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Abstract: Technique to find Pareto-optimal solutions to multiple objective linear programming 

problems under imprecise environment is discussed in this paper. In 1997, Angelov formulated 

an optimization technique under intuitionistic fuzzy environment. Several other researchers 

have worked on it in recent years. In optimization technique under imprecise environment, it is 

observed that the prime intention to maximize up-gradation of most misfortunate is better 

served if some constraints present in existing, well established techniques are removed. In 

classical intuitionistic fuzzy optimization techniques, it is also observed that membership 

functions and non-membership functions are not utilised in the way they are defined; and in 

some cases, constraints in those existing techniques may make the problem infeasible. Hence 

in this paper, new functions: T(+)-characteristic functions and T(-)-characteristic functions, are 

introduced to supersede membership functions and non-membership functions respectively; 

and subsequently new set: Intuitionistic fuzzy T-set is introduced to supersede intuitionistic 

fuzzy set to represent impreciseness. Moreover in this paper, one general algorithm has been 

developed to find Pareto optimal solutions to multiple objective linear programming problems 

under imprecise environment. A real life industrial application model further illustrates the 

limitations of existing technique as well as advantages of using proposed technique. Finally 

conclusions are drawn. 
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1 Introduction 

Multiple objective linear programming is the process of optimizing systematically and 

simultaneously a collection of objective functions. By assuming that the decision maker (DM) 

has imprecise aspiration level for each objective function, mathematicians have proposed 

several methods in literature for characterizing Pareto optimal solutions to multiple objective 

linear programming problems (MOLPP) [9–11]. In one such approach, fuzzy set theory is used 

(Bellman and Zadeh, 1970) [3]. As pointed out by Zimmermann in 1976, and later in 1978, 

various kinds of uncertainties can be categorized as fuzziness [13]. In fact, Zimmermann and 

successive researchers converted MOLPP into single objective optimization problem to find 

Pareto optimal solutions by applying fuzziness of the DM’s aspiration with respect to goals of 

imprecise objective functions (and constraints till they are symmetric) [13, 14]. 

Recently Jimenez and Bilbao (2009) showed that fuzzy efficient solutions may not be 

Pareto optimal in case that one of the fuzzy goals is fully achieved [8]. Their procedure 

extended two phase approach of Guu, Wu (1997, 1999) [6, 7] and approach of Dubois, 

Fortemps (1999) [4] to attain Pareto optimal solutions. But according to Wu et al (2015), 

proposed approach by Jimenez and Bilbao (2009) cannot guarantee to be one general 

procedure to attain Pareto optimal solutions to MOLPP under impreciseness [8]. In their 

proposed approach, Wu et al modified definition of membership functions of fuzzy sets and 

introduced redefined membership functions [12]. 

But we observe that those definitions of redefined membership functions and their usage in 

mathematical models as well as in numerical examples in the article by Wu et al are not 

analogous to one another. It is clear from their mathematical model or given numerical 

examples that only one part of redefined membership functions, where values of objective 

functions lie between goals and goals plus tolerances is used. But in existing techniques, these 

realities are not reflected in form of constraints during formulation of the model. Thus in 

problem formulation, redefined membership functions are strictly monotone over entire 

domain (values of objective functions) where as they are not so in definition. We find that 

classical fuzzy optimization technique, developed by Zimmermann and later used by many 

researchers, also has similar drawbacks! 

We note that Wu et al (2015) suggested removal of upper bound (at unity) of membership 

functions of fuzzy sets [12]. But corresponding lower bound still remains at zero. In those 

numerical examples by Wu et al (2015), those additional constraints (arising from definition of 

redefined membership functions that objective values cannot exceed sums of goals and 

tolerances) could make no impact for minimization type of objective functions (similar 

conclusions can be drawn for objective functions of maximization type). But in many cases, if 

the lower bound of membership functions remain intact at zero, optimization models become 

infeasible under fuzzy environment. Point to be noted. 

Our deep analysis suggests the cause to lie in definition of membership functions of fuzzy 

sets.  Membership functions of fuzzy sets provide satisficing results when extreme ends of 

imprecise information can be quantified within the boundary of zero and one. But it may not be 

always logically/mathematically correct to quantify or measure impreciseness within some 

bounded subset of real line. 
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On the other hand, fuzzy set theory has been widely developed and several modifications 

and generalizations have appeared. One of them is concept of intuitionistic fuzzy (IF) sets that 

was introduced by K. T. Atanassov in 1986 [2]. IF sets consider not only membership values 

but also non-membership values such that sum of these values does not exceed unity for any IF 

objective function [2]. The advantages of using IF sets to represent impreciseness in 

optimization models are manifold and well known. Plamen P. Angelov (1997) first introduced 

the solution technique of optimization model under IF environment [1]. In subsequent years, 

researchers have extended this technique to MOLPP under IF environment. Analogously, this 

technique has many limitations. In this paper, on one side, limitations of existing optimization 

technique under IF environment are discussed and on another side, new set is introduced to 

represent impreciseness; as well as an algorithm is developed applying the new set to solve 

MOLPP under impreciseness. 

The rest of the paper is organized as follows: Section 2 is occupied with limitations of 

existing IF optimization technique. Section 3 introduces definition of new set: Intuitionistic 

fuzzy T-set to supersede IF set to measure impreciseness. Some related definitions are also 

given in Section 3. Section 4 develops the theory of optimization technique involving proposed 

intuitionistic fuzzy T-sets. Section 5 contains proposed algorithm to find Pareto optimal 

solutions to MOLPP under impreciseness. In section 6, numerical example as well as one 

model on real life industrial application is taken not only to highlight the limitations of existing 

intuitionistic fuzzy optimization technique but also to discuss advantages of using proposed 

technique. Section 7 concludes our article. 

2 Limitations of existing intuitionistic fuzzy 
optimization technique 

Consider MOLPP with k objective functions ( ), 1iz x i k= … , each of minimizing type, as 

follows: 

 1 2  (z ( ), ( )... ( ))      

 to 
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kMin x z x z x
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 (1) 
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1 2{ : , 0}, ( , ... )n m
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has IF aspiration levels for each of the objective functions ( ), 1iz x i k= …  of model (1), several 

methods have been proposed in literature for characterizing Pareto optimal solutions to it. As 

per existing literature, it is known as MOLPP under IF environment. Usually the linear 

membership function and linear non-membership function of the ith IF objective function (of 
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where 
i

L  is the goal of the ith IF objective function ( ), 1
i

z x i k= … and  and W (   W )i i i iU U ≤  

are the goal plus tolerance values of membership function ( ( )), 1i iz x i kµ = …
 

and non-

membership function ( ( )), 1
i i

z x i kν = …  of the i
th IF objective function ( ), 1 ,iz x i k= …  

respectively. Following the IF optimization technique by Angelov (1997) and other 

researchers, if 
1...

min{ ( ( ))}i i
i k

z xµα
=

= and
1...

max{ ( ( ))}i i
i k

z xβ ν
=

= , i.e. if α denotes the minimal level of 

acceptance and β denotes the maximal level of rejection of IF objectives and constraints, the 

single objective linear programming problem (LPP) may be obtained as follows: [1] 

 
max   

subject to ( ( )) ,   1 , ( ( )) ,   1 , ,  1,  0, .z x i k z x i k x Xi i i i

α β

µ α ν β α β α β β

−

≥ ∀ = … ≤ ∀ = … ≥ + ≤ ≥ ∈
 (2) 

It may be observed that during formulation of constraints ( ) ,( )   1zi i x i kµ α≥ = …
 

and 

( ( )) , i = 1z x ki iν β≤ …
 
in model (2), conventionally, researchers (Angelov and others) have 

employed 
( )

, 1i i

i i

U z x
i k

U L

−
=

−
…
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i i
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( )
, 1i i

i i

z x L
i k

W L

−
=

−
…  as 

non-membership functions ( ( )), 1
i i

z x i kν = …  respectively [1]. But 1i k∀ = … , 
( )

i i

i i

U z x

U L

−

−  
is strictly 

monotonic (decreasing for minimizing type of objectives) function ( )
i

z x , 1i k∀ = … , whereas as 

per definition, ( ( ))
i i

z xµ 1i k∀ = …  is strictly monotonic (decreasing for minimizing type of 

objectives) for ( ) [ , ]
i i i

z x L U∈  1i k∀ = …  only; and also 1i k∀ = … ,
( )

i i

i i

z x L

W L

−

−
 is strictly monotonic 

(increasing for minimizing type of objectives) function ( )
i

z x∀ , whereas ( ( ))
i i

z xν  1i k∀ = …  is 

strictly monotonic for ( ) [ , ]
i i i

z x L W∈  1i k∀ = …  only.  

To handle this effectively and efficiently, constraints ,  1,  0α β α β β≥ + ≤ ≥ were added 

to model (2) by the researchers! In this paper, next, we plan to show that presence of these 

constraints ,  1,  0α β α β β≥ + ≤ ≥  (and hence 0α ≥ ) may make model (2) (and hence model 

(1)) infeasible or may hinder from obtaining most preferable Pareto optimal solutions to 

MOLPP (1) under IF environment in some cases.  

It may be further recalled that usually in literature, IF objectives and/or constraints are 

represented by triangular IF numbers. And 1i k∀ = … , triangular IF goal of the ith IF objective 

function of minimization type is denoted by (ai; bi, bi′) with µ i(zi(ai)) = 1, νi(zi(ai)) = 0,  

µ i(zi(bi)) = 0 and νi(zi(bi′)) = 1, and bi < bi′ (equality occurs in case of fuzzy set), as shown in 

Fig. 1.   
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i i
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          ( ( ))
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′             ( )

i
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Figure 1. Strictly monotonic functions (not in scale) extended in both directions 
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Now, let us put our concentration on following result: 

Result 1. Let ( ; , )i i ia b b ′ be triangular IF goal to i
th

 objective function ( ), i = 1 kiz x ∀ … of 

minimization type to MOLPP (1). Then for any 
i ia a′′ < , deployment of strictly monotonic part 

of definition of membership and non-membership function during computation yield that sum 

of membership value and non-membership value exceeds unity always i.e.

( ( )) ( ( )) 1,  with ,i i i i i i i i i iz a z a a a a a Xµ ν′′ ′′ ′′ ′′+ > ∀ < ∈ . 

Proof:  Suppose that ( ; , )i i ia b b ′  is the triangular IF goal of ith objective function ( ), i = 1 kiz x …  

of minimization type to MOLPP (1) under IF environment. Then as per definition 1 ,i k∀ = …  

we have: ( ( )) 1i i iz aµ =  and  ( ( ))  0i i iz aν =
 
= ( ( ))i i iz bµ , ( ( )) 1i i iz bν ′ = with

 
bi < bi′. For any

1 ,i k= …  we may select any ai″ < ai such that ai″ = ( ) for some a z x x Xi i
′′ ′ ′= ∈ . Then, strictly 

monotonic part of membership function yields ( ( ))
b ai iz ai i i
b ai i

µ
′′−

′′ =
−

and strictly monotonic part 

of non-membership function yields ( ( )) .
a ai i

z ai i i
b ai i

ν
′′−

′′ = −
′ −

 Consequently, 1 ,i k∀ = …  we get

( )( )
( ( )) ( ( )) 1 1

( )( )

b a a a b b a ai i i i i i i i
z a z ai i i i i i

b a b a b a b ai i i i i i i i

µ ν

′′ ′′ ′′′− − − −
′′ ′′+ = − = + >

′ ′− − − −
. Hence the result.  � 

Now, constraint 1α β+ ≤  in model (2) implies that sum of minimal value of acceptance 

and maximal value of rejection cannot exceed unity. But from Fig. 1 as well as from result 1, 

1 ,i k∀ = … it is clear that if strictly monotonic parts are deployed, sum of membership and non-

membership values of objective functions ( ), i = 1 kiz x …  always exceeds unity in extended 

part (as depicted graphically in Fig. 1 by using dotted line on left side of ai). Hence if constraint

1α β+ ≤  is present, objective functions ( ), i = 1 kiz x …  may not attain any values lower than

ia . But since objective functions ( ), i = 1 kiz x …  are of minimization type, any values lower 

than 
ia  to objective functions ( ), i = 1 kiz x … are more preferable to DM. Further, numerical 

example 6.1.1 in section 6 shows that presence of constraint 1α β+ ≤ may result in less 

preferable optimal values for each and every objective functions ( ), i = 1 kiz x … to MOLPP 

under imprecise environment. Hence we may propose removal of constraint 1α β+ ≤  during 

formulation of model (2). 

On the other hand, classical membership functions of IF objective functions 

( ), i = 1 kiz x …  have upper bound at unity. And constraints 1, 0α β β+ ≤ ≥ automatically imply 

another constraint viz. 1α ≤ .  But this resultant constraint 1α ≤  may not allow objective 

functions ( ), i = 1 kiz x …  to attain any values lower than
ia  in model (2). In fact presence of 

this constraint may contract the feasible space! Here IF goals and/or tolerances are imprecise in 

nature and objective functions ( ), i = 1 k,iz x …  are of minimization type. Consequently DM get 

more satisfaction when optimal values of ( ), i = 1 kiz x …   become as minimum as possible 

(DM wishes for any value not exceeding
ia !). So, in some cases, resultant constraint 1α ≤ may 

result in less preferable optimal solutions to IF objective functions ( ), i = 1 kiz x … , as shown by 
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numerical example 6.1.2. in section 6 of this paper. Consequently, it may be justified not to 

impose any upper bound for membership functions as well as any lower bound for non-

membership functions of IF objective functions ( ), i = 1 kiz x … . 

On the other hand, the constraint α β≥ in model (2) implies that minimal level of 

acceptance cannot be less than maximum level of rejection. This constraint may result in IF 

objective functions ( ), i = 1 kiz x … not to attain any value higher than
ic . (In Fig. 1, 

ic denotes 

abscissa of the point of intersection of membership function and non-membership function of 

IF objective function ( ), i = 1 kiz x … ). Here goals and tolerances of IF objective functions

( ), i = 1 kiz x … are imprecise in nature. And in many cases, optimal solutions of model (2) exist 

only if objective functions ( ), i = 1 kiz x …  may attain values higher than
ic . In such cases, 

constraint α β≥ may contract the feasible space and model (2) may become infeasible. We 

have shown the case by numerical example 6.2.1 in Sect. 6. Hence it may be justified to 

remove constraint α β≥  during formulation of model (2). 

Again constraints ,  0α β β≥ ≥  in model (2) automatically imply 0α ≥ . It means minimal 

optimal value of acceptance cannot be negative. Further the constraint 0α ≥ implies that IF 

objective functions ( ), i = 1 kiz x … cannot attain any value higher than bi, i = 1,…, k. (In Fig. 1, 

, 1ib i k= … denotes the abscissa of the point of intersection between membership function and 

IF objective function zi(x), i = 1,…, k). Consequently constraint 0α ≥  may contract the 

feasible space. In many cases, optimal solutions of model (2) exist only if objective functions 

( ), i = 1 kiz x …  can attain values higher than
ib . Therefore the constraint 0α ≥ , although arising 

indirectly, may make model (2) (and hence MOLPP (1)) infeasible, as shown by numerical 

example 6.2.2 in section 6 in this paper. Hence constraint 0α ≥ needs to be avoided during 

formulation of model (2). Consequently, it may be proposed not to keep any restriction on 

lower bound of membership functions of IF objective functions ( ), i = 1 kiz x … . Therefore 

classical membership functions may be transformed into strictly monotonic functions, keeping 

all essential characteristics intact, which seems more useful in optimization technique under IF 

environment. Analogously, removal of constraint 0β ≥ in model (2) may be proposed.  

Again, definition of non-membership functions of IF objective functions ( ), i = 1 kiz x …

restrict the upper bound at unity. Corresponding constraint 1β ≤  in model (2) implies that IF 

objective functions ( ), i = 1 kiz x … cannot attain any value higher than 
ib′ (in Fig. 1). 

Consequently, it may contract the feasible space and model (2) may become infeasible. We 

show it through numerical example 6.2.3 in section 6. Hence constraint 1β ≤  has to be avoided 

during formulation of model (2). Consequently, it may be suggested not to keep any upper 

bound of non-membership functions of IF objective functions ( ), i = 1 kiz x … . Finally, classical 

non-membership functions may be transformed into strictly monotonic functions, keeping all 

essential characteristics intact, which seems more useful in optimization technique under IF 

environment.  

Hence conventional usages of membership functions and non-membership functions of IF 

objective functions may not to be consistent with how these are defined. We may term it as 

limitation of existing IF optimization technique and hence existing IF optimization technique 
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may not be one general technique to determine Pareto optimal solutions to MOLPP (1) under 

imprecise environment. 

3 Definitions 

The characteristic functions of crisp sets assign values of either 1 or 0 to each element in the 

universal set thereby discriminating between members and non-members of crisp set under 

consideration. On the other hand, membership functions of fuzzy sets generalize characteristic 

functions such that values assigned to the element of universal set fall within a specified range 

and indicate the membership values of these elements to the set in question. But we have 

observed that fuzzy membership functions fail to discriminate between ‘yes’ and ‘certainly 

yes’ by assigning membership value 1 in both cases as well as to discriminate between ‘no’, 

and ‘certainly no’ by assigning membership value 0 in both cases. And analogously, in IF set, 

membership functions and non-membership functions fail to discriminate between ‘yes’ and 

‘certainly yes’ as well as between ‘no’, and ‘certainly no’ by assigning same values to both of 

them. 

Consider one example: Suppose we plan to purchase an Apple iPhone 6 Plus 64GB Gold 

from online market place. Our budget is $800 and we cannot wait for more than two days. 

Suppose A is the IF sub set of retailers based on these criterions. Then one retailer x1 promising 

to deliver the phone in one day and at $799 may be assigned membership value unity and non-

membership value zero in IF set A. But suppose we search more and find another retailer x2, 

who promises to deliver the phone in one day and at $749. Then retailer x2 have to be assigned 

membership value unity as well as non-membership value zero in IF set A. Since initially we 

had no information/knowledge about retailer x2, we assigned membership value 1 and non-

membership value zero to x1. Therefore either we have to treat both retailers x1 and x2 at par or 

in order to reflect reality properly, we have to alter pre assigned membership and non-

membership values of IF set A. It may be termed as drawback of definitions of membership 

and non-membership functions of intuitionistic fuzzy set A.  

Hence under imprecise environment, membership and non-membership functions of IF 

sets fail to explain the case satisfactorily. An element of an IF set may lie partly or never lie or 

must lie in that set. The concepts of lying, partly lying or not lying are well measured by 

membership and non-membership functions of IF set. But it does not suit the case of either 

must lying or never lying.  

On the other hand, in optimization technique under impreciseness, one interesting, and 

useful property of membership (non-membership) functions of IF sets is that higher (lower) 

values of membership (non-membership) functions imply preferable solutions to IF objective 

functions. These ideas can be further integrated, and new functions that not only handle 

underlying issues well but also preserve characteristics of membership and non-membership 

functions may be defined. Consequently an IF set may be superseded by a new set to represent 

impreciseness. Suppose IR  denotes the set of real numbers. Then the following definitions may 

be proposed: 

Definition 1. Let S denotes universal set and A is any subset of S. The T
(+)

-characteristic 

function of A is denoted by ( )

AT
+ and is defined as ( ) :AT S IR

+ → such that it assigns one real 
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number ( ) ( )AT x
+  to each element x S∈ . Higher the value of ( ) ( )AT x

+ , larger the value of 

membership of x S∈ in A.  

And T(-)
-characteristic function of A is denoted by ( )

AT
− and is defined as ( ) :AT S IR

− →  such 

that it assigns one real number ( ) ( )AT x
− to each element x S∈ . Lower the value of ( ) ( )AT x

− , larger 

the value of non-membership of x S∈ in A.  

Definition 2. Let S denotes universal set. Intuitionistic fuzzy T-subset A of universal set S is 

defined as the ordered triplet ( ){ }( ) ( ), ( ), ( ) :A a T a T a a S
+ −= ∀ ∈ , where T(+)-characteristic function

( ) :AT S IR
+ → assigns real number ( ) ( )AT x

+ as membership value of each x S∈ and T(-)-

characteristic function ( ) :AT S IR
− → assigns real number ( ) ( )AT x

− as non-membership value of 

each x S∈ . 

E.g. T(+)-characteristic function ( )

AT
+  of intuitionistic fuzzy T-subset A of universal set S 

may be defined as ( ) ( ) 0 or < 0AT x
+ = according as x A∉  or x is certainly not in A; and 

( ) ( ) 1 or > 1AT x
+ = according as x A∈ or x is certainly in A, always keeping monotonicity of ( )

AT
+

intact such that higher the value of T(+)-characteristic function, larger the value of membership 

of .x S∈  Similarly, T(-)-characteristic function ( )

AT
− of intuitionistic fuzzy T-subset A of 

universal set S may be defined.  
Hence IF membership function of IF set may be one special case of T(+)-characteristic 

function of proposed intuitionistic fuzzy T-set and IF non-membership function of IF set may 

be one special case of T(-)-characteristic function of proposed intuitionistic fuzzy T-set. 

Consequently IF set may be one special case of intuitionistic fuzzy T-set for representing 

impreciseness. In this paper, we propose intuitionistic fuzzy T-sets to supersede intuitionistic 

fuzzy sets to represent impreciseness to solve MOLPP under imprecise environment. 

Definition 3. Let S be the universal set. Then intuitionistic fuzzy T-subset B of intuitionistic 

fuzzy T-set A is denoted by B A⊆  and is defined as the triplet

( ){ }( ) ( ) ( ) ( ) ( ) ( ), ( ), ( ) : ( ) ( ), ( ) ( ),
B B B A B A

B b T b T b T b T b T b T b b S
+ − + + − −= ≤ ≥ ∀ ∈ . 

E.g. suppose { , , , }S a b c d=  is the universal set and two intuitionistic fuzzy T-sets A and B 

are {( ,0.3,0.2),( ,0.6, 0.2),( ,  0.3,1),( ,1.2,0)}, B {( ,0.2,0.3),( , 0.3,1),( , 1,1),( ,0.6,1)}A a b c d a b c d= − − = − − . Then B A⊆ . 

Definition 4. Let S be the universal set and A and B are two intuitionistic fuzzy T-subsets of S. 

We say that A and B are equal and denote it by A = B iff A B⊆ and B A⊆ . 

E.g. suppose { , , , }S a b c d=  is the universal set and two intuitionistic fuzzy T-subsets A and B are 

{( ,0.3,0.2),( ,0.6, 0.2),( ,  0.3,1),( ,1.2,0)} and {( ,0.3,0.2),( ,0.6, 0.2),( ,  0.3,1),( ,1.2,0)}.A a b c d B a b c d= − − = − −
 

Then A B= . 

Definition 5. The union or disjunction of two intuitionistic fuzzy T-subsets A and B of uni-

versal set S, denoted by A B∪ , is defined as the ordered triplet ( ) ( ){( , ( ), ( )) : }A B A BA B x T x T x x S+ −

∪ ∪∪ = ∈ , 

where T(+)-characteristic function of intuitionistic fuzzy T-subset A B∪  is defined as
( ) ( ) ( )( ) max{ ( ), ( )},A B A BT x T x T x x S
+

+ +

∪ = ∀ ∈ and T(-)-characteristic function of intuitionistic fuzzy T-sub-

set A B∪ is defined as
( ) ( ) ( )( ) min{ ( ), ( )},A B A BT x T x T x x S
−

− −

∪ = ∀ ∈ . 
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E.g. suppose { , , , }S a b c d=  is the universal set and two intuitionistic fuzzy T-subsets of S are

{( ,0.3,0.2),( ,0.6, 0.2),( ,  0.3,1),( ,1.2,0)} and B {( ,0.6,0.3),( , 0.3,1),( ,1,0),( ,0.6, 0.1)}A a b c d a b c d= − − = − − . 

Then intuitionistic fuzzy T-subset A B∪  is given by {( ,0.6,0.2),A B a∪ = ( ,0.6, 0.2),b −

( ,1,0), ( ,1.2, 0.1)}.c d −  

Definition 6. The intersection or conjunction of two intuitionistic fuzzy T-subsets A and B 

of universal set S, denoted by A B∩ , is defined as the ordered triplet
( ) ( ){( , ( ), ( )) : }A B A BA B x T x T x x S+ −

∩ ∩∩ = ∈ , where T(+)-characteristic function of intuitionistic fuzzy 

T-subset A B∩ is defined as
( ) ( ) ( )( ) min{ ( ), ( )},A B A BT x T x T x x S
+

+ +

∩ = ∀ ∈ and T(-)-characteristic function of 

intuitionistic fuzzy T-subset A B∩ is defined as
( ) ( ) ( )( ) max{ ( ), ( )},A B A BT x T x T x x S
−

− −

∩ = ∀ ∈ . 

E.g. suppose that { , , , }S a b c d=  is the universal set and intuitionistic fuzzy T-subsets of S are

{( ,0.3,0.2),( ,0.6, 0.2),( ,  0.3,1),( ,1.2,0)} and B {( ,0.6,0.3),( , 0.3,1),( ,1,0),( ,0.6, 0.1)}A a b c d a b c d= − − = − − . 

Then intuitionistic fuzzy T-subset A B∩ is given by {( ,0.3,0.3), ( ,  0.3,1),A B a b∩ = − . 

( , 0.3,1), ( ,0.6,0)}c d− . 

Definition 7. The complement of intuitionistic fuzzy T-subset A of universal set S, denoted by

 or Ac
A , is defined as the ordered triplet ( ) ( ) {( , ( ), ( )) : }

A A
A x T x T x x S

− += ∈ . 

 

E.g. suppose that { , , , }S a b c d=  is the universal set and intuitionistic fuzzy T-subset of S is

{( ,1.2, 0.2),( ,  0.3,0.8),( ,1, 0.2),( ,0,1.5)}A a b c d= − − − . Then intuitionistic fuzzy T-subset  or Ac
A is given by 

{( , 0.2,1.2), ( ,0.8,  0.3), ( , 0.2,1), ( ,1.5,0)}.A a b c d= − − −   

When intuitionistic fuzzy T-sets represent impreciseness, we may refer the uncertain or 

imprecise environment as T-intuitionistic environment. We define intuitionistic fuzzy T-

efficient solutions or T-Pareto-optimal solutions to MOLPP (1) for suitable T(+)-characteristic 

functions and T(-)-characteristic functions under T-intuitionistic environment. 

Definition 8. A decision plan 0x X∈  is said to be an intuitionistic fuzzy T-efficient solution or 

T-Pareto-optimal solution to the MOLPP (1) under T-intuitionistic environment if there does 

not exist another y X∈ such that 0( ( )) ( ( )),T z x T z y
+ +

≤ ( ( )) ( ( )),
0

T z y T z x
− −

≤ ,i i j∀ ≠ ; and 

0( ( )) ( ( ))T z x T z y
+ +< , 0( ( )) ( ( ))T z y T z x

− −<  for at least one j. 

It may be observed that the concepts of intuitionistic fuzzy T-Pareto optimal solutions 

defined in terms of intuitionistic fuzzy T-sets are natural extension of IF efficient solutions or 

M-N-Pareto optimal solutions defined in terms of membership and non- membership functions 

of IF sets, which are another natural extension of M-Pareto optimal solutions defined in terms 

of membership functions of fuzzy sets, which are another natural extension of Pareto optimal 

solutions defined in terms of crisp sets. 
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4 Optimization technique using proposed  
intuitionistic fuzzy T-sets 

Within the scope of multiple objective decision making theory, Pareto optimality of solutions 

is necessary condition in order to guarantee the rationality of decision. In a minimization 

problem, an uncertain goal of DM may be to achieve “substantially less” than some value £. 

This type of statements may be quantified by eliciting corresponding suitable intuitionistic 

fuzzy T-sets. Also intuitionistic fuzzy T-sets can be constructed for uncertain objective 

functions when no such information is available. In this section, solution technique using 

intuitionistic fuzzy T-sets for MOLPP under T-intuitionistic environment (i.e. under imprecise 

environment) is discussed. 

Analogous to IF optimization technique by Angelov and several other researchers, if T(+)-

characteristic functions and T(-)-characteristic functions of objective functions ( ), 1
i

z x i k= …

under T-intuitionistic environment are denoted by ( ) ( ( )), 1i iT z x i k+ = …  and ( ) ( ( )), 1i iT z x i k− = …  

respectively, MOLPP model (1) is equivalent to the following problem: 

 
( ) ( ) ( ) ( ) ( ) ( )

max  ( ( ( )), ( ( )) ( ( ))) , min  ( ( ( )), ( ( )) ( ( )))1 2 2 1 2 21 1

T T
T z x T z x T z x T z x T z x T z xk k k k

+ + + − − −
… …  (3) 

Subject to x ∈ X. Using min-max operator by Bowman (1976), and if 

1...

( )
(( )) :max{ } ,

i k
T z x x Xi iv α

=

+
− ∈= = − and

1...

( )
(( )) : }min{

i k
T z x x Xi iw β

=

−
− ∈ = −= , 

model (3) may be converted into single objective optimization problem as follows: 

 
( ) ( )

( (max subject to ( )) , 1 , ( )) , 1 , . T z x i k T z x i k x Xi i i iα α ββ + −
≥ = ≤ = ∈− … …  (4) 

Suppose the optimal value of objective functionα β− of model (4) is * *α β−  (here * 

denotes optimality). The relationships between T-Pareto optimal solutions of model (4) and 

Pareto optimal solutions to the MOLPP (1) under impreciseness/T-intuitionistic can be 

characterized by following theorems one by one: 

Theorem 1. If x* ∈ X is unique optimal solution to model (4), then x* is Pareto-optimal 

solution to the MOLPP (1) under T-intuitionistic environment. 

Theorem 2. If x* ∈ X is a Pareto-optimal solution of the MOLPP (1) under T-intuitionistic 

environment, then x* is an intuitionistic fuzzy T-Pareto-optimal solution to model (4) for some
( ) ( ),i iT T
+ −< > , i=1…k. 

From theorem 1 and theorem 2, it is clear that if the uniqueness of the optimal solution x* to 

model (4) is not guaranteed, it feels necessary to perform Pareto-optimality test for x*. And 

Pareto-optimality test for x* can be performed by solving optimization problem with decision 

variables 
1 2( , , ..., ) , T

nx x x x= 1 2( , , ..., )T

kΩ = Ω Ω Ω  
and 

1 2( , , ..., )T

k=℧ ℧ ℧ ℧  
by solving the 

following model: 
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max +                                       
1 1

( ) ( )
subject to  ( ( )) ( ( *)),

( ) ( )
, ( ( )) ( ( *)), , , , 0, 1 .1 1

k k

i i
i i

T z x T z xi i i i i

T z x T z x x X i ki k i ki i i i i i i

Ω∑ ∑
= =

+ +
− Ω ≥

− −
+ ≤ ∈ Ω ≥ == =

℧

… ℧ … ℧ …

 (5) 

Theorem 3 Let ,  and x Ω ℧are optimal solutions to model (5). Then  

(1) If 0 , 1
i i

i kΩ = = ∀ =℧ … , then x* is Pareto optimal solution of the MOLPP (1) under 

T-intuitionistic environment. 

(2) If at least one 0 0
ii

orΩ > >℧ , then x* is not Pareto optimal solution to MOLPP under 

T-intuitionistic environment (1). Instead of x*, x is Pareto optimal solution to the 

MOLPP under T-intuitionistic environment (1). 

(Proofs of analogous theorems are recorded in literature). 

5 Proposed general algorithm to solve MOLPP 

under imprecise environment 

The above ideas can be further integrated into a general framework, and an algorithm can be 

developed to find Pareto optimal solutions to MOLPP (1) under imprecise environment, which 

have the additional property of being intuitionistic fuzzy T-Pareto optimal solutions for chosen 

intuitionistic fuzzy T-sets. The steps of the proposed algorithm may be synthesized as follows: 

Step 1. Convert imprecise linguistic information to objective functions and/or constraints and 

construct optimization problem, as model (1). Request the DM to specify goals and 

tolerances for these imprecise objective functions and constraints. 

Step 2. Elicit suitable T(+)-characteristic functions for imprecise objectives ( ), 1iz x i k= …  in 

such a way that higher values of T(+)-characteristic functions yield preferable values to 

objectives. Also elicit suitable T(-)-characteristic functions ( ) ( ( ))i iT z x
− for imprecise 

objectives in such a way that lower values of T(-)-characteristic functions yield 

preferable values for objectives. Well-defined T(+)-characteristic functions and T(-)-

characteristic functions preserve the amazing characteristic and their values are always 

finite. 

Step 3. Construct single objective LPP as follows: 

 
max    subject to ( ( )) , i = 1, , k, 

( ( )) , i = 1, , k, , 0, .

T z xi i

T z x x Xi i

α β α

β α β β

+

−

− ≥

≤ ≥ ≥ ∈

…

…

 (A) 

Step 4. Solve model (A). If intuitionistic fuzzy T-Pareto optimal solutions exist, go to step 8. 

Otherwise go to step 5. 

Step 5. If model (A) is infeasible, remove constraintα β≥ and add constraint 0α ≥ to it. The 

modified model becomes as follows: 
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max    subject to ( ( )) , i = 1, , k, 

( ( )) , i = 1, , k, 0, 0, .

T z xi i

T z x x Xi i

α β α

β α β

+

−

− ≥

≤ ≥ ≥ ∈

…

…

 (B) 

 Solve this modified model (B). If it has intuitionistic fuzzy T-Pareto optimal solutions, 

go to step 8. Otherwise, go to step 6. 

Step 6. Remove the newly added constraint 0α ≥ and add the constraint 1β ≤  in last modified 

model. The modified model becomes  

 
max   subject to ( ( )) , i = 1 k, 

( ( )) , i = 1 k, 1,  unrestricted in sign, .

T z xi i

T z x x Xi i

α β α

β β α

+

−

− ≥

≤ ≤ ∈

…

…

 (C) 

Solve model (C). If it has intuitionistic fuzzy T-Pareto optimal solutions, go to step 8. 

Otherwise, remove constraint 1β ≤ from it and solve. If it has intuitionistic fuzzy T-

Pareto optimal solutions, go to step 8. Otherwise the model is infeasible, even under 

IF environment; go to step 7. 

Step 7. Ask decision maker to modify goals and tolerances for IF objectives and constraints. 

Go to step 2.  

 It may be noted that goals and/or tolerances of IF objective functions should better lie 

within individual maximum and minimum values. 

Step 8. These solutions are intuitionistic fuzzy T-Pareto optimal solutions under imprecise 

environment with specified goals and tolerances. To test whether these are also Pareto 

optimal solutions to model (1), solve model (5). Let ,  and x Ω ℧  are optimal solutions 

of model (5) in step 4. Then following two cases may arise: 

a. If 0 1
i i

i kΩ = = ∀ =℧ … , x* are Pareto-optimal solutions to MOLPP (1) under T-

intuitionistic environment. 

b. If 0 or 0
ii

Ω > >℧
 
for at least one i, then x* are not Pareto optimal solutions to 

MOLPP (1) under T-intuitionistic environment. Instead of x*, x are Pareto 

optimal solutions to MOLPP (1) under T-intuitionistic environment. 

 These solutions are thus Pareto-optimal to MOLPP (1) under T-intuitionistic 

environment. Supply these optimal solutions to the DM. If he/she is satisfied with 

these solutions, stop. Otherwise go to Step 7.  

6 Numerical examples  

6.1 Numerical Example 1 

Consider MOLPP under imprecise environment as follows: 

 
( ) ( ), max  5 5  max  3 8.2

1 1 2 2 1 2

  5 7 12,9 10, 5 3 3, ,  0.
1 2 1 2 1 2 1 2

imprecise z x x x imprecise z x x x

subject to x x x x x x x x

= + = −

+ ≤ + ≤ − + ≤ ≥
 (6) 

To construct classical membership and non-membership functions for IF objective func-

tions zi(x), i = 1, 2. Individual maximum and minimum of IF objective functions zi(x), i = 1, 2 

are computed and are given in Table 1. 
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Table 1. Individual maximum and minimum of objective functions 

Table 2. Goals and tolerances of objective functions 

Table 3. Goals and tolerances of objective functions 

6.1.1. Better result on removal of  constraint 1α β+ ≤  

Suppose DM specifies goals, tolerances of IF objective functions as given in Table 2. Based on 

the information, we compute optimal solutions in existing IF optimization technique (by using 

Lingo 15.0.32). Next, we remove the constraint 1α β+ ≤  and solve the same problem with 

same goals, tolerances of IF objective functions in proposed algorithm (by using Lingo 

15.0.32). The intuitionistic fuzzy T-Pareto optimal solutions and finally Pareto optimal 

solutions are obtained as given in Table 4. 

Here it may be observed that proposed algorithm generates more preferable Pareto optimal 

solutions with both objective functions holding more preferable optimal values along with 

higher levels of acceptances as well as lower levels of rejections than existing IF optimization 

technique. 

6.1.2. Better result without adding  constraint 1α ≤ (already constraint 1α β+ ≤ is not present) 

Suppose DM specifies goals, tolerances of IF objective functions as given in Table 3. Based on 

the information, we compute optimal solutions in existing IF optimization technique (by using 

Lingo 15.0.32). Next, we remove the constraint 1α ≤  and solve the same problem with same 

goals, tolerances of IF objective functions in proposed algorithm (by using Lingo 15.0.32). The 

intuitionistic fuzzy T-Pareto optimal solutions and finally Pareto optimal solutions are obtained 

as given in Table 4. 

Here it may be observed that proposed algorithm may generate more preferable Pareto 

optimal solutions to MOLPP (6) with both objective functions holding more preferable optimal 

values along with higher levels of acceptances as well as lower levels of rejections than 

existing IF optimization technique. 

Objective functions Individual maximum values Individual minimum values 

1( )z x  10 0 

2 ( )z x  3.33  −14.06 

Objective functions Goals 
Tolerances for 

membership functions non-membership functions 

1( )z x  8 1.5 2 

2 ( )z x  −2 2 2.5 

Objective functions Goals 
Tolerances for 

membership functions non-membership functions 

1( )z x
 8 1.5 2 

2 ( )z x
 −2 2 2.5 
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No. 

Optimal solutions by existing IF 

optimization technique 

(* denotes optimality) 

Pareto Optimal solutions by proposed 

algorithm (   denotes Pareto optimality): 

6.1.1 

* 1,  * 0,  * 0.993,  * 0.607, ( *) 8,  ( *) 2,
1 2 1 2

( ( *)) ( ( *)) 1,  ( ( *)) ( ( *)) 0.
1 1 2 2 1 1 2 2

x x z x z x

z x z x z x z x

α β

µ µ ν ν

= = = = = = −

= = = =

 

0 ,  1.045,  0.594,1 2 1 2 1 2

( ) ( )
( ) 8.197,  ( ) 1.738, ( ( )) ( ( ))  1.131,  1 2 1 1 2 2

( ) ( )
( ( )) 0.098, ( ( )) 0.105.1 1 2 2

x x

z x z x T z x T z x

T z x T z x

Ω = Ω = = = = =

+ +
= = − = =

− −
= − = −

℧ ℧

 

6.1.2 

* *
* 1,  * 0,  0.993,  0.607, ( *) 8,  ( *) 2,1 2 1 2

( ( *)) ( ( *)) 1, ( ( *)) ( ( *)) 0.1 1 2 2 1 1 2 2

x x z x z x

z x z x z x z x

α β

µ µ ν ν

= = = = = = −

= = = =
 

0 , 1.045,  0.594, 
1 2 1 2 1 2

( ) 8.197,  ( ) 1.738 
1 2

( ) ( )
( ( ) 1.131 ( ( )) 1.131,1 1 2 2

( ) ( )
( ( )) 0.098, ( ( )) 0.105.1 1 2 2

x x

z x z x

T z x T z x

T z x T z x

Ω = Ω = = = = =

= = −

+ +
= = =

− −
= − = −

℧ ℧

 

Table 4. Results of model (6) in different cases 

Table 5. Individual maximum and minimum of objective functions 

Table 6. Goals and tolerances of objective functions 

6.2 Numerical Example 2 

Consider MOLPP under IF environment as follows: 

 
 max 5 5 ,  min   5 ,  max  3 8.2  

1 2 1 2 1 2

  5 7 12,9 10, 5 3 3, ,  0.
1 2 1 2 1 2 1 2

imprecise x x imprecise x x imprecise x x

subject to x x x x x x x x

+ + −

+ ≤ + ≤ − + ≤ ≥
 (7) 

To construct classical membership and non-membership functions for each IF objective 

function ( ), 1, 2,3iz x i = , individual maximum and minimum of each objective function may be 

obtained as in Table 5. 

6.2.1. Solution found after removal of constraintα β≥  

Suppose that DM specifies goals, tolerances of imprecise objective functions as given in 

Table 6. Based on the information, we compute optimal solutions by using existing IF 

optimization technique. Solving the problem by using Lingo 15.0.32, it is found that the 

problem has no feasible solution. Next, we remove the constraint α > β and solve the same 

Objective functions Individual maximum values Individual minimum values 

51 1 2( ) 5z x xx = +
 10 0 

52 1 2( )z x xx = +
 6 0 

3 8.23 1 2( )z x xx = −
 3.33 -14.06 

Objective 

functions 
Goals 

Tolerances for 

membership functions non-membership functions 

1( )z x  7 1.5 2 

2 ( )z x  2 2 2.5 

3 ( )z x  −2 2 2.5 
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problem with same goals, tolerances of IF objective functions in proposed algorithm (by using 

Lingo 15.0.32). The intuitionistic fuzzy T-Pareto optimal solutions and finally Pareto optimal 

solutions are obtained as given in Table 9. 

Here it may be observed that proposed algorithm may generate Pareto optimal solutions to 

MOLPP (7) under imprecise environment whereas existing IF optimization technique may 

make the MOLPP infeasible. 

Table 7. Goals and tolerances of objective functions 

Table 8. Goals and tolerances of objective functions 

6.2.2. Solution found after removal of constraint 0α ≥  (so constraintα β≥ is not present) 

Suppose that DM specifies goals, tolerances of imprecise objective functions as given in 

Table 7. Based on the information, we compute optimal solutions by using existing IF 

optimization technique. Solving the problem by using Lingo 15.0.32, it is found that the 

problem has no feasible solution. Next, we remove the constraint 0α ≥  and solve the same 

problem with same goals, tolerances of IF objective functions in proposed algorithm (by using 

Lingo 15.0.32). The intuitionistic fuzzy T-Pareto optimal solutions and finally Pareto optimal 

solutions are obtained as given in Table 9. 

Here it may be observed that proposed algorithm may generate Pareto optimal solutions to 

MOLPP (7) under imprecise environment whereas existing IF optimization technique may 

make the MOLPP infeasible. 

6.2.3. Solution found without adding constraint 1β ≤   

 (so constraintsα β≥ and 0α ≥ are not present) 

Suppose that DM specifies goals, tolerances of imprecise objective functions as given in 

Table 8. Based on the information, we compute optimal solutions by using existing IF 

optimization technique. Solving the problem by using Lingo 15.0.32, it is found that the 

problem has no feasible solution. Next, we remove the constraint 1β ≤  and solve the same 

problem with same goals, tolerances of IF objective functions in proposed algorithm (by using 

Objective 

functions 
Goals 

Tolerances for 

membership functions non-membership functions 

1( )z x  8 1.5 2 

2 ( )z x  1.5 2 2.5 

3 ( )z x  −2 2 2.5 

Objective 

functions 
Goals 

Tolerances for 

membership functions non-membership functions 

1( )z x  9.5 1.5 2 

2 ( )z x  1.5 2 2.5 

3 ( )z x  −2 2 2.5 



119 

Lingo 15.0.32). The intuitionistic fuzzy T-Pareto optimal solutions and finally Pareto optimal 

solutions are obtained as given in Table 9. 

Here it may be observed that proposed algorithm may generate Pareto optimal solutions to 

MOLPP (7) under imprecise environment whereas existing IF optimization technique may 

make the MOLPP infeasible. 

No. 
Optimal solutions by existing 

IF optimization technique 

Pareto Optimal solutions by proposed algorithm  

(   denotes Pareto optimality): 

6.2.1 No feasible solution found 

1 2 3 1 2 3 1 2

1 2 3

1 2

1

( ) ( ) ( )
1 2 3

( ) ( ) ( )
1 2 3

0 , 0.561,  0.624, 

( ) 5.927,  ( ) 3.431,  ( ) 3.431,

( ( )) ( ( )) ( ( )) 0.284,
3

( ( )) 0.537, ( ( )) ( ( )) 0.572.
2 3

T T T

T T T

x x

z x z x z x

z x z x z x

z x z x z x

+ + +

− − −

Ω = Ω = Ω = = = = = =

= = = −

= = =

= = =

℧ ℧ ℧

 

6.2.2 No feasible solution found 

0 , 0.576,  0.710, 
1 2 3 1 2 3 1 2

( ) 6.43, ( ) 3.59,  ( ) 4.094,
1 2 3

( ) ( ) ( )
( ( )) ( ( )) ( ( )) 0.046,

1 1 2 2 3 3

( ) ( ) ( )
( ( )) 0.785, ( ( )) ( ( )) 0.837.

1 1 2 2 3 3

x x

z x z x z x

T z x T z x T z x

T z x T z x T z x

Ω = Ω = Ω = = = = = =

= = = −

+ + +
= = = −

− − −
= = =

℧ ℧ ℧

 

6.2.3. No feasible solution found 

1 2 3 1 2 3 1 2

1 2 3

( ) ( ) ( )
1 1 2 2 3 3

( ) ( ) ( )
1 1 2 2 3 3

0 , 0.675,  0.820, 

( ) 7.477,  ( ) 4.197,  ( ) 4.697,

( ( )) ( ( )) ( ( )) 0.349,

( ( )) 1.011,  ( ( )) ( ( )) 1.079.

x x

z x z x z x

T z x T z x T z x

T z x T z x T z x

+ + +

− − −

Ω = Ω = Ω = = = = = =

= = = −

= = = −

= = =

℧ ℧ ℧

 

Table 9. Results of model (7) in different cases 

6.3 Application of proposed algorithm in large scale steel plant 

6.3.1. Usage of T-sets in optimization technique in steel-iron industry problem 

This example is based on paper titled A multiple objective model for purchasing of bulk raw 

materials of a large-scale integrated steel plant by Zhen Gao, Lixin Tang (2003) published in 

International Journal of Production Economics [5]. Instead of assigning crisp goals of the 

objective functions, IF goals may be assigned to imprecise objective functions. Moreover,  

in place of membership and non-membership functions, T(+)-characteristic functions and  

T(-)-characteristic functions may be used in this MOLPP with imprecise goals. Here the 

problem is to purchase raw materials of a large scale steel plant. In steel-iron industry, 

selection of appropriate items is the key to reduce production cost. Decision on quantities of 

raw materials, using strong professional knowledge on steel iron metallurgy, is another key 

objective. Selection of vendors to keep stability and quality of supply of raw materials is also 

key objective in steel-iron industry. Using two dimensional vectors xij denoting order quantity 

of j
th item of raw materials from i

th vendor, and assuming the model as single time phase 

model, the constraints under consideration may be taken as follows: purchasing budget 

constraint, production demand constraint, inventory capacity constraint, technological 

requirement constraint, vendor resource constraint. Suppose the problem is to solve MOLPP 

with seven vendors and thirteen items that belong to four large kinds of bulk raw materials – 
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ore, lump ore, pellet, coal [5]. Therefore analogous to Gao (2003), the MOLPP with imprecise 

objective functions may be taken as follows: 

Imprecise min z ( ) 0.112 0.127 0.122 0.115 0.119 0.0654 0.0621     
1 11 31 41 51 71 12 22

                                                0.0586 0.0602 0.195 0.185 0.09521 0.0975
32 62 33 53 14 34

Impre

x x x x x x x x

x x x x x x

= + + + + + +

+ + + + + +

cise min z ( ) 0.1 0.155 0.17 0.12 0.2 0.1 0.25 0.15 0.3
2 11 31 41 51 71 12 22 32 62

                                                                                                             0.15
33

x x x x x x x x x x

x

= + + + + + + + +

+ 0.12 0.1 0.15
53 14 34

Imprecise min z ( ) 0.2 0.1 0.15 0.17 0.13 0.2 0.1 0.15 0.22
3 11 31 41 51 71 12 22 32 62

                                                                                          

x x x

x x x x x x x x x x

+ + +

= + + + + + + + +

                   0.15 0.17 0.2 0.15
33 53 14 34

x x x x+ + + +

 

 

subject to   z ( ) 16.373,1.2 0.9 1.1 0.95 60,
1 11 31 41 51 71

1.25 0.95 1.15 1.05 30,1.3 1.1 10,  1.12 1.24 70,
12 22 32 62 33 53 14 34

2 2 2 2 3 3 , 0,
12 22 32 62 33 53 11 31 41 51 71 14 34

x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x
ij

i

≤ + + + + ≥

+ + + ≥ + ≥ + ≥

+ + + + + = + + + + + + ≥

∀ 1 7, 1 4.j= =… …

 (8) 

Proposed algorithm may be used to find Pareto optimal solutions to this MOLPP under  

T-intuitionistic environment.  

Different cases may be considered based on different goals and tolerances (these are 

supplied by DM or presumed values) and the results are tabulated in Table 10. There, in cases 

I, II and III, it is shown that there exists no optimal solution if classical IF membership and 

non-membership functions are used along with existing optimization technique.  

 

Cases I II III 

Objective functions 1( )z x  2( )z x  3( )z x  1( )z x  2( )z x  3( )z x  1( )z x  2( )z x  3( )z x  

Goals 16 18.5 27.5 15.5 22.5 23.8 15.1 20.4 24.4 

Tolerances 

of 

( )
( ( ))T z xi i

+

 
0.3 0.3 0.3 0.5 0.5 0.5 0.4 0.4 0.4 

( )
( ( ))T z xi i

−
 0.5 0.5 0.5 0.7 0.7 0.7 0.6 0.6 0.6 

Solutions by 

existing technique 
No feasible solution found No feasible solution found No feasible solution found 

Intuitionistic fuzzy 

T-Pareto optimal 

solutions 

15.833 18.333 27.333 15.829 22.829 24.129 15.734 21.034 25.034 

Pareto optimal 

solutions 
15.833 18.333 27.333 15.829 22.829 24.129 15.734 21.034 25.034 

Optimal 

grades of 

( )
( ( ))T z xi i

+

 
1.56 1.56 1.56 0.34 0.34 0.34 -0.58 -0.58 -0.58 

( )
( ( ))T z xi i

−
 -0.33 -0.33 -0.33 0.47 0.47 0.47 1.06 1.06 1.06 

Remarks 

1. Removal of α + β ≤ 1, β ≥ 0 

(and not adding α ≤ 1 gives 

optimal solution. 

2. More acceptable optimal 

values than crisp method to 

each objective function (Gao et 

al, 2003) 

1. Removal of α ≥ β gives 

optimal solution. 

 

2. More acceptable optimal 

values than crisp method to 

each objective function (Gao et 

al, 2003) 

1. Removal of α ≤ 0 (and not 

adding β ≥ 1) gives optimal 

solution. 

2. More acceptable optimal 

values than crisp method to 

each objective function (Gao et 

al, 2003) 

Table 10. Purchase of bulk raw materials of a large-scale integrated steel plant with IF goals 
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But if strictly monotonic T(+)-characteristic functions and T(-)-characteristic functions, as 

proposed in this paper, are used, proposed algorithm may generate intuitionistic fuzzy T-Pareto 

optimal solutions and hence Pareto optimal solutions. Moreover the Pareto optimal solutions in 

case I, case II and case III in Table 8 are more preferable for all objective functions to the DM 

than crisp solution as given by Gao (2003). In proposed algorithm, the optimal values of 

1 2 3( ), ( ), ( )z x z x z x  in case I, case II and case III are Pareto optimal. And result in case I is better 

than solution number 2, case II is better than solution number 3and solution number 4, case III 

is better than solution number 1 in crisp optimization by Gao (2003). 

6.3.2. T-sets to solve MOLPP under impreciseness when little information is available  

It is discussed in this paper that traditional membership function may not be the only function 

whose higher value gives preferable value of objective function. Similar statement can be made 

for non-membership function as well.  

Now in numerical example 6.3.1, T(+)-characteristic functions and T(-)-characteristic 

functions are constructed analogous to traditional membership and non-membership functions. 

But for minimizing type of objective functions ( )
i

z x , one example of T(+)-characteristic function 

may be ( )
i

z x− and of  T(-)-characteristic function may be ( )
i

z x itself. These may be useful 

specially when goals and/or tolerances cannot be determined by DM or even a DM may not be 

available at all; so that traditional membership and/or non-membership functions cannot be 

defined for IF objectives. Using ( )
i

z x−  as T(+)-characteristic function and ( )
i

z x  as  

T(-)-characteristic function for each IF objective function ( ) 1,2,3
i

z x i∀ = and applying proposed 

algorithm on MOLPP (8) under imprecise environment, single objective LPP, analogous to 

model (4), may be obtained and by using Lingo 15.0.32, intuitionistic fuzzy T-Pareto optimal 

solutions may be obtained as follows: 

* 23.704,  * 23.704,  ( *) 16.373,  ( *) 23.704, ( *) 23.704.
1 2 3

z x z x z xα β= − = = = =
 

To test the Pareto optimality of these intuitionistic fuzzy T-Pareto optimal solutions, one 

problem, analogous to model (5), may be solved and by using Lingo 15.0.32, Pareto optimal 

solutions  ,  and x Ω ℧may be obtained as follows 

1 2 3 1 2 30 , ( ) 16.373,  ( ) 23.704, ( ) 23.704.
1 2 3

z x z x z xΩ = Ω = Ω = = = = = = =℧ ℧ ℧  

This is another set of Pareto optimal solutions. It may be mentioned that T(+)-characteristic 

functions and T(-)-characteristic functions may be defined in many other suitable ways. 

7  Conclusions 

Technique to find Pareto optimal solutions to MOLPP under imprecise environment is 

discussed in this paper. IF technique is one of the richest apparatus for formulation of 

optimization problems under imprecise environment, thereby generating more satisficing result 

than crisp optimization technique. In this paper, limitations of existing IF optimization 

technique are discussed. It is identified that existing IF optimization technique may not only 

fail to correctly identify the best solution among the good but also it may fail to find bad 
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solution among the worst! Hence it may be concluded that existing IF optimization technique 

may not be a general procedure to obtain Pareto optimal solutions to MOLPP under 

impreciseness.  

To overcome these limitations, new set viz. intuitionistic fuzzy T-set is proposed to 

supersede IF set for representing impreciseness. An algorithm is proposed involving 

intuitionistic fuzzy T-sets that generates most preferable Pareto optimal solutions in all cases 

whenever they exist and may be termed as a general procedure to attain Pareto optimality to 

MOLPP under impreciseness. 

Moreover in real life situations, the DM may not be able to identify the goals or tolerances 

or both of imprecise objective functions; and in some cases, DM may not exist at all. In these 

scenarios, it is difficult to construct IF membership and non-membership functions of 

imprecise objective functions. But T(+)-characteristic functions and T(-)-characteristic functions 

of T-sets may be utilized to measure impreciseness and hence may be applied to yield 

Pareto optimal solutions to MOLPP under impreciseness. And in fact, usage of well-defined 

T(+)-characteristic functions and T(-)-characteristic functions of T-sets may remove  the 

necessity to fetch information from DM and saves precious time of both. 

Under these circumstances, it may be further concluded that issues of getting no solution 

as well as Pareto optimality having optimal membership value at unity by using existing IF 

optimization technique yielded from several published methods seems worthwhile or even 

necessary to reconsider. The same is true for nonlinear problems of this type as well. 

Acknowledgements 

This research work is supported by University Grants Commission, India vide minor research 

project (PSW-071/13-14 (WC2-130) (S.N. 219630)). The first author sincerely acknowledges 

the contributions and is very grateful to them. 

References 

[1] Angelov, P. P. (1997) Optimization in an intuitionistic fuzzy environment. Fuzzy Sets 

and Systems, 86, 299–306. 

[2] Atanassov, K. T. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96. 

[3] Bellman, R. E., & Zadeh, L. A. (1970) Decision making in a fuzzy environment.     

Management Science, 17, 141–164.   

[4] Dubois, D., & Fortemps, P. (1999) Computing improved optimal solutions to max–min 

flexible constraint satisfaction problems. European Journal of Operational Research, 

118, 95–126.  

[5] Gao, Z., & Tang, L. (2003) A multi-objective model for purchasing of bulk raw materials 

of a large-scale integrated steel plant. International Journal of Production Economics, 

83, 325–334. 



123 

[6] Guu, S.-M., & Wu, Y.-K. (1997) Weighted coefficients in two-phase approach for 

solving the multiple objective programming problems. Fuzzy Sets and Systems, 85,  

45–48. 

[7] Guu, S.-M., & Wu, Y.-K. (1999) Two phase approach for solving the fuzzy linear  

programming problems, Fuzzy Sets and Systems, 107, 191–195. 

[8] Jiménez, M., & Bilbao, A. (2009) Pareto-optimal solutions in fuzzy multi-objective 

linear programming. Fuzzy Sets and Systems, 150, 2714–2721. 

[9] Sakawa, M., Yano, H., & Yumine, T. (1987) An interactive fuzzy satisficing method for 

multi-objective linear-programming problems and its application. IEEE Transactions on 

Systems, Man and Cybernetics, SMC-17, 654–661. 

[10] Sakawa, M., Yano, H., & Nishizaki, I. (2013) Linear and Multi-objective Programming 

with Fuzzy Stochastic Extensions. Springer Science Business Media New York. 

[11] Tanaka, H., Okuda, T., & Asai, K. (1974) On fuzzy mathematical programming. Journal  

of Cybernetics, 3, 37–46. 

[12] Wu, Y.-K., Liu, C.-C., & Lur, Y.-Y. (2015) Pareto-optimal solution for multiple 

objective linear programming problems with fuzzy goals. Fuzzy Optimum Decision 

Making, 43–55. 

[13] Zimmermann, H.-J. (1978) Fuzzy programming and linear programming with several 

objective functions. Fuzzy Sets and Systems, 1(1), 45–55. 

[14] Zimmermann, H.-J. (1985) Applications of fuzzy set theory to mathematical 

programming. Information Sciences, 36, 29–58.  


