (5)

where f : [0,+∞[×IF1 → IF1 is an intuitionistic fuzzy continuous function in t locally
Lipschitz in x such that f(t, 0IF) = 0IF.

The existence and uniqueness results are discussed in Section 3 for the case t ∈ [t0, T ]. Since
the fact f(t, 0IF) = 0IF means that the intuitionistic fuzzy zero function is a solution of initial
value problem (5), then our purpose in this work is to study the stability of the trivial solution of
the problem (5).

Definition 4.1. [15] The intuitionistic fuzzy number xe is an equilibrium point of the system (5)
if and only if f(t, xe) = 0IF.

Remark 4.2. For convenience, we state all definitions and theorems for the case when the
equilibrium point is the origin xe = 0IF.

There is no loss of generality in doing so because any equilibrium point can be shifted to
the origin via a change of variables. Suppose the intuitionistic fuzzy equilibrium point for (5) is
xe 6= 0IF and consider the change of variable X = x	gH xe. The fractional derivative of X(t) is
given by

cDαX(t) = cDα(x(t)	gH xe) = f(t,X(t) + xe) = F (t,X(t)),

where F (t, 0IF) = 0IF and the system has equilibrium at the origin.

Definition 4.3. The trivial solution of (5) is said to be:

(1) stable, iff for any ε > 0, there exists δ > 0, such that

d∞(x0, 0IF) < δ ⇒ d∞(x(t), 0IF) < ε ∀t ≥ 0.

(2) asymptotically stable, iff lim
t→+∞

d∞(x(t), 0IF) = 0.

Definition 4.4. [15] The solution of (5) is said to be Mittag-Leffler stable if

d∞(x(t), 0IF) ≤ {m(x0)Eα(−λtα)}b,

where α ∈ [0, 1], λ ≥ 0, b > 0,m(0) = 0,m(x) ≥ 0 and m(x) is locally Lipschitz on x with
Lipschitz constant m0.

Remark 4.5. The Mittag-Leffler stability implies the stability of Lyapounov.
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4.1 Main result

Theorem 4.6. Let V (t, x(t)) : [0,+∞[×IF1 → R be a continuously differentiable function and
locally Lipschitz with respect to x such that

c1d
a
∞(x(t), 0IF) ≤ V (t, x(t)) ≤ c2d

ab
∞(x(t), 0IF) (6)

cDβ(V (t, x(t)) ≤ −c3dab∞(x(t), 0IF), (7)

where t ≥ 0, β ∈ [0, 1], c1, c2, c3, a and b are positive constants. Then the trivial solution of (5) is
Mittag-Leffler stable.

Proof. From equations (6) and (7) we get

cDβ(V (t, x(t)) ≤ −c3
c2

V (t, x(t)).

There exists a positive function k(t) satisfying

cDβ(V (t, x(t)) + k(t) =
−c3
c2

V (t, x(t)).

By using the Laplace transform (1) and (2), we obtain

SβL{V (t, x(t)); s} − Sβ−1V (0, x(0)) + L{k(t); s} =
−c3
c2

L{V (t, x(t)); s}.

It follows that

L{V (t, x(t)); s} =
Sβ−1V (0, x(0))− L{k(t); s}

Sβ + c3
c2

.

By using the inverse of Laplace transform we obtain

V (t, x(t)) = Eβ(
−c3
c2

tβ)V (0, x(0))− k(t) ∗ (t1−βEβ,β(
−c3
c2

tβ).

Since Eβ,β(−c3
c2
tβ) is a nonnegative function [12], it follows that

V (t, x(t)) ≤ Eβ(
−c3
c2

tβ)V (0, x(0))

d∞(x(t), 0IF) ≤
[
V (0)

c1
Eβ(
−c3
c2

tβ)

] 1
a

,

where V (0) = V (0, x(0)).

Let m =
V (0)

c1
, then we have

d∞(x(t), 0IF) ≤
[
mEβ(

−c3
c2

tβ)

] 1
a

,

where m = 0 if and only if x(0) = 0IF.

Since V (t, x) is locally Lipschitz with respect to x, it follows that m =
V (0, x(0))

c1
is Lipschitz

with respect to x(0) and m(0) = 0, wich implies the Mittag-Leffler stability of the problem
(5).
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4.2 Examples

The following examples are used to prove the stability result.

Example 4.7. Consider the following intuitionistic fuzzy fractional problem:{
cDβx(t) + x(t) = 0IF

x(0) = x0 ∈ IF1 , (8)

where 0 < β < 1. We consider the candidate Lipschitz function V : [0,+∞[×IF1 → R such
that V (t, x(t)) = d∞(x(t), 0IF). We can write that

d∞(x(t), 0IF) ≤ V (t, x(t)) ≤ d∞(x(t), 0IF).

It follows that c1 = c2 = 1.
On the other hand, we have

cDβ(V (t, x(t)) =c Dβd∞(x(t), 0IF) = Iβ
d

dt
d∞(x(t), 0IF)

cDβ(V (t, x(t)) ≤ Iβd∞(x′(t), 0IF)

cDβ(V (t, x(t)) ≤ d∞(Iβx′(t), 0IF)

cDβ(V (t, x(t)) ≤ d∞(cDqx(t), 0IF)

cDβ(V (t, x(t)) ≤ d∞((−1)x(t), 0IF)

cDβ(V (t, x(t)) ≤ −d∞(x(t), 0IF) .

Finally, we apply c1 = c2 = 1 and c3 = −1 in Theorem 4.6, and we obtain

d∞(x(t), 0IF) ≤ V (0)Eβ(−tβ),

where V (0) = V (0, x(0)) = d∞(x0, 0IF).
Wich implies the Mittag-Leffler stability of system (8).

Example 4.8. We consider the following intuitionistic fuzzy nonlinear fractional system:{
cDqx(t) = f(t, x(t))

x(0) = x0
, (9)

where 0 < q < 1, x = 0IF is the equilibrium point of the problem (9) and f : [0,+∞[×IF1 → IF1

is an intuitionistic fuzzy Lipschitz function whith Lipschitz constant k > 0.
We suppose that there exists a Lyapunov function V (t, x(t)) satisfying the following condi-

tions:
c1d∞(x(t), 0IF) ≤ V (t, x(t)) ≤ c2d∞(x(t), 0IF) (10)

V ′(t, x) ≤ −c3d∞(x, 0IF) (11)

where c1, c2, c3 are positive constants and V ′(t, x) =
dV (t, x(t))

dt
.
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It follows from (10) and (11) that

cD1−q(V (t, x(t)) = IqV ′(t, x) ≤ −c3Iqd∞(x(t), 0IF).

Since
d∞(f(t, x), 0IF) ≤ k d∞(x(t), 0IF),

then

cD1−q(V (t, x(t)) ≤ −c3
k
Iqd∞(f(t, x), 0IF),

cD1−q(V (t, x(t)) ≤ −c3
k
d∞(Iqf(t, x), 0IF),

cD1−q(V (t, x(t)) ≤ −c3
k
d∞(x(t), 0IF).

Finally, by applying c1, c2 and −c3
k

in Theorem 4.6, we have

d∞(x(t), 0IF) ≤ V (0)

c1
E1−q

(
− c3
c2k

t1−q
)
,

where V (0) = V (0, x(0)).
Wich implies the Mittag-Leffler stability of system (9).

5 Conclusion and future works

In this paper, we studied the existence and stability results of nonlinear intuitionistic fuzzy
fractional-order dynamic systems by using the Schauder fixed point theorem and the notions
of Mittag-Leffler stability, and we discussed some sufficient criteria to demonstrate the stability
of the trivial solution of the proposed system.

Our future works include the Mittag-Leffler stability of intuitionistic fuzzy multi-variables
fractional-order nonlinear systems.
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