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Abstract:

This paper presents a new Intuitionistic Fuzzy Optimization (IFO) approac to
solve the aMulti-Objedive Linea Progranming Problem (MOLPP under uncertainty.
The ideais based onextension d fuzzy optimization. This approach is an applicaion d
the intuitionistic fuzzy set. First we have mnsidered a multi-objedive linea
programming with equality and inequality constraints with Intuitionistic Fuzzy (IF) goals.
Their fuzzy nonlinea membership and normembership function have been taken for
the degree of rgedion d objedives and constraints together with the degree of
satisfadion. Then it converts the said problem into a wnventiona linea programming
problem. Finaly we have showed applicaion d this approach in the Capadtated
Transportation Problem. Numerica examples are provided to ill ustrate our new approad.

Key-Words:  Fuzzy optimization, Intuitionistic fuzzy sets, pareto optimal, non
membership function, Capadtated Transportation Problem.

1. Introduction: The dasdcd Transportation Problem(TP) refers to a spedal class of
Linea programming Problem(LPP. This crisp TP was developed very well but they are
very limited and in many cases they do nd represent exadly the red problem[13]. In
general, the red life problems are modeled with multi-objedive[1,2,4,11,12,14 In the
last twenty yeas, the multi-objedive transportation problem have been investigated in
the sense of fuzzy set theory[8,9,1Q. This fuzzy programming technique is more flexible
and alows to find the solutions which are more sufficient to the red problem. In fuzzy
optimization, the degree of accetance of objedives and constraints are ansidered orly.
Now a day, the fuzzy set theory has been also developed in alarge aea ad its different
modification and generali zation form have gpeaed. Intuitionistic fuzzy sets (IFS) is one
of the generadlization o fuzzy set theory. Out of severa higher-order fuzzy sets,
intuitionistic fuzzy sets introduced by Atanasov [5,6,7 have been found to be well
suited to deding with vagueness The @ncept of an IFS can be viewed as an alternative
approad to define afuzzy set in case where avail able informationis not sufficient for the
definition of an impredse oncept by means of a wnventiona fuzzy sets. Ingeneral, the
theory of IFS is the generalization d fuzzy sets. Therefore, it is expeded that, IFS could
be used to simulate human dedsion-making process and any adivities requiring human
expertise and knavledge which are inevitably impredse or nat totally reliable.
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Here the degree of rgedion and satisfadion are cnsidered so that the sum of both
valuesis always lessthan org[5].

In this paper, a solution procedure of multi-objedive transportation
problem with equality and inequality constraint in intuitionistic fuzzy environment is
presented. First, we have considered a MOTP with equality and inequality constraint
where cnstraints goals are fuzzy numbers. Here the degree of acceptance (satisfadion)
of objedives and constraints are onsidered as a nonlinea hyperbdic function and
degree of regjedion (nonraccetance) of objedives and constraints are @nsidered as a
nontlinea parabadic function. Then this intuitionistic fuzzy optimization problem is
converted into a aisp ore. It gives the (u-y) pareto otimal solutions.

2. Definition: Let aset E be fixed. An intuitionistic fuzzy set or IFS :AI\ in Eisan ojed
having the form: A= k X1 (9, (9 > /X0 E}, where the K, (%) E - [0,1] and
y.;\ (X): E - [0,]] define the degreeof membership and degreeof nonmembership
respedively, of the dement x E to the set ;AI\ whichis asubset of E, for every element
of XOE, 0< ux(x)+ yx(x) <1.

Obviously, ead ardinary fuzzy set may be written as i< X, u?\(x),l— ux(x) >/ x0 E}.
The anourt ) (x) = 1- HX(X) - yx(x) is cdl ed the hesitation part, which may cater to
either membership value or non-membership value or bath.

3. Definition: If ;AI\ and ES aretwo IFS of the set E. then

1. ;AI\D~BI iff OxOE [ ux(x)sug(x) and yx(x)zyéi(x)]

2. A=Biff AOBand B OA.

3. AnB = X minG, (9, 1, (9),max(y, (x),y., (9)/ xOE},

4. ADIB =f x, max(iL, (), (), min(y., (9, () x DE}.

Obviously, every fuzzy set hastheform : A= f % 1, (%), v (9 >/ XD EJ.
A A

In a general Multi-Objedive Linea Programming Problem (MOLPP all
constraints goals are fixed. But in red life situation, these @nstraint goals can na be
always fixed. So we can consider the constraint goals for the lessthan type cnstraints as

a lest a andit may possble be extended to a +a; . Similarly the cnstraint goals for the
grater than type cnstraint is at most b; and it may posshle be diminished to b, bf’

These fad seams to take dl the @nstraint goals as a intuitionistic fuzzy set and which
will be more redistic description. Then the MOLPP beames a multi-objedive linea
programming problem with intuitionistic fuzzy resources, which can be described as
follows:
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minimize Z =[ 2},2?, 73, --------- L Z4 (3.1)

Xj =0 ,foral i,]j
where

zk= i,ic”kx” R T J— K

Here the @nstraints goas are daraderized by the following intuitionistic fuzzy
sets(IFS):

;:(Xip U; (%) V; (%)) Bj:(xipl«lgu (Xij)1y6| (%;)) , where U; (%) UE (%;) are

the degree of membership function o the IFS a
and y. (x;),y. (x;) arethe degreeof non-membership function o the IFS Bj
g b;

In the cae when the degree of regedion(nonaccetance) is defined
simultaneously with the degree of acceptancgmembership) and when bah these degrees
are not complementary to ead aher them. Intuitionistic fuzzy(IF) set can be used as a
more general and full tod for describing this fuzziness It is posgble to represent deeply
existing nuances in problem formulation defining objedives and constraints(or part of
them) by IF sets i.e a pairs of membership( . (x;)) and normembership(y,(x;))
functions.

So to maximize the degree of acceptance of IF objedives and constraints and to
minimize the degreeof rgedion d IF objedives and constraints we have the foll owing:

max{ py(x;)}, s=1,2,3, ......m+n+K
X

min{y.(x;)}, s=1,2,3, .....m+n+K
%

st Ho (%) + V(%) <1,

B (%) 2 v (%),

V()20
where p(x;)denotes the degree of membership of x; to the sth IF sets and y (X;)
denotes the degreeof regjedion d x; to the s-th IF sets.

To construct the pay-off matrix we have the following two LPP with and withou
tolerancefor eat constraints:
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minimize Z =[ 2},2%, Z3, -------—-- ,Z¥] (3.2

n

subjed to inj < a+a’  for =123 ,m
=
Z X; = b;-bj for j=1,2,3;-------- . n
XijZO,fOFa” i,j

where

ZX= $ §chx, k=1, 2, Beeemeeeeee K

;; i i

And minimize Z =[ Z* 72, 73, - ,Z¥] (3.3

SUbjed to ZX” < a‘i fOI’ | = 1,2,3,— ---------- , M
=
Z X, 2 b, for j=1,2,3;---------- N
XijZO,fOFa” i,j

where

zk= igc”*xij RV T J— K

4. Intutionistic fuzzy programming tedhnique to solve multi-objedive linea
programming problem with spedal type of hyperbalic membership and
parabalic non-membership function:

In 1981,Leberling propased a spedal nonlinea membership function described
with a hyperbalic function in MOLP problems by considering that the rate of increase in
membership of satisfadion must not aways be @mnstant as in case of alinea membership
function. Following the maximizing dedsion together with a hyperbolic membership
function, he proved that there exist an equivalent linea programming problem. In this
paper, intuitionistic fuzzy goals and oljedive vaue have been represented by hyperbalic
membership and parabalic non-membership functions.

We first find the lower boundas L(least value) and upper boundas Uy(worst
value) for the k-th oljedive function d the problem (3.3) & (3.4), k=1,2,3,....K where
Uy is the highest acceptable level of achievement for kth oljed and L the aspired level
of achievement for the objedive k. When the aspiration levels for ead oljedives and
constraints in bah o membership and normembership function have been spedfied,
then we formed a intuitionistic fuzzy model and then convert the intuitionistic fuzzy
model onto a aisp mode.
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Algorithm:

Step-1. Solve the MOLPs (3.2&(3.3 as a single obedive transportation poblem K
times for eat problem by taking one of the objedive & atime.

Step-2. From the result of Step-1. determine the mrrespondng values for every objedive
at ead solutions derived and construct a payoff matrix as:

[Z,(X™)  Z,(X™)  Z,(X™)  Zy(X™ )i, Z (XY™ Z (X)) E
L(XPY ZU(XPPY Z(XP) Zy (KPP ) e Z,(X*) Z(X*) [
Ezl(x“*) Z (X)) Z, (X)) Zy(X¥ )i Z (X% Z (X*) E
L e e e e ettt e a e e e e a e e a e e a e e e e C
|:| .......................................................................................................................... |:
D K-11 K-12* K-11* K-12* K-11* K-12* [
Ezl(x ) Z(X*TY Z, (XK Z, (X)), Z (XY Z, (X )E
0Z, (X Y)Y Z,(X*%)  Z,(X*")  Z,(X*F ), Z, (XY  Z,(X*)rE

Step-3. From step-2. We find the worst(Uy) and the best(Lk) values of eat oljedives for
the degreeof accetance and regjedion correspondng to the set of solutions as foll ows:
Step -3a

U = max {Zk(X’S* )} and LY =min {ZK(X“S* )}
Isr<K lsrsK
s={1,2} s={1,2}

for degreeof accetance of objedives.

Step —3b. We presents a new upper boundfor the degree of rejedion d objedives as
follows:

L = L2+t (U®- L) with U/ = U whereO<t<1

Step-4. the initia intuitionistic fuzzy model becomes (in term of aspiration levels with
ead ojedives)

Find {x; , 1=1,23;--------- ,m;j=123,.....,n} 4.1
SO asto satisfy

Z < LY with tolerance (U - LE) for the degreeof acceptance, fork =1,2,3, ... K
Zy=U/® withtolerance(U.° - L¥) for the degreeof rgjedion, fork=1,2,3, ....... K
Z X; < & withtolerance a’ for the degreeof acceptance for i =1,2,3;---------- ,m
1=l

> %z at a’ with tolerance d? for the degreeof rejedion, for i =1,2,3;---------- , m
=1

where d° =t @’ with O<t<1
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Z < b;- b0 with tolerance d for the degreeof rgjedion, for j =1,2,3;-------- , N

where df = tb] with O<t<1

Step-5. Define the membership(acceptance) and normembership(rejedion) functions of
IF objedives and constraints( or part of them) as foll ows:

For the k-th( k =1,2,3,....K) objedivesfunctions,
ahyperbdlcmembershlpfunctlon(uk(z (x;)) ) isdefined by

14 M (Z, (%)) A 1
*\
Vi (Z, (Xij )
5
| , >
Licc LLej M= ( Lacc+ U acc )/2 U I?CC =U lzej Zk(xij)
=1, Zk(Xij) < Licc

1 1 acc acc
Hi (Z, (%)) = Etanh(mk =Z,(X;)) +§ v LS Zlxi) < Uy
=0, Zk(Xij) ZUSCC

Paraboli c nonrmembership function (y, (Z, (x;))) is defined as

=0, Zu(xj) < L
V(%) = E%ET L <7 U
=1, Zi(x;) = U®
For thej-th (j =1,2,3, ..... , iconstraint,

the hyperboli ¢ membership function ( (Zx ) isdefined by
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—

>
b, -b? m  b-b’+d’ b > %

J

=1, inj > b
m B 1 m 1 b bO m -
uj(inj) = Etanh(Zxij —mj)+E i-b; stij_Q
=0, > % by-b]
herem; = (2b, -b})/2

Paraboli ¢ nonr-membership function(y;; (Z X;;)) is defined as

=0, b -6+ df < 5 x,

. EL) b +d? - Z g .
V(> %)= E B, b,-b° < > % < b,-b%+ d°
0 O
0 0
1

Z X; < b;-b’
For thei-th (i =1,2,3, .....,m) constraint,
the hyperbolic membership function ( u; (le ) isdefined by
A

fox!

0 0 0
& a g _di mj a+a inj
J:
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n
=1, inj <a
J:

n 1 n 1 n
H‘(ZX“) :Etanh(mi—inj)+§, a < injSa1+a10,
1= 1= =

n

=0, a+a’ <y x,
herem; = (2a +a)/2
Parabolic non-membership function (y; (Z X;)) isdefined as
=

n

=0, Jle”.sa1.+a1.°—di°
. Bx-afl n
yi(inj): EIJ:TS a+a’—-d’ < inj < a+a’
1= i E
i
=1, a+a’ < ;xij

Step-6. Find an equivalent crisp model by using the membership and normembership
functions of objedives, constraints by IF as foll ows:

m+n+K

max { Z(us(xij)_ys(xij )} (4.2
Xij

subed to

p () +y(x) <1

Hs (%) 2 Y5 (%)

ys(%;) 20

xj=0,foral i,j,s=1,2,3, ......m+n+K

Step-7. Solve the &owve aisp model by an appropriate mathematica programming
agorithm.

Intuitionistic fuzzy optimization (IFO) problem such as fuzzy optimization
problem can be represented as a two-stage process which includes aggregation o
objedives and constraints and defuzzification (maximization d aggregation function).
Usualy the gplied Bellman-Zadeh's approach for fuzzy optimization poblem solving
redizes min-aggregation.
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Conjunction d IF set is defined as

G nd =i X, 12 (X) 0y (X), 42 (X) Oy (X) > xOE} where G dentes an IF
objedive(gain) and é denates an IF constraint.

This applicaion can be eaily generalized and appli ed to the IFO problem.
Appling the @oweto the IFO problem (4.2), we have the following:
a < p(x;),s={k i,j/k=1,23, ...K;i=123, ..m;j=1,2,3, ...m }
B = y.(x),s={k i,j/k=1,23,..K;i=123,..m;=1,2,3, ...m }
a+B<s 1
a=fB,8=20,x;=20,fordl i,]j

where a denotes the minimal degree of acceptance of objedive(s) and constraint(s) and
B denates the maximal degreeof rejedion d objedive(s) and constraint(s).

Now the IFO problem can be transformed to the foll owing crisp ogimization problem:
max (o - B)

subed to

o < p(x),s={k i,j/k=1,2,3, ...K;i=1,2,3, ..m; j=1,2,3, ...m}

B = y.(x),s={k i,j/k=1,23, ...K;i=123,..m;j=1,2,3, ...m}

a+B<s 1

a=fB,=20,x;=20,fordl i,]j

It isequivalent to

max (a - ) 4.3 (
subed to
tanhn, - Z, (x;)) =20 -1,

tanh(; X, -m;) 220 -1,
tanhm - Jle”.) >20 -1,
Z,(%) - L7 s U -L3)YB,
b, - ;xij < df\/ﬁ

inj - a dio\/E,

£

a+p <1
a = f3 BZO,XijZO,fOI’a” ]

IN

In the @owve formulation (4.3), however all the membership and ron-membership
function are nonlinea functions and hence we can na diredly apply the linea
programming method. To circumvent such dfficulty, we have transformed the problem
in the foll owing way:
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we define, tanh™* (20 - 1) = a' and \/E =B
suchthat o = %tanh(x’)+% and p= B’

since tanh™(x) is drictly increasing function with resped to x then maximization o o is
equivalent to the maximization d a'. Also since \/E is adtrictly increasing function as

that of 3, the minimization d (3 is equivaent to the minimization d B'. Hencethe &ove
problem can be transformed to the foll owing ordinary linea programming problem:

max.( a'- B") 4.4 (

Z(x)-Ld U -LO)B,
b, -3 %, = d B,

> X~ a < d’p,
=1
a'+p' <1, a 2B, B'=20,x;=20,foral i,j

Step-8. Determine if the dedsion maker is stisfied with the solution identified in step-7.
Step-8a. If the dedsion maker is satisfied, STOP.
Step-8b. If the dedsion maker is not satisfied, continue with step-3b. again. And define a
new upper boundfor the degreeof rgjedion d objedives and constraints.

This iteration will continue until and urlessthe deasion maker is stisfied with
the solutions.

Numerical Example 1:

Min Z1=3X1 +2X5 (l)
Min Z, = X1 +5x»

such that

X1+ X2 <18
8X1 + 66X, 2 112

SX1 + Xy 2 56
X1,X2 20
where the constraint intuitionistic fuzzy goals are charaderized by the following way

18=(x,, K (x,). ¥, (X)) with
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1 X1+ X2<18
Mo (X +X,) = %tanhm—xl—x2)+% , o 1& X1+ x<20,
18
0 28 + X2
and
=0, X1 +X2<18.5

18.5 X1 +x, <20

|
ity
+
x
r N
|
=
0]
a1
i,

(X + =
=1, 21 +X2

112= (¥, Uﬂz(xij) , yﬁz(xij)) with

= X18 6x, > 112

tanh@x, +6x, —m,) +% , 107< 8x; +6x2,<112,

1

1

H. (8% +6x,) =7
112 2
0 X1 &6x, <107,

and
=0, 1408, +6x>

v (8 +6x,) = J0T8X% 6% = 10 8%, +6%, < 110
112 0 3 0

=1, X186x2 <107

éi6: (% /’léie(xij) ) y9~i6(xij)) with

=1, X193 7X2 = 96
U (B, +7%x,) = %tanhéx1 +7X, —m,) +% ,  90< 5x1+ 7x2< 96,
96
=0, X157 <90,
and
=0, 95 5«1 +7X>
V., (5% +7%,) = P5-54 7%, [ 9k 5x; +7x; < 95
9 0 5 0
=1, X15-7x, <90

To form a payoff table we have cmnsider the following two problems with and
withou tolerance
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min Z1=3X1+2X> (2) min Z1=3X1+ 2Xo (3)

min Z, = X3 + 5X» min Z; = X1 + 5%z
such that such that
X1+ X2 €18 X1+ X2 €20
8x1 + 6xp 2112 X8 + 6x, 2107
51 + 7X2 =96 Xa+ 7x2 290
X1,X2 =20 X1,X2 =20
solving (2) & (3), we have the foll owing payoff matrix:

038 82 C

C
5.67 8917

Payoff matrix = % C

51 30 L

E 54 18 E
Therefore,

L =35.67,U; =54, L5 =18,U.* =89.17and we consider
L® =37,U/% =54, L =20, U}® =89.17
Defining the hyperbodic membership(acceptance) and parabdic  non
membership(rgedion) functions of IF objedives and constraints( or part of them) as
step-5, we have the following:
max.( a’- B') 4) (
st
3567+54
2
18+89.17

2
18+20
2
. 112+107

8x, +6x, - o 2=

Z +a' <

Z,+a' <

1
X +X,+a" <

5%, +7x, - a' =2 96;90,

Z,—-37<(54-37) (',
Z,—20<(89.17-20p3',

X1+ X2 —18.5< (20 - 18.5 S,

110- 8x; - 6x, < (110 — 107 B,

95-5x;1 -7x2< (95 - 90) B,

a+p' <1, a =26, B'=20,andx;,x; 20

Any linea algorithm or any simplex method can easily solve the @ove problem.
The optimal solution satisfies the objedive with degreea =0.7986218a’ =0.6888514%
and dsstisfies the objedive with degree3=0.09681344' =0.311148% and X, =
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9.877180,x,= 6.328995,z = 42.29, z,= 41.52Sum of the objedive values = 42.29+
41.52= 83.81The solution d the analogous fuzzy linea programming (FLP) problem
and crisp linea programming (LP) problem lead to oljedive value of z = 39.52, z,=

46.42, x; = 8.057692,x, = 7.673077with total objedive value =39.52+ 46.42= 85.94

and z=80.33, z,= 95.33with tota objedive value = 80.33 + 95.33= 175.66

respedively. It is noted that the total objedive value, oltained by the IFO is better
solution than the results, oltained from FO.

5. Applicationin Capadtated Transportation Model

A transportation problem with cgpadty restrictionis alinea programming problem
and can be solved by a L.P algorithm. In many particular application, it is redistic to
asume that the anount which can be sent on any particular route is restricted by tha
cgpadty of that route. Further, whenever a route is atogether excluded, this can be
expressed by limiting its cgpadty zero, this an alternative to attach a very high cost to
that route. This type of transportation problem beammes a Capadtated Transportation
Problem (CTP).

Consider m origin O; ( i=1,2, ...m) and n cstination D; (j=1,2,....,1). At eah
origin O;, let g be the quantity of homogeneous product which we want to transport to n
destination D; to satisfy the demands b there. The sources may be production faaliti es,
warehouses, suppdy poaints, etc. and destination may be consumption fadliti es, demand
paints, rtc. A penalty cjj, is asociated with transportation d a unit of the products from i-
th source to j-th destination by means of the p-th conveyance for three dimensional
Transportation Problem (TP). The penalty could represent transportation cost, delivery
time, the product deterioration duing transportation, undkr-used cgpadty, etc. A variable
Xijp represent the unknovn quentity to be transported from i-th source to j-th destination
by means of the p-th conveyance for threedimensional CTP. Let e, be the cgadty of the
p-th conwveyance In red world, al the CTP are not a single objedive in nature. We may
have more than ore objedive function in TP with capadty restrictions. Let r;, be the
cgpadty restriction onroute i, j by mean o the p-th conveyance for three dimensional
CTP. The st of transporting a unit of product may be energy cost consumed in
transportation, the transportation time, or the product deterioration duing transportation,
etc.

In the CTP, it is well known that in redity, al the nstraints goals(sources &
demands) fluctuates on badh seasonal and situational bases. So these nstraints goals can
not be well defined always in red life. So if we introduce the nstraint goals as a
intuitionistic fuzzy set in pladng the aisp (fixed) goals of the constraints, then the CTP
becomes more redistic.

Mathematicd model of multi-objedive three dimensiona cgpadtated
transportation model with intuitionistic fuzzy goals can be represented as foll ows:

Minimizezlziiici}px”p (5.1
=T =1 p=

m n P
Minimize Z, = Z Z Zcijszijp
1=1 |=1 p=
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m n P
N B K
Minimize Zx = Z Z Zcupxup
1=1 =1 p=
Subjed to,

Jipixijpsz; (i=12,...m), ipixijp < t;j

0< Xijp < ijp Ul i,j,p,
where intuitionistic fuzzy goals are dharaderized by

a = (%, BRI CER N ACH) ey = (%), 1. (%)), V. (%)),

(=1,2,...n, gix”p > ep (p=1,2,...P),

, & >0, t]>0, ep>0, lijp = 0i,,p.
This is a MOLPP with intuitionistic fuzzy goals in constraints and can be solved by
previous algorithm.

Example-2

We have nsidered a threedimensional Multi-Objedive Capadtated
Transportation Problem (MOCTP) with intuitionistic fuzzy goals, having threeobjedive
functions, three sources, threedemand pants and threediff erent modes of transportation.
All the necessary data ae given below:

;Z;);dti&e él: 1~i e=25 é; _ 5 Demands
convl conv2 conv3 | convl conv2 conv3 | convl convZ conv3
9 12 9 6 9 7 3 7 7 El: {1
5 6 5| 9 11 3 6 8 6 b =19
2 2 1 2 7 7 1 9 3 6'3 _ 2*'2
suppies ;1:54 ;2:5 a=18



vassia
5


2 —
Cup -

iti ~i ~i =25 ~i ~i D ds
cgpadties 6 =1 & e=9 eman
convl conv2 conv3 | onvl conv? conv3 convl conv2 conv3
2 1 4 1 S
9 8 9 9 5 b =11
2 8 1 4 5 2 8 6 9 =19
5 2 7 8 9 7 5 2 5 0
by, = 22
supdies ~i ~i - i =18
Pr a =24 a,=9 %
G =
cgpadties Y. =25 G Demands
goaatl e =1 € e =9
convl conv2 conv3d | convl conv2 conv3 convl conv2 conv3
2 4 4 4 G
6 3 6 8 9 b = 11
2 5 3 5 6 6 9 6 3 b =19
1 9 1 8 3 9 5 7 11 0
by, = 22
i ~i ~i ~i i =18
supHies a,= 24 a,= 9 %

Capadty restriction d theroutes are given as.
0< X111 25, 0< X112 45, 0< X113< 50, 0< X121< 60, 0< X122< 40, 0< X123< 85,
0 <X131<48, 0< X132< 50, 0< X133< 30, 0< X211< 20, 0< X212< 25, 0< X013< 35,
0 < X921 < 38, 0< X222< 40, 0< X003 27, 0< Xp31< 38, 0< X232< 44, 0< Xp33< 12,
0<Xx311< 19, 0< X312< 55, 0< X313< 65, 0< X321< 27, 0< X322< 26, 0< X323< 18,
0<Xx331< 29, 0< X33,< 39, 0< X333< 15 .

The @ove MOCTP with TFN cost can be presented as foll ows:
Min Z3=

3

Min21:

3

1=1 =1 p=1

subjed to,

ggxup < ajl (i=1,2,3,iixﬁp < t;: (=1,2,3, i Z:Xijp > él (p=1,2,3, 0 < Xijp < lijp

|:| i7j’p1

Z icﬁpxijp , Min ZZ:Z

1=1 |

2

Cijp X

3 3
ijp !

1 p=1

3

Z Ci?p Xijp (1)

=1 =1 p=1
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where intuitionistic fuzzy constraint goals are haraderized as foll ows:
3 3

Z Xy, < 24 with tolerance 2 for the degreeof acceptance,
=1 p=

3 3
Z Xy, 2 26 with tolerance 1.5for the degreeof rejedion
J=1 p=
3 3
Z Z X,;, < 9 with tolerance 3 for the degreeof acceptance,
J=1 p=
3 3
Z Z X,;, 2 12with tolerance 2 for the degreeof rejedion
J=1 p=
3 3
Z inlp < 11 with tolerance 3 for the degreeof accetance,
1=1 p=
3 3
Z Z X, 2 14with tolerance 2 for the degreeof rejedion,
I=1 p=.
3 3
Z inap < 22with tolerance2 for the degreeof accetance,
1=1 p=
3 3
Z Z X5, 2 24 With tolerance 1.5for the degreeof rejedion
I=1 p=
3 3
Z Z %;, 2 17with tolerance 3 for the degreeof acceptance,
=1 |=
3 3
Z Z x;, < 14with tolerance 2 for the degreeof rejedion,
=1 J=

3 3
Z Z X3 = 9with tolerance 2 for the degreeof acceptance,
=1 J=

3 3
Z Z X;3 < 7 with tolerance 1.5for the degreeof rejedion,
1=1 |=

a >0, b>0,e,>0,rjp=2 00 1i,j,p andequality sign hddsfori =3;j=2;,p=2.
Solving the @ove MOCTP (1) with and withou tolerance of constraint goals, we have

foll owing payoff matrix:

197 297 351"
180 223 340
(390 101 244C
87 239
203 340 149
(281 294 132F

Payoff matrix =
4 %07
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Therefore,

L2 =180,U/ =390, L =87,U;* =340, L§* =132,U2* =351 andwe onsider
L =190,U/% =390 , LY =100, U,¥ =340, LY =140,U}% =351

Taking al membership functions as hyperbadic function and al nonmembership
function as parabadlic function as described in example 1, we have the following optimal
solutions.

The optimal solution satisfies the objedive with degree a =.768042%a’
=0.5986456% and dsstisfies the objedive with degreef3 =.1610853( ' =.4013544 and

z = 270.27, Zz,= 196.32, z,= 224.68.The solution d the analogous fuzzy linea

programming (FLP) problem and crisp linea programming (LP) problem lead to
objedive value of z = 284.00, z,= 212.5Q z,= 240.50 and z = 293.333, Zz,=

220.33, Zz,=249.83respedively.

Conclusion: The new concept to the optimization poblem in an IF environment is
introduced in the paper. This concept allows one to define adegree of rgjedion which
may not smply a complement of degreeof accetance In this paper, two spedal type of
membership and normembership functions have been used to solve the MOTP. When
we use the hyperbadic membership and parabadlic nonrmembership functions then the
crisp model beaomes linea by giving suitable dgebraic transformation. This gives the
optimal solution which shows that the solution d IFO can satisfy the objedive functions
with higher degree than solution d analogous fuzzy and crisp problem. Moreover, we
conclude that for a multi-objedive probabilistic TP if demand parameters are gamma
randam variables, then the deterministic problem becmes nonlinea. To solve this type
of problem, these nonlinea membership and normembership functions can be used.
Apart from the TP for the multi-objedive nonlinea problem, nonlinea membership
and normembership functions in IF environment are very useful.
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