FOUR INTUITIONISTIC FUZZY CATEGORIES REPRESENTED BY FUNCTOR CATEGORIES

Zhang Cheng

Department of Mathematics, Dalian University Dalian 116622, P. R. China

Yuan Xue-hai

Deparment of Mathematics, Liaoning Normal University Dalian 116029, P. R. China

Abstract: By the use of the category IFuz of the IFSs, four intuitionistic fuzzy categories such as $IFuz^2$, $IFuz^-$, M-IFuz and IFBn (I) are obtained and they can be represented as functor categories from small categories to category IFuz of IFSs respectively.

Keywords: IFSs, categories, functors, natural transformations.

1. Preliminary

1.1 Concepts of $IFS^{[1]}$

Let a set E be fixed. An IFS A^* in E is an object having the form

 $A^* = \{ < x, \mu_{A}(x), \upsilon_{A}(x) > | x \in E \}$

Where the functions $\mu_A: E \to [0,1]$ and $\upsilon_A: E \to [0,1]$ define the degree of membership and the degree of nonmembership of the element $x \in E$ to the set A, which is subset of E, and for every $x \in E: 0 \leq \mu_A(x) + \upsilon_A(x) \leq 1$. Four our convenience, A^* is denoted as (A, μ_A, υ_A) .

1.2 Natural transformation and category Funct(C,D)

Let **C** and **D** be two categories, F and G be two functors from **C** to **D**. A natural transformation from functor F to functor G is an assignment τ that provides, for each **C**-object a, a **D**-arrow $\tau_a: F(a) \rightarrow G(a)$, such that for any **C**-arrow $f: a \rightarrow b$, the following diagram commutes in **D**, i. e. $\tau_b \circ F(f) = G(f) \circ \tau_a$.



we use the symbolism $\tau: F \rightarrow G$, or $F \rightarrow G$, to denote that τ is a natural transformation from F to G. The arrows τ_a are called the components of τ .

By the use of natural transformation, we can form a category Funct(C,D):

----- its objects are functors from C to D;

-----an arrow from functor F to functor G is a natural transformation $\tau: F \rightarrow G$;

Let $\tau: F \rightarrow G$ and $\sigma: G \rightarrow H$ be two natural transformations, the composition of σ and τ satisfies: $(\sigma \circ \tau)_a = \sigma_a \circ \tau_a, \forall a \in \mathbb{C}$.

1.3 Small Categories

Let $2 = \{0, 1\}$, then 2 can form a category with only two objects and only two identity arrows, which is called as discrete category.

Let $2 = \{0,1\}$, then 2 can form a category with only two objects and only three arrows: $l_0 = \langle 0, 0 \rangle_{:} 0 \rightarrow 0$ and $l_1 = \langle 1, 1 \rangle_{:} 1 \rightarrow 1$ be two identity arrows and arrow $\langle 0, 1 \rangle_{:} 0 \rightarrow 1$, which is called as poset category.

Let $\mathbf{M} = (M, *, e)$ be a monoid category with only one object M, its arrows are the members m of M, * be a composition, i.e., $m \circ n = m * n$, and e is a identity from M to M.

Let I be a set, then I can form a category with only identity arrow and its objects are the members i of I, which is called as a discrete category.

In this paper, we construct four intuitionistic fuzzy categories IFuz², IFuz⁺, M-IFuz and IFBn(I) by using category IFuz and prove that they are isomorphic with functor categories Funct(2, IFuz)(2 is a discrete category), Funct(2, IFuz)(2 is a poset category), Funct(M, IFuz) and Funct(I, IFuz) respectively.

2. Category IFuz², IFuz⁺, M-IFuz and IFBn(I)

Let **IFuz** be a category. Its objects are $\text{IFs}(A, \mu_A, \nu_A)$ satisfying: $\mu_A(a) > 0, \forall a \in A$; its arrow from (A, μ_A, ν_A) to (B, μ_B, ν_B) is a mapping $f: A \rightarrow B$ satisfying: $\mu_B(f(a)) \ge \mu_A(a), \nu_B(f(a)) \le \nu_A$ (a), $\forall a \in A$. by the use of category **IFuz**, we can obtain the following categories:

(1)Category IFuz²

Its objects are $\langle (A, \mu_A, \upsilon_A), (B, \mu_B, \upsilon_B) \rangle$, where (A, μ_A, υ_A) and (B, μ_B, υ_B) are **IFuz**-objects.

An arrow from $<(A, \mu_A, \upsilon_A), (B, \mu_B, \upsilon_B) >$ to $<(C, \mu_C, \upsilon_C), (D, \mu_D, \upsilon_D) >$ is a pair of mappings (f,g), where $f: A \rightarrow C$ and $g: B \rightarrow D$ satisfying:

(i) $\mu_{\mathcal{C}}(f(a)) \ge \mu_{\mathcal{A}}(a), \upsilon_{\mathcal{C}}(f(a)) \le \upsilon_{\mathcal{A}}(a), \forall a \in \mathcal{A};$

(ii) $\mu_{\mathrm{D}}(g(b)) \ge \mu_{\mathrm{B}}(b), \upsilon_{\mathrm{D}}(g(b)) \le \upsilon_{\mathrm{B}}(b), \forall b \in B.$

Composition of (f,g) and (f',g') satisfies: $(f,g) \circ (f',g') = (f \circ f',g \circ g')$.

(2)Category IFuz→

Its objects are $[(A,\mu_A) \xrightarrow{f} (B,\mu_B,\upsilon_B)]$, where (A,μ_A,υ_A) and (B,μ_B,υ_B) are **IFuz**-objects

and f is a IFuz-arrow.

An arrow from $((A, \mu_A, \upsilon_A) \xrightarrow{f} (B, \mu_B, \upsilon_B))$ to $((C, \mu_C, \upsilon_C) \xrightarrow{g} (D, \mu_D, \upsilon_D))$ is a pair of mappins (h,k), where $h: A \rightarrow C$ and $k: B \rightarrow D$ satisfying:

(i) $\mu_{C}(h(a)) \ge \mu_{A}(a), v_{C}(h(a)) \le v_{A}(a), \forall a \in A;$ (ii) $\mu_{D}(k(b)) \ge \mu_{B}(b), v_{D}(k(b)) \le v_{B}(b), \forall b \in B;$ (iii) $k \circ f = g \circ h.$

Composition of (h,k) and (h',k') satisfies: $(h,k) \circ (h',k') = (h \circ h', k \circ k')$.

(3)Category M-IFuz

Let (M, *, e) be a monoid with identity *e*. objects of category **M-IFuz** are (A, μ_A, ν_A, ξ) where (A, μ_A, ν_A) is **IFuz**-objects. mapping $\xi: M \times A \rightarrow A$ satisfies

(i) $\xi(e,a) = a, \forall a \in A;$

(ii) $\xi(m,\xi(n,a)) = \xi(m * n,a), \forall a \in A, m, n \in M;$

(iii) $\mu_{A}(\xi(m,a)) \geqslant \mu_{A}(a), \upsilon_{A}(\xi(m,a)) \leqslant \upsilon_{A}(a), \forall a \in A.$

An arrow from $(A, \mu_A, \upsilon_A, \xi)$ to $(B, \mu_B, \upsilon_B, \eta)$ is a mapping $f: A \rightarrow B$ Satisfying

(a) $f(\xi(m,a)) = \eta(m, f(a)), \forall a \in A;$ (b) $\mu_B(f(a)) \ge \mu_A(a), \upsilon_A(f(a)) \le \upsilon_A(a), \forall a \in A.$ Composition of arrows is composition of mappings.

(4)Category IFBn(I)

Let *I* be a set. Objects of category **IFBn**(**I**) are $(A, \mu_A, \upsilon_A, f)$, where (A, μ_A, υ_A) is **IFuz**-objects, $f: A \rightarrow I$ is a mapping.

An arrow from (A, μ_A, ν_A, f) to (B, μ_B, ν_B, g) is a mapping $k: A \rightarrow B$ such that

(i) $g \circ k = f$; (ii) $\mu_{\mathrm{B}}(k(a)) \ge \mu_{\mathrm{A}}(a), \upsilon_{\mathrm{B}}(k(a)) \le \upsilon_{\mathrm{A}}(a)$.

Composition of arrows is composition of mappins.

Category $IFuz^2$, $IFuz^-$, M-IFuz and IFBn(I) have intimate connections with category IFuz. We shall prove that they can be represented as category Funct (C, IFuz) of functors from small category C to category IFuz.

Theorem 1. Let $2 = \{0, 1\}$ be a discrete category, then category IFuz² is isomorphic with category Funct(2, IFuz).

Proof. Let $F: 2 \rightarrow IFuz$ be a functor, then (F(0), F(1)) is $IFuz^2$ -object. Since 2 is a discrete category with only identity arrows $1_0 = <0, 0 > : 0 \rightarrow 0$ and $1_1 = <1, 1 > : 1 \rightarrow 1$, so $F(1_0)$ and $F(1_1)$ are identity arrows from F(0) to F(0), F(1) to F(1) respectively. Hence F can be seen as <F(0), F(1)>.

Let F and G be two functors from 2 to IFuz and $\tau: F \rightarrow G$ be a natural transformation, then τ has two components $\tau_0: F(0) \rightarrow G(0)$ and $\tau_1: F(1) \rightarrow G(1)$ and consequently τ can be seen as (τ_0, τ_1) . Let

 $\mathscr{F}: \operatorname{Funct}(2, \operatorname{IFuz}) \to \operatorname{IFuz}^{2}$ $F \mapsto \langle F(0), F(1) \rangle$ $F \stackrel{\tau}{\longrightarrow} G \mapsto (\tau_{0}, \tau_{1}),$

in the state

then \mathscr{F} is a functor. Clearly, \mathscr{F} is a isomrphism. Hence \mathbf{IFuz}^2 is isomorphic with category Funct (2, IFuz).

Theorem 2. Let $2 = \{0,1\}$ be a poset category, then $IFuz^{-1}$ is isomorphic with category Funct(2, IFuz).

Proof. Let $F: 2 \rightarrow IFuz$ be a functor and $F(1_0) = 1_{F(0)}, F(1_1) = 1_{F(1)}, F(<0, 1>) = f$, then F can be seen as $(F(0) \xrightarrow{f} F(1))$.

Let $G: 2 \rightarrow IFuz$ be a functor and $\tau: F \rightarrow G$ be a natural transformation with component (τ_0, τ_1) , then (τ_0, τ_1) is a arrow from $[F(0) \xrightarrow{f} F(1)]$ to $[G(0) \xrightarrow{g} G(1)]$ (where g = G(<0, 1 >)). Let

- - $F \mapsto (F(0) \xrightarrow{f} F(1))$

$$F \xrightarrow{\tau} G \mapsto (\tau_0, \tau_1)$$

ℱ :IFuz[→]→Funct(2,IFuz)

 $[(A,\mu_{\rm A},\upsilon_{\rm A})\xrightarrow{f}(B,\mu_{\rm B},\upsilon_{\rm B})] \vdash F$

 $[(A,\mu_{\rm A},\upsilon_{\rm A}) \xrightarrow{f} (B,\mu_{\rm B},\upsilon_{\rm B})] \xrightarrow{(h,k)} [(C,\mu_{\rm C},\upsilon_{\rm C}) \xrightarrow{g} (D,\mu_{\rm D},\upsilon_{\rm D})] \mapsto \tau$

where $F(0) = (A, \mu_A, \upsilon_A), F(1) = (B, \mu_B, \upsilon_B), F(1_0) = Id_A, F(1_1) = Id_B, F(<0, 1>) = f, \tau_0 = h$ and $\tau_1 = k$.

Then \mathscr{P} and \mathscr{F} are functors and \mathscr{F} is an inverse of \mathscr{P} . Hence, category IFuz⁺ is isomorphic with Funct(2, IFuz).

Theorem 3. Let $\mathbf{M} = (M, *, e)$ be a monoid category, then category **M-IFuz** is isomorphic with **Funct** (**M**, **IFuz**).

Proof. Let $F: \mathbf{M} \to \mathbf{IFuz}$ be a functor and $F(M) = (A, \mu_A, \upsilon_A), \xi_m = F(m)$. Let $\xi(m, a) = \xi_m(a), \forall a \in A, m \in M$, then we have **M-IFuz**-object $(A, \mu_A, \upsilon_A, \xi)$.

Let $G: \mathbf{M} \to \mathbf{IFuz}$ be another functor and $\tau: F \to G$ be a natural transformation with component $\tau_{\mathbf{M}} = f$. Let $G(m) = (B, \mu_{\mathbf{B}}, \upsilon_{\mathbf{B}}), \eta_{\mathbf{m}} = G(m)$, then f is a arrow from $(A, \mu_{\mathbf{A}}, \upsilon_{\mathbf{A}}, \xi)$ to $(B, \mu_{\mathbf{B}}, \upsilon_{\mathbf{B}}, \eta)$. Let

Funct(M,IFuz)→M-IFuz

$$F \mapsto (A, \mu_A, \upsilon_A, \xi)$$

$$F \xrightarrow{\tau} G \mapsto f$$

then \mathscr{F} is a functor. Clearly, \mathscr{F} is a isomorphism. Hence, category M-IFuz is isomorphic with category Funct (M, IFuz).

Theorem 4.. Let set I be a discrete category, then category IFBn(I) is isomorphic with category Funct(I, IFuz).

Proof. Let $F: \mathbf{I} \to \mathbf{IFuz}$ be a functor and $F(i) = (A_i, \mu_{A_i}, \upsilon_{A_i})$. Let $A = \bigcup_{i \in I} (A_i \times \{i\});$

 $f: A \to I(a,i) \mapsto i; \mu_A: A \to (0,1], (a,i) \mapsto \mu_{A_i}(a); \upsilon_A: A \to [0,1] (a,i) \mapsto \upsilon_{A_i}(a), \text{ then we have}$ **IFBn(I)**-object $(A, \mu_A, \upsilon_A, f)$.

Let $G: I \rightarrow IFuz$ be another functor and $\tau: F \rightarrow G$ be a natural transformation with component $\tau_i: F(i) \rightarrow G(i)$. Let

$$k: A \rightarrow B$$
 $(a,i) \mapsto (\tau_i(a),i),$

then k is a arrow from $(A, \mu_A, \upsilon_A, f)$ to $(B, \mu_B, \upsilon_B, g)$ (where $(B, \mu_B, \upsilon_B, g)$ is a object corresponding functor G).

Let

$$\mathcal{F} : \operatorname{Funct}(\mathbf{I}, \operatorname{IFuz}) \to \operatorname{IFBn}(\mathbf{I})$$
$$F \mapsto (A, \mu_A, \upsilon_A, f)$$
$$F \xrightarrow{\tau} G \mapsto k$$

then \mathscr{F} is a functor.

Conversely, let (A, μ_A, v_A, f) be an **IFBn**(I)-object and $A_i = f^{-1}(i), \mu_{A_i} = \mu_A |_{A_i}, v_{A_i} = v_A |_{A_i}$. Let $F(i) = (A_i, \mu_{A_i}, v_{A_i})$, then F is a functor from category I to **IFuz**.

Let $k: (A, \mu_A, \upsilon_A, f) \rightarrow (B, \mu_B, \upsilon_B, g)$ be a arrow and $k_i = k |_{A_i}$, then we have natural transformation $F \xrightarrow{\tau} G$ with component $\tau_i = k_i$ (where G is a functor corresponding $(B, \mu_B, \upsilon_B, g)$). Let

 \mathscr{P} : IFBn(I) \rightarrow Funct(I, IFuz)

 $(A, \mu_A, \upsilon_A, f) \mapsto F$

$$(A,\mu_{\rm A},\upsilon_{\rm A},f) \xrightarrow{\rm k} (B,\mu_{\rm B},\upsilon_{\rm B},g) \nleftrightarrow F \xrightarrow{\tau} G$$

then \mathscr{P} is a functor.

Clearly, \mathscr{P} is a inverse of \mathscr{S} . Hence category $\mathbf{IFBn}(\mathbf{I})$ is isomorphic with category $\mathbf{Funct}(\mathbf{I},\mathbf{IFuz})$.

References

- 1 K. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1996)87~96.
- 2 R. Goldblatt. Topoi: the categorical analysis of logic, North-Holland Amsterdam, 1979.
- 3 Maclane S. Categories for the working mathematician, Springer-verlag, 1971.
- 4 X. H. Yuan and E. S. Lee. Categorical analysis of logic operators on fuzzy sets. J. Math. Anal. Appl., 177(1993)600~607.
- 5 X. H. Yuan. Category IFuz and WTopos. Notes on IFS, Vol. 2, No. 3(1996)15~19.
- 6 X. H. Yuan. The power object of category IFuz. Notes on IFS, Vol. 3, No. 3 (1997) 92~96.
- 7 X. H. Yuan. Comparisons between category Fuz and category Set. The Journal of Fuzzy Mathematics, Vol. 5, No. 4(1997)907~914.