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Abstract: Ant Colony Optimization has been used successfully to solve hard
combinatorial optimization problems. This metaheuristic method is inspired by the
foraging behavior of ant colonies, which manage to establish the shortest routes
to feeding sources and back. In this paper a generalized net model of the process
of ant colony optimization is constructed and on each iteration intuitionistic fuzzy
estimations (see [2]) are made of the start nodes of the ants. Several start strategies
are prepared and combined.
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1 Introduction

Combinatorial optimization is a branch of optimization. Its domain is optimization
problems which set of feasible solutions is discrete or can be reduced to a discrete
one, and the goal is to find the best possible solution. A combinatorial optimization
problem consists of objective function, which needs to be minimized or maximized,
and constraints. Examples of optimization problems are Traveling Salesman Problem
[9], Vehicle Routing [10], Minimum Spanning Tree [8], Constrain Satisfaction [7],
Knapsack Problem [5], etc. They are NP-hard problems and in order to obtain
solution close to the optimality in reasonable time, metaheuristic methods are used.
One of them is Ant Colony Optimization (ACO) [4].

Real ants foraging for food lay down quantities of pheromone (chemical cues)
marking the path that they follow. An isolated ant moves essentially at random but
an ant encountering a previously laid pheromone will detect it and decide to follow it
with high probability and thereby reinforce it with a further quantity of pheromone.
The repetition of the above mechanism represents the auto-catalyvtic behavior of a
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real ant colony where the more the ants follow a trail, the more attractive that trail
becomes.

The ACO algorithm uses a colony of artificial ants that behave as cooperative
agents in a mathematical space where they are allowed to search and reinforce
pathways (solutions) in order to find the optimal ones. The problem is represented
by graph and the ants walk on the graph to construct solutions. The solutions
are represented by paths in the graph. After the initialization of the pheromone
trails, the ants construct feasible solutions, starting from random nodes, and then
the pheromone trails are updated. At each step the ants compute a set of feasible
moves and select the best one (according to some probabilistic rules) to continue the
rest of the tour. The structure of the ACO algorithm is shown by the pseudocode
below. The transition probability p; j, to choose the node j when the current node
is i, is based on the heuristic information 7;; and the pheromone trail level 7; ; of
the move, wherei,j=1,.... ,n.

a ..b
Tiihij

= a b ?
EL—EUnused Ti ki k

Pij

where Unused is the set of unused nodes of the graph.

The higher the value of the pheromone and the heuristic information, the more
profitable it is to select this move and resume the search. In the beginning, the
initial pheromone level is set to a small positive constant value 7p; later, the ants
update this value after completing the construction stage. ACO algorithms adopt
different criteria to update the pheromone level.

Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do
for k=0 to number of ants
ant k choses start node;
while solution is not constructed do
ant k selects higher probability node;
end while
end for
Update-pheromone-trails;
end while

Figure 1: Pseudocode for ACO

The pheromone trail update rule is given by:

Tij + PTij + AT"J,
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where p models evaporation in the nature and A7; ; is new added pheromone which
is proportional to the quality of the solution.

Our novelty is to use intuitionistic fuzzy estimation of start nodes with respect
to the quality of the solution and thus to better menage the search process. We offer
various start strategies and their combinations.

2 GN-model

The present Generalized Net (GN, see [1, 3]) is an extension of the GN from [6]. We
shall keep all notations from [6] so the reader to have possibility to comparise both
models.

Let the graph of the problem has m nodes. We will devide the set of nodes on
N subsets. There are different ways for deviding. Normally, the nodes of the graph
are randomly enumerated. An example for creating of the subsets, without lost of
generality, is: the node number one is in the first subset, the node number two - in
the second subset, etc., the node number N is in the N-th subset, the node number
N +1 is in the first subset, etc. Thus the number of nodes in the separate subsets
are almost equal.

The new GN has 4 transitions (one more — Zy — than the previous model), 20
places (4 new ones — lj7,...,l20) and four (one more — § and without one old - )
tvpes (3,7, <, and é) of tokens (see Fig. 2). These tokens enter, respectively, places
lo — with the initial characteristic

“(m-dimensional vector of heuristics with elements — the graph vertices

or [-dimensional vector of heuristics with elements — the graph arcs;
objective function)”,

where m is the number of the nods of the graph of the problem and [ is the number
of the arcs of the graph; I;; — with the initial characteristic

“the graph structure with m vertices’s and [ arcs”;
l12 — with the initial characteristic
“initial data for the places and quantities of the pheromones”.
li7 — with the initial characteristic
“(values of parameters A and B; number n of the ants; number N of

the subsets of the nodes of the graph)”.

Zp =< {li7, 19,120}, {l21. 18, 1o},
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Figure 2: GN net model for ACO

| I hs lo
li7 | false false true
lig | Wigo1 Wigas Wigao
log | false false  true

where
Wig21 =“the present is the second time-moment of GN-functioning”,
Whg.18 =“truth-value of expression C; V Cs V Cj3 is true”,
Wig.10 = =Wig 15,
where C'1,Cy and Cj are the following end-conditions:
C; — “computational time (maximal number of iterations) is achieved”,
Cy — “number of iterations without improving the result is achieved”,
C3 - “if the upper/lower bound is known, then the current results are close (e.g.,
less than 5%) to the bound”.
Token é from place l;7 enters place l;9 with a characteristic

(1), D;(1), E;(1))[1 <j < N},

where the values of these coeffitients are: D;(1) =1, E;(1) = 0.
On the second time-moment token é splits to two tokens: a that enters place l9;
with a characteristic
“{list of strategies to be used}”,
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and token § that does not obtain any characteristic.
After the first iteration, when token 3* (that will be described below) enters
place 19 from place I, token 6 unites with token [3* and obtains characteristic

(G, D;(i), E;(1))1 < j S N},

where i > 2 is the number of the current iteration and D;(i) and Ej(i) are weight
coeffitients of j-th nodes subset (1 < j < N) and they can be calculated by different
formulae. For example:

e middle aggregated estimation:

EMQ=L@&—?+G&)

1

where i > 1 is the current process iteration;
e optrimistic aggregated estimation:

D;(i) = max(Dj(i — 1), Fy(i)),
Ej(i) = min(E;(i — 1), G;(1));
e pesimistic aggregated estimation:
Dj(i) = min(D;(i — 1), F;(i)),

E;j(i) = max(E;(i — 1), G4(i)),
where for each j (1< j < N):

£ :
f}-m:{ e (1)
Fj(i —1) otherwise

%T ifn; £0
Gj(i—1) otherwise

Gj(i) = {

and f; 4 is the number of the solutions among the best A%, and g; is the number
of the solutions among the worst B%, where A + B <100, > 1 and

N
Z nj=mn,
i=1

where n; (1 < j < N) is the number of solutions obtained by ants starting from
nodes subset j.

When Wig18 = true, token é leaves the net through place I35 without any
characteristic.
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In classical ant algorithms the ants start from random node in every iteration.
We try to use the experience of the ants from previous iteration to choose the better
starting node. Other authors use this experience only by the pheromone, when the
ants con Let us fix threshold E for E;(i) and D for D;(i), than we construct several
strategies to choose start nod for every ant:

1

V]

If E;(i) > E then the subset j is forbidden for current iteration and we choose
the starting node randomly from {j |j is not forbidden};

If E;(i) > E then the subset j is forbidden for current simulation and we
choose the starting node randomly from {j |j is not forbidden};

If E;(i) > E then the subset j is forbidden for K; consecutive iterations and
we choose the starting node randomly from {j |j is not for- bidden};

If E < E;(i) and D > D,(i) for Ko consecutive iterations, then the subset j
is forbidden for current simulation and we choose the starting node randomly
from {j |j is not forbidden};

Let r; € [0.5,1) is a random number. Let ro € [0,1] is a random number. If
ro > 11 we randomly choose node from subset {j |D;(i) > D}, otherwise we
randomly chose a node from the not forbidden subsets, r; is chosen and fixed
at

Let r; € [0.5,1) is a random number. Let ro € [0,1] is a random number.
If 7o > r; we randomly choose node from subset {j |[D;(i) > D}, otherwise
we randomly chose a node from the not forbidden subsets, r; is chosen at the
begin

Where 0 < K; <"number of iterations” is a parameter. If K; = 0, than strategy
3 is equal to the random choose of the start node. If K, = 1, than strategy 3 is
equal to the strategy 1. If K; ="maximal number of iterations”, than strategy

Zs =< {la1, 1, las}, {122, l23, laa, 25, I, l2s },

| I l2a log loq l2s log
lop | Waroo Waroz Wayoqg Waros Waros Wapor

lg | Weoo Weaz Wgos Wsos Wsas Weor
log | Wog2o Wagos Wagog Wogos Wagoe Wogor

where

Way 90 = Wgoo = Wag a9 = “strategy 1 is in the list of the previous characteristic of
the current token”

Whay .03 = Wgo3 = Wag o3 = “strategy 2 is in the list of the previous characteristic of
the current token”

Way 04 = We o4 = Wog o4 = “strategy 3 is in the list of the previous characteristic of
the current token”
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Way 25 = We a5 = Wag o5 = “strategy 4 is in the list of the previous characteristic of
the current token”

Way 06 = Weo6 = Wag s = “strategy 5 is in the list of the previous characteristic of
the current token”

Way 97 = Weo7 = Wag o7 = “strategy 6 is in the list of the previous characteristic of
the current token”

The a-tokens receive the following characteristics:

in place lao:

“the start nodes are calculated according strategy 17,
in place lo3:

“the start nodes are calculated according strategy 27,
in place lo4:

“the start nodes are calculated according strategy 3",
in place lo5:

“the start nodes are calculated according strategy 4",

in place lg:
“the start nodes are calculated according strategy 57,
in place Is7:
“the start nodes are calculated according strategy 6”.
Zs =< {l22.123.l24, 125, 126, l27}, {I1, l2s},
51 log
log | Waz1 Wagas
log | Waz 1 Wag og
log | Wagy Wagos >,
los | Was, 1 Was s
log | Wae.1 Woe.as
lay | Waz,1 Waz s
where
Wasy = Wagy = Wayy = Wasg = Wiy = Wary = "the list of strategies is
exhausted”,

Wag 08 = Wagos = Wagos = Was 05 = Wagog = War s = -Waa 1.
The a-tokens receive the following characteristics:
in place I;:

“n dimensional vector with elements - the couples of the ants
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coordinates”,

in place l5:
“list of strategies”,

Zy =< {l,l2,14,15},{l3,14},

| I3 Iy
Iy | true false
I | false true >.
ly | false true
I | true false

Token a from places ;. [5 enters place I3 with a characteristic
“vector of current transition function results (©; cy. ¥2.cus s Pnocu) s
while token ¢ stays only in place l; obtaining the characteristic
“new rm-dimensional vector of heuristics with elements — the graph,

vertices or new [-dimensional vector of heuristics with elements —”.

the graph arcs”.

Zy =< {l3,l10},{l5, 16,17, ls, 19, 110},

| & le Iz s Iy ho
ls | Was Wse Wiz false Wig Wiy >,
ho | false false true false Wige Wio0

where
35 = “the current iteration is not finished”,
Wae = W310 = "Wss VWi,
Wio7 = “the current best solution is worse than the global best solution”,
Wio,9 =“truth-value of expression C; vV Cs V Cj is true”,
Wi0,10 = =W,
where C;.C3 and C3 are the end-conditions.

Token a from place I3 enters place I5 with a characteristic

“(SI,CU? SE__cm Sﬂ,cu)”a

where Sy ., is the current partial solution for the current iteration, made by k-th
ant (1 <k <n).

If W3¢ = true it splits to three tokens a, @’ and o” that enter places lg — token
a — with a characteristic

“new n-dimensional vector with elements — the couples of the new




Generalized net models of the process of ant colony optimization

ants coordinates”,

place lg — token o’ — with the last a-characteristic, and place l;o — token a” — with
a characteristic

“(the best solution for the current iteration; its number)”.

Token a” can enter place lg only when Wjg9 = frue and there it obtains the
characteristic
“the best achieved result”.

In place I7 one of the two tokens from place l;g enters, which has the worst values
as a current characteristic, while in place l;¢ the token containing the best values as
a current characteristic stays.

Z3 =< {lg, i1, 2, 13, e}, {13, la, l1s, L6, 120},

ls l4 s he l20
ls | false false false true false
l17 | true  false false false false
lio | false false false true  true
li3 | Wizas Wiszae false false false
L | false false false false Wigap

where
Wi3.14 = Wi 15 = “truth-value of expression C; V Ca V Cj is true”,
Wis13 = Wieie = Wiz,
Wig20 = “the current iteration is finished” &—-Wis 4.

Tokens + from place I1; and 3 from place l,5 with above mentioned characteristics
enter, respectively, places l;3 and l;g without any characteristic.

Token a from place lg enters place /1 and unites with token 3 (the new token
is again ) with characteristic

“value of the pheromone updating function with respect of the values of

the objective function”.

Tokens [ and «y enter, respectively, places l;4 and l;5 without any characteristics.
When Wig 90 = true, token [ splits to two token: /3 that continue to stay in place
l16 without a new characteristic and token 3* that enters place log with characteristic:

“{{, F;(i),G;(i))]1 < j < N}”,

where F}(i) and G;(i) are defined by (1) and (2), respectively.
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3 Conclusion

In this paper, we address the modelling of the process of ant colony optimization
method by generalized net using intuitionistic fuzzy estimations, combining six start
strategies. So, the start node of each ant depends of the goodness of the respective
region. The aim of this representation is to study in detail the methodology and
relationships between the processes. Thereby we can see the weaknesses of the
method and to improve it implementation.

Let us have a fixed universe P and its subset (). The set

Q" = {(z, uq(x),vq()) | x € P},

where
0 < po(x)+wg(z) <1

is called IFS and functions pg : P — [0,1] and vg : P — [0,1] represent degree of
membership (validity, etc.) and non-membership (non-validity, etc.) [2].

We define a Temporal IFS (TIFS) as the following:

Q(T) = {(z. nq(=.1), vg(z.t))|(x.1) € P x T},
where:

(a) Q C P is a fixed set,

(b) pg(x.t) +vo(x,t) < 1 for every (z,t) € P x T,

(¢) po(x,t) and vg(z,t) are the degrees of membership and non-membership,
respectively, of the element z € P at the time-moment t € T [2].

We must note that the above weight set, after the final (let it be M) iteration,
has the form
{((,1), D;(i), E;(i))1 < j S N&1 <i < M}

Obviously, it is a temporal IFS and by this reason we can apply over it the
IFS-topological operators C, I, C* and I* that for a given IFS A are defined by

C(Q) = {<I:K=L)|I € P}r
Cu(Q) = {(z,K,min(1 - K,vg(z)))|z € P};

C(Q = {(z,nglx) L)z € P};
1Q) = {(z.k]1) IIEP}
L(Q) = {(z,kvg(z))lz € P}
L(Q) = {(z,min(1 -1, pq(x)),l)lz € P},
where
K = suppo(y)
yeEP
L= int volv),
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k = inf
;gpﬁo(yh

I =suprq(y).
yeP
These six operators give us possibility to sort and classify the information for
the weight estimations and this will help us to study algorith behaviour. In next
authors research some IFS-properties will be discussed.
In future work, other GM-models of different ant colony applications will be
developed and analyzed. Our aim is to help to the optimization algorithm developer
to improve their products.
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