
21st ICIFS, 22–23 May 2017, Burgas, Bulgaria
Notes on Intuitionistic Fuzzy Sets
Print ISSN 1310–4926, Online ISSN 2367–8283
Vol. 23, 2017, No. 2, 55–68

Complex intuitionistic fuzzy evolution equations

A. El Allaoui, S. Melliani and L. S. Chadli
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1 Introduction

The concept of intuitionistic fuzzy is introduced by K. Atanassov (1983) [1, 2, 3]. This concept
is a generalization of fuzzy theory introduced by L. Zadeh [12]. Several works made in the study
of the Cauchy problem with intuitionistic fuzzy initial condition [7].

The concept of complex fuzzy sets as sets with complex membership functions was first in-
troduced by Ramot et al., who in [11] demonstrated the increased expressive power gained by
endowing a set S with a complex membership function µS(x) = rS(x)e

iφS(x), where rS(x) and
φS(x) are real-valued functions with rS solely responsible for the fuzzy information and φS func-
tioning as a phase term containing additional crisp information.

In [5], we discussed the existence and uniqueness for a solution of the intuitionistic fuzzy
differential equation {

U ′(t) = H(t, U(t)), t ∈ I
U(0) = U0 ∈ F,

(1)
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In this paper, we consider the following problem:{
U ′(t) = AU(t) +H(t, U(t)), t ∈ I,
U(0) = U0 ∈ F,

(2)

where A is the generator of a strongly continuous semigroup {T (t), t ≥ 0} on F and
H : I × F → F which we take to be continuous in both arguments and satisfies some condi-
tions. And it will be extensive as an initiation to study other concept, stability, etc., which is
defined in the fuzzy case [6].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper.

Let us denote by Pk(R) the set of all nonempty compact convex subsets of R.

Definition 1. We denote

IF =
{
(u, v) : R→ [0, 1]2 |∀x ∈ R /0 ≤ u(x) + v(x) ≤ 1

}
where

1. (u, v) is normal i.e. there exists x0, x1 ∈ R such that u(x0) = 1 and v(x1) = 1.

2. u is fuzzy convex and v is fuzzy concave.

3. u is upper semicontinuous and v is lower semicontinuous

4. supp(u, v) = cl({x ∈ R : v(x) < 1}) is bounded.

For α ∈ [0, 1] and (u, v) ∈ IF , we define

[(u, v)]α = {x ∈ R | v(x) ≤ 1− α}

and
[(u, v)]α = {x ∈ R | u(x) ≥ α}.

Remark 1. We can consider [(u, v)]α as [u]α and [(u, v)]α as [1− v]α in the fuzzy case.

Definition 2. The intuitionistic fuzzy zero is intuitionistic fuzzy set defined by

0(1,0)(x) =

{
(1, 0), x = 0

(0, 1), x 6= 0
.
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Definition 3. Let (u, v) ,(u′, v′) ∈ IF and λ ∈ R, we define the addition by:

((u, v)⊕ (u′, v′)) (z) =

(
sup
z=x+y

min(u(x), u′(y)); inf
z=x+y

max(v(x), v′(y))

)

λ(u, v) =

{
(λu, λv), if λ 6= 0

0(0,1), if λ = 0
.

According to Zadeh’s extension principle, we have addition and scalar multiplication in intu-
itionistic fuzzy number space IF as follows:

[(u, v)⊕ (z, w)]α = [(u, v)]α + [(z, w)]α, (3)

[λ(u, v)]α = λ[(u, v)]α, (4)

[(u, v)⊕ (z, w)]α = [(u, v)]α + [(z, w)]α, (5)

[λ(u, v)]α = λ[(u, v)]α, (6)

where (u, v), (z, w) ∈ IF and λ ∈ R.
We denote

[(u, v)]+l (α) = inf{x ∈ R | u(x) ≥ α},

[(u, v)]+r (α) = sup{x ∈ R | u(x) ≥ α},

[(u, v)]−l (α) = inf{x ∈ R | v(x) ≤ 1− α},

[(u, v)]−r (α) = sup{x ∈ R | v(x) ≤ 1− α}.

Remark 2. [
(u, v)

]
α
=
[
[(u, v)]+l (α), [(u, v)]

+
r (α)

]
,[

(u, v)
]α

=
[
[(u, v)]−l (α), [(u, v)]

−
r (α)

]
.

Theorem 1. letM = {Mα, M
α : α ∈ [0, 1]} be a family of subsets in R satisfying Conditions

(i)− (iv)

i) α ≤ β ⇒Mβ ⊂Mα and Mβ ⊂Mα

ii) Mα and Mα are nonempty compact convex sets in R for each α ∈ [0, 1].

iii) for any nondecreasing sequence αi → α on [0, 1], we have Mα =
⋂
iMαi

and Mα =⋂
iM

αi .

iv) For each α ∈ [0, 1], Mα ⊂Mα and define u and v, by

u(x) =

{
0 if x /∈M0

sup {α ∈ [0, 1] : x ∈Mα} ifx ∈M0

,

v(x) =

{
1 if x /∈M0

1− sup {α ∈ [0, 1] : x ∈Mα} ifx ∈M0
.

Then (u, v) ∈ IF.

Proof. See [10].
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The space IF is metrizable by the distance of the following form:

d∞ ((u, v), (z, w)) =
1

4
sup

0<α≤1
|[(u, v)]+r (α)− [(z, w)]+r (α)|

+
1

4
sup

0<α≤1
|[(u, v)]+l (α)− [(z, w)]+l (α)|

+
1

4
sup

0<α≤1
|[(u, v)]−r (α)− [(z, w)]−r (α)|

+
1

4
sup

0<α≤1
|[(u, v)]−l (α)− [(z, w)]−l (α)|,

where |.| denotes the usual Euclidean norm in R.

Theorem 2. (IF, d∞) is a complete metric space.

Proof. See [10].

We recall the definition of a complex fuzzy set:

Definition 4. A complex fuzzy set A, defined on a universe of discourse X , is characterized
by a membership function µA(x) that assigns any element x ∈ X a complex-valued grade of
membership in A. By definition µA(x) a value in the unit circle in the complex plane in the polar
case. And a value in the unit square in C in the Cartesian case.

2.1 Complex intuitionistic fuzzy set

In this section, we recall some basic notion on complex intuitionistic fuzzy sets defined in [4]. As
the definition of complex fuzzy set, we give here a definition of complex intuitionistic fuzzy set:

Definition 5. A complex intuitionistic fuzzy set A, defined on a universe of discourse X , is char-
acterized by a membership function µA(x) and non-membership function νA(x) that assigns any
element x ∈ X a complex-valued grade of membership and non-membership in A. By definition,
the values µA(x), νA(x) and µA(x) + νA(x) may receive all lie within the unit circle in the com-
plex plane in the polar case. And µA, νA and µA(x) + νA(x) a value in the unit square in C in
the Cartesian case.

2.2 Cartesian representation of complex grades
of membership and non-membership

The complex membership function µ, is defined as

µ(V, z) = µR(V ) + iµI(z),

likewise, we can define the complex non-membership function as

ν(V, z) = νR(V ) + iνI(z),
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where V is to be interpreted as a set in a intuitionistic fuzzy set of sets and z as an element of V .
This definition can be easily extended to R, for x ∈ R, let

f1(x) = u(x) + iv(x) and f2(x) = u′(x) + iv′(x),

where f = (u, u′) : R→ [0, 1]2 and g = (v, v′) : R→ [0, 1]2. For ease of notation, denote F by
(f, g). Thus, f1, f2 assigns to each x ∈ R a value in the unit square in C, representing a complex
grade of membership and non-membership. Note that u, v, u′ and v′ considered individually
define non-complex fuzzy sets in R.

Now, for f = (u, u′), g = (v, v′) : R→ [0, 1]2, α-level sets are classically defined as follows:

[f ]α = [(u, u′)]α = {x ∈ R |u′(x) ≤ 1− α} ; [f ]α = [(u, u′)]α = {x ∈ R |u(x) ≥ α}

and

[f ]0 = [(u, u′)]0 = {x ∈ R |u′(x) < 1}; [f ]0 = [(u, u′)]0 = {x ∈ R |u(x) > 0}.

We use the above to define (α, β)-level sets for F = (f, g), 0 < α, β ≤ 1:

[F ](α,β) = [(f, g)](α,β) = [f ]α ∩ [g]β, (7)

and

[F ](α,β) = [(f, g)](α,β) = [f ]α ∩ [g]β. (8)

Consider the following set of conditions as an alternative definition of [F ](α,β) and [F ](α,β):

[F ](α,β) = {x ∈ R |u′(x) ≤ 1− α, v′(x) ≤ 1− β} , (9)

[F ](α,0) = {x ∈ R |u′(x) ≤ 1− α, v′(x) < 1}, (10)

[F ](0,β) = {x ∈ R |u′(x) < 1, v′(x) ≤ 1− β}, (11)

[F ](0,0) = {x ∈ R |u′(x) < 1, v′(x) < 1}, (12)

and

[F ](α,β) = {x ∈ R |u(x) ≥ α, v(x) ≥ β} , (13)

[F ](α,0) = {x ∈ R |u(x) ≥ α, v(x) > 0}, (14)

[F ](0,β) = {x ∈ R |u(x) > 0, v(x) ≥ β}, (15)

[F ](0,0) = {x ∈ R |u(x) > 0, v(x) > 0}. (16)
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Note that (9) and (12) are equivalent to definition (7), likewise (13) and (16) are equivalent to
definition (8) for the corresponding α, β, but (10), (11) and (14), (15) are not: (7) and (8) may not
yield closed sets in the case when exactly one of α, β is equal to 0, but (10), (11) and (14), (15)
would yield the respective closures of those sets.

For f, g ∈ IF , we have [f ]α∩[g]β , [f ]α∩[g]β are always compact and [f ]1∩[g]1 ⊂ [f ]α∩[g]β ⊂
[f ]0 ∩ [g]0 and [f ]1 ∩ [g]1 ⊂ [f ]α ∩ [g]β ⊂ [f ]0 ∩ [g]0 are nonempty as in order to ensure this,
it is sufficient that [f ]1 ∩ [g]1 and [f ]1 ∩ [g]1 be nonempty, meaning that there should exist some
x0, x1 ∈ R such that x0 ∈ [f ]1, i.e., u′(x0) = 0, x0 ∈ [g]1, i.e., v′(x0) = 0 and x1 ∈ [f ]1,
i.e.,u(x1) = 1, x1 ∈ [g]1, i.e., v(x1) = 1. With that in mind, we define the following set:

ˆIF
2
=

{(
(u, u′), (v, v′)

)
∈ IF × IF | ∃x0, x1 ∈ R, s.t u(x1) = v(x1) = 1, u′(x0) = v′(x0) = 0

}
. (17)

Then for (f, g) ∈ ˆIF
2
, [F ](α,β) = [f ]α ∩ [g]β, [F ](α,β) = [f ]α ∩ [g]β ∈ Pk(R) for all α, β ∈

[0, 1]. And the compactness of the [F ](α,β) sets guarantees the complete equivalence of definition
(7) and the set of definitions (9)–(12), and the complete equivalence of definition (8) and the set
of definitions (13)–(16).

We recall that IF is closed under addition and scalar multiplication, to establish a similar
result for ˆIF

2
. For functions f = (u, u′), g = (v, v′) ∈ IF , addition and scalar multiplication

can be defined via level sets as (3)-(6).
For F = (f, g) =

(
(u, u′), (v, v′)

)
, G = (f ′, g′) =

(
(x, x′), (y, y′)

)
∈ ˆIF

2
and λ is a scalar,

let

F + G = (f, g) + (f ′, g′) = (f + f ′, g + g′), (18)

λF = λ(f, g) = (λf, λg). (19)

Theorem 3 ([4]). ˆIF
2

is closed under addition and scalar multiplication.

Consider the product metric on IF 2 = IF × IF , d̂∞ : IF 2 × IF 2 → R+ by:

d̂∞(F ,G) = max{d∞(f, f ′) , d∞(g, g′)}, F = (f, g), G = (f ′, g′) ∈ ˆIF
2
. (20)

Since ˆIF
2
⊂ IF 2, d̂∞ is also a metric for ˆIF

2
. Hence, ( ˆIF

2
, d̂∞) is a complete metric space.

It will also prove useful to define a zero element in ˆIF
2
. Recall that on IF we define zero

element 0(1,0) ∈ IF by

0(1,0)(x) =

{
(1, 0) , x = 0

(0, 1) , x 6= 0
.

The zero element on ˆIF
2

then reads

0̂ =
(
0(1,0), 0(1,0)

)
∈ IF 2.

We have 0̂(0) =
(
(1, 0), (1, 0)

)
, verifying that 0̂ ∈ ˆIF

2
.

Theorem 4 ([4]). ˆIF
2
⊂ IF × IF is embeddable into a Banach space.

Remark 3. In the same manner can be defined ˆIF
n
, n ≥ 3 and it is shown that is embeddable

into a Banach space.
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2.3 Polar representation of complex grades
of membership and non-membership

The polar representation of the membership function µ, is defined as

µ(V, z) = r(V )eiσφ(z),

likewise, we can define the polar representation of complex non-membership function as

ν(V, z) = r′(V )eiσφ
′(z),

where σ is a scaling factor, does not translate directly to and from the respective Cartesian repre-
sentation. Therefore, the two representations of the corresponding extension to R are not equiva-
lent as defined, which will be seen below. Thus, depending on the application, one may be more
appropriate to use than the other.

For x ∈ R, the polar form of f1 and f2 is defined as follows:

f1(x) = r(x)e2πφ(x)i, f2(x) = r′(x)e2πφ
′(x)i,

where f = (r, r′), g = (φ, φ′) : R→ [0, 1]2.
We denote f1 = (r, φ) and f2 = (r′, φ′). The scaling factor is taken to be 2π , allowing the

range of f1 and f2 to be the entire unit circle. Because e2πiφ is periodic, we take the value of φ
giving the maximum distance from e0, φ = 0.5, to be the ”maximum” membership value.

[f ]α = [(r, r′)]α = {x ∈ R | r′(x) ≤ 1− α} ,

and

[f ]α = [(r, r′)]α = {x ∈ R | r(x) ≥ α} .

And we define the level sets for g = (φ, φ′), denoted [g]〈α〉 and [g]〈α〉, must be defined differ-
ently to account for the periodicity:

[g]〈α〉 = {x ∈ R |φ′(x) ∈ [α, 1− α], α ∈ (0, 0.5]} , (21)

[g]〈α〉 = {x ∈ R |φ(x) ∈ [α, 1− α], α ∈ (0, 0.5]} , (22)

[g]〈0〉 = {x ∈ R | 0 < φ′(x) < 1}, (23)

[g]〈0〉 = {x ∈ R | 0 < φ(x) < 1}, (24)

[g]〈α〉 = [(φ, φ′)]〈1−α〉, [g]〈α〉 = [(φ, φ′)]〈1−α〉, for all α ∈ [0, 1]. (25)

For F = (f, g), We can then define the level sets [F ]〈α,β〉 and [F ]〈α,β〉 as

[F ]〈α,β〉 = [(f, g)]〈α,β〉 = [f ]〈α〉 ∩ [g]〈β〉, and [F ]〈α,β〉 = [(f, g)]〈α,β〉 = [f ]〈α〉 ∩ [g]〈β〉, (26)
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or by the relations:

[F ]〈α,β〉 = {x ∈ R | r′(x) ≤ 1− α, φ′(x) ∈ [β, 1− β]} , (27)

[F ]〈α,β〉 = {x ∈ R | r(x) ≥ α, φ(x) ∈ [β, 1− β]} , (28)

[F ]〈α,0〉 = {x ∈ R | r′(x) ≤ 1− α, 0 < φ′(x) < 1}, (29)

[F ]〈α,0〉 = {x ∈ R | r(x) ≥ α, 0 < φ(x) < 1}, (30)

[F ]〈0,β〉 = {x ∈ R | r′(x) < 1, φ′(x) ∈ [β, 1− β]}, (31)

[F ]〈0,β〉 = {x ∈ R | r(x) > 0, φ(x) ∈ [β, 1− β]}, (32)

[F ]〈0,0〉 = {x ∈ R | r′(x) < 1, 0 < φ′(x) < 1}, (33)

[F ]〈0,0〉 = {x ∈ R | r(x) > 0, 0 < φ(x) < 1}, (34)

together with

[F ]〈α,β〉 = [F ]〈α,1−β〉, and [F ]〈α,β〉 = [F ]〈α,1−β〉, for allα, β ∈ [0, 1]. (35)

It is clear that, for g = (φ, φ′) ∈ IF , [g]〈α〉 ⊂ [g]α and [g]〈α〉 ⊂ [g]α for all α ∈ [0, 0.5]. However,
[g]〈α〉, [g]〈α〉 need not be compact or convex. In order to address this issue, we define

Ĝ =
{
(u, v) : R→ [0, 1]2 satisfying all of the following conditions

}
,

1. There exists x0, x1 ∈ R such that u(x0) = v(x1) = 0.5.

2. u and v are monotone.

3. u is upper semi-continuous on K1 and lower semi-continuous on K2, with

K1 = {x ∈ R | 0 < u(x) ≤ 0.5} , and K2 = {x ∈ R | 0.5 ≤ u(x) < 1} .

4. v is lower semi-continuous on K ′1 and upper semi-continuous on K ′2, with

K ′1 = {x ∈ R | 0 < v(x) ≤ 0.5} , and K ′2 = {x ∈ R | 0.5 ≤ v(x) < 1} .

5. K1 ∪K2 and K ′1 ∪K ′2 are compact.

62



Theorem 5 ([4]). There exists an embedding l : Ĝ → IF × IF .

Now, we define

ˆIF
2
∗ =

{(
(r, r′), (φ, φ′)

)
∈ IF × Ĝ | ∃x0, x1 ∈ R s.t r(x0) = 1, r′(x1) = 0, φ(x0) = φ′(x1) = 0.5

}
.

Note that, for F ∈ ˆIF
2

∗, definition (26) is equivalent to the set of definitions (27)–(35).

Theorem 6 ([4]). ˆIF
2

∗ is embeddable into a Banach space.

The following results, therefore, apply equally to the space ˆIF
2

in the Cartesian case and to
the space ˆIF

2

∗ in the polar case.
For brevity, we shall let F = ˆIF

2
when dealing with the Cartesian complex form, and

F = ˆIF
2

∗ when dealing with the polar complex form.
We define differentiability as in terms of the Hukuhara difference. For F ,G ∈ F, if there

exists K ∈ F such that G +K = F , we write F − G = K and call K the difference of F and G.

Definition 6. We call a mapping R : I = [0, a] → F is differentiable at t0 ∈ I if there exists
someR′(t0) ∈ F such that the following limits exist and are equal toR′(t0) ∈ F:

lim
h→0+

R(t0 + h)−R(t0)
h

and lim
h→0+

R(t0)−R(t0 − h)
h

.

LetR : I → F be a continuous mapping. We define S : [0, a]→ F by

S(t) =
∫ t

0

R(s)ds, t ∈ I.

Note that

d

dt
S(t) = S ′(t) = R(t), t ∈ I.

3 Main results

3.1 Complex intuitionistic fuzzy semigroups

We give here a definition of semigroup on F similar to that defined in the fuzzy case in [6, 8, 9].

Definition 7. A family {T (t), t ≥ 0} of operators from F into itself is a complex intuitionistic
fuzzy strongly continuous semigroup on F if

(i) T (t)(0) = i , the identity mapping on F,

(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0,

(iii) the functionH : [0,∞[→ F, defined byH(t) = T (t)U is continuous at t = 0 for all U ∈ F
i.e.,

lim
t→0+
T (t)U = U.
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(iv) There exist two constants M > 0 and ω such that

d̂∞

(
T (t)U, T (t)V

)
≤M eωt d̂∞(U, V ), for t ≥ 0, U, V ∈ F.

In particular, if M = 1 and ω = 0, we say that {T (t), t ≥ 0} is a contraction semigroup
on F.

Remark 4. The condition (iii) implies that the function t → T (t)U is continuous on [0,∞[ for
all U ∈ F.

Definition 8. Let {T (t), t ≥ 0} be a strongly continuous semigroup on F and U ∈ F. If for
h > 0 very small, the Hukuhara difference T (h)U − U exits, we define

AU = lim
h→0+

T (h)U − U
h

,

whenever this limit exists in the metric space (F, d̂∞). Then the operator A defined on

D(A) =
{
U ∈ F | lim

h→0+

T (h)U − U
h

exists
}
⊂ F

is called the infinitesimal generator of the semigroup {T (t), t ≥ 0}.

Lemma 1. Let A be the generator of a semigroup {T (t), t ≥ 0} on F, then for all U ∈ F such
that T (t)U ∈ D(A) for all t ≥ 0, the mapping F : t→ T (t)U is differentiable and

F ′(t) = d

dt

(
T (t)U

)
= AT (t)U, ∀t ≥ 0.

Proof. For U ∈ F, t ≥ 0 and h very small, since T (t)U ∈ D(A), so

lim
h→0+

F(t+ h)−F(t)
h

= lim
h→0+

T (t+ h)U − T (t)U
h

= lim
h→0+

T (h)T (t)U − T (t)U
h

= AT (t)U.

This completes the proof.

Example 1. Define on F the family of linear operators T (t) : F→ F by

T (t)U = T (t)(f, g) = (entf , emtg), U = (f, g) ∈ F, n,m ∈ N, t ≥ 0.

1. {T (t) , t ≥ 0} is a semigroup on F. It is easy to see that π(t) is well-defined.

(i) for U ∈ E, we have

T (0)U = U.
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(ii) For U = (f, g) ∈ F, t, s ≥ 0, we have

T (t+ s)U = T (t)(f, g) = (en(t+s)f, em(t+s)g)

= (entensf, emtemsg)

= T (t)(ensf, emsg)
= T (t)T (s)(f, g)
= T (t)T (s)U.

(iii) For U = (f, g) ∈ F, t ≥ 0 and l = max{n,m}, we have

d̂∞(T (t)U,U) = d̂∞(T (t)(f, g), (f, g))
= d̂∞

(
(entf, emtg), (f, g)

)
= max

{
d∞
(
entf, f

)
, d∞

(
emtg, g

)}
= max{d∞

(
(ent − 1)f, 0(1,0)

)
, d∞

(
(emt − 1)g, 0(1,0)

)
}

= max
{
(ent − 1)d∞

(
f, 0(1,0)

)
, (emt − 1)d∞

(
g, 0(1,0)

)}
≤ (elt − 1)max

{
d∞
(
f, 0(1,0)

)
, d∞

(
g, 0(1,0)

)}
= (elt − 1)d̂∞

(
(f, g), (0(1,0), 0(1,0))

)
= (elt − 1)d̂∞

(
U, 0̃

)
→ 0 as t→ 0.

Then, lim
t→0
T (t)U = U .

(iv) For U = (f, g)V = (f ′, g′) ∈ F and t ≥ 0, we have

d̂∞ (T (t)U , T (t)V )

= D̂
((
entf, emtg

)
,
(
entf ′, emtg′

))
= max

{
d∞
(
entf, entf ′

)
, d∞

(
emtg, emtg′

)}
= max

{
entd∞ (f, f ′) , emtd∞ (g, g′)

}
≤ eltmax {d∞ (f, f ′) , d∞ (g, g′)}
≤ eltd̂∞ ((f, g) , (f ′, g′))

= eltd̂∞(U, V ).

2. The linear operator A : U = (f, g) → AU = (nf,mg) is the infinitesimal generator of
the semigroup {T (t), t ≥ 0}. Indeed, for U ∈ F and h ≥ 0 very small, we have((

enh − 1
)
f ,
(
emh − 1

)
g
)
+ U =

((
enh − 1

)
f + f ,

(
emh − 1

)
g + g

)
=

(
enhf , emhg

)
= T (h)U.

then the difference T (h)U − U exists and equal
((
enh − 1

)
f ,
(
emh − 1

)
g
)
.

Therefore, we have

T (t)U − U
h

=
1

h

((
enh − 1

)
f ,
(
emh − 1

)
g
)

=

((
enh − 1

h

)
f ,

(
emh − 1

h

)
g

)
.
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Hence,

d̂∞

(
T (t)U − U

h
, (nf,mg)

)
= d̂∞

(((
enh − 1

h

)
f ,

(
emh − 1

h

)
g

)
, (nf,mg)

)
= max

{
d∞

((
enh − 1

h

)
f , nf

)
, d∞

((
emh − 1

h

)
g , mg

)}
= max

{
d∞

(
nf +

(
∞∑
k=2

(nh)k

k!

)
f , nf

)
, d∞

(
mg +

(
∞∑
k=2

(mh)k

k!

)
g , mg

)}

= max

{
d∞

((
∞∑
k=2

(nh)k

hk!

)
f , 0(1,0)

)
, d∞

((
∞∑
k=2

(mh)k

hk!

)
g , 0(1,0)

)}

= max

{(
∞∑
k=2

(nh)k

hk!

)
d∞
(
f , 0(1,0)

)
,

(
∞∑
k=2

(mh)k

hk!

)
d∞
(
g , 0(1,0)

)}

≤

(
∞∑
k=2

(lh)k

hk!

)
max

{
d∞
(
f , 0(1,0)

)
, d∞

(
g , 0(1,0)

)}
=

(
∞∑
k=2

(lh)k

hk!

)
d̂∞
(
(f , g) ,

(
0(1,0) , 0(1,0)

))
=
elh − 1− lh

h
d̂∞
(
U , 0̂

)
→ 0 as t→ 0.

Then

AU = lim
h→0+

T (h)U − U
h

= (nf,mg).

3.2 Complex intuitionistic fuzzy evolution equations

Let C(I,F) denote the set of all continuous maps from I to F and let d̂C∞ denote a metric on
C(I,F) defined as

d̂C∞(F ,G) = sup
t∈I

d̂∞(F(t),G(t)), F ,G ∈ C(I,F).

It follows that (C(I,F), d̂C∞) is a complete metric space.

Definition 9. We say that U : I → F is a mild solution to the problem (2) if and only if
U ∈ C(I,F), and for all t ≥ 0 and U satisfies the integral equation

U(t) = U0 +

∫ t

0

T (t− s)H(s, U(s))ds, t ∈ I.

Definition 10. A mapping H : F→ F is Holder continuous if there exists a constant L > 0 and
a constant 0 < α ≤ 1 such that

d̂∞(H(X),H(Y )) ≤ L(d̂∞(X, Y ))α, ∀X, Y ∈ F.
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Definition 11. A mappingH : I × F→ F is Lipschitzian with respect to the second argument if
there exists a constant M > 0 such that

d̂∞(H(t,X),H(t, Y )) ≤Md̂∞(X, Y ), ∀X, Y ∈ F, t ≥ 0.

Theorem 7. Let H : I × F → F be Lipschitzian with respect to the second argument with
constant N , A is the generator of a strongly continuous semigroup {T (t), t ≥ 0} and for each
U0 ∈ F such that T (t)U0 ∈ F for all t ≥ 0. Then, there exists a unique mild solution to the
problem (2) on I .

Proof. Define the operator O on C(I,F) by

OU(t) = T (t)U0 +

∫ t

0

T (t− s)H(s, U(s))ds, t ∈ I. (36)

It is easy to see that O is well-defined.
For U, V ∈ C(I,F) and t ∈ I , we have

d̂∞(OU(t) , OV (t))

= d̂∞

(
T (t)U0 +

∫ t

0

T (t− s)H(s, U(s))ds , T (t)U0 +

∫ t

0

T (t− s)H(s, V (s)))ds

)
≤ d̂∞

(∫ t

0

T (t− s)H(s, U(s))ds ,
∫ t

0

T (t− s)H(s, V (s)))ds

)
≤
∫ t

0

d̂∞ (T (t− s)H(s, U(s)) , T (t− s)H(s, V (s)))) ds

≤M

∫ t

0

eω(t−s)d̂∞ (H(s, U(s)) , H(s, V (s)))) ds

≤MNeωa
∫ t

0

d̂∞ (U(s) , V (s))) ds

≤ tMNeωad̂C∞ (U , V )) .

By the some way we have

d̂∞(O2U(t) , O2V (t)) ≤ MNeωa
∫ t

0

d̂∞ (OU(s), OV (s))) ds

≤ M2N2e2ωad̂C∞ (U , V )

∫ t

0

sds

=
M2N2e2ωat2

2
d̂C∞ (U , V ) .

Then, we can prove that for all p ∈ N∗, we have

d̂C∞(OpU , OpV ) ≤ d̂∞(OpU(t) , OpV (t)) ≤ MpNpepωat2

p!
d̂C∞ (U , V ) .

Therefore, there exists q > 0 such that
M qN qeqωat2

q!
< 1, since

lim
p→+∞

MpNpepωat2

p!
= 0.
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Then, Oq is a contraction and, by the Banach fixed point theorem, the operator Oq has a
unique fixed point X such that OqU = U . Thus by the uniqueness of U , U is the unique mild
solution of (2) (since OqOU = OOqU = OU ).

Corollary 1. Let H : I × F → F Holder continuous with constant L, then there exists a unique
mild solution to the problem (2) on I .
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