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1 Introduction

Dimensionality reduction of the models is an important task that refers to reducing the number of
input variables (attributes, features) in a dataset. Reduced but still sufficient number of the input
variables makes a model more transparent and simpler from the point of view of calculations.
The problem is challenging from both theoretical and practical points of view. The existing
methods have their pros and cons but there is not one “best method”. There are two approaches to
model reduction, namely, feature (attribute) extraction and feature (attributes) selection. Feature
extraction uses a combination of features (attributes), deriving some new ones. The results of
feature extraction can be difficult to interpret. The second method of model reduction, namely,
feature (attributes) selection boils down to the selection of the most relevant features. In this paper,
we will examine attribute selection for the sets of data expressed by the Atanassov’s intuitionistic
fuzzy sets (IFSs, for short).

Atanassov’s intuitionistic fuzzy sets (Atanassov [2–4]) are a generalization of the fuzzy sets
(Zadeh [48]). The IFSs can be viewed as a tool that may help better model the systems in the
presence of a lack of knowledge. An advantage of the IFSs is an inherent possibility to take a lack
of knowledge into account by using the so-called hesitation margin or intuitionistic fuzzy index.

Certainly, the problem of too many variables occurs for the IFSs models as for other types of
models. The counterpart of the well-known Principal Component Analysis (PCA) (Jackson [9],
Jolliffe [10], Marida et al. [12]) for the IFSs (cf. Szmidt and Kacprzyk [37]), Szmidt [15]) gives
correct results but, again, it is complicated from the point of view of calculations, and the final
result is not transparent enough for some users.

Here we analyze a simple method of feature selection for the data sets which are expressed
by intuitionistic fuzzy sets (IFSs). We make use of the three term representation of IFSs enabling
us to construct a convincing, simple and efficient, transparent, and easy from the point of view
of calculations method of feature selection. Moreover, the considered here approach makes it
possible to rank the attributes (not all methods enable it).

The discussed method is tested on well-known benchmark data from the UCI Machine
Learning Repository (https://archive.ics.uci.edu/ml/datasets). We deal with
classification tasks trying to reduce the number of input attributes and still obtain satisfactory
results. The results of our approach are compared to Principal Component Analysis
(cf. Jackson [9], Jolliffe [10], Marida et al. [12]) and with the method using the well known
Gain Ratio (Quinlan [13]). Additionally, we propose to reduce the number of calculations by
using a graphical representation of the proposed method.

2 A brief introduction to IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [48]) given by

A
′
= {⟨x, µA′ (x)⟩|x ∈ X} (1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′ , is an intuitionistic fuzzy set
(Atanassov [2–4]) A is given by
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A = {⟨x, µA(x), νA(x)⟩ | x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-membership of x ∈
A, respectively. (See Szmidt and Baldwin [16] for assigning memberships and non-memberships
for IFSs from data.)

Obviously, each fuzzy set may be represented by the following IFS:

A = {⟨x, µA′ (x), 1− µA′ (x)⟩ | x ∈ X}.

An additional concept for each IFS in X , that is not only an obvious result of (2) and (3) but
which is also relevant for applications, we will call (Atanassov [3])

πA(x) = 1− µA(x)− νA(x) (4)

a hesitation margin of x ∈ A, which expresses a lack of knowledge of whether x belongs to A or
not (cf. Atanassov [3]). It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances (Szmidt and
Kacprzyk [17, 18, 21, 28, 30], entropy (Szmidt and Kacprzyk [22, 32]), similarity (Szmidt and
Kacprzyk [33, 44]) for the IFSs, etc. i.e., the measures that play a crucial role in virtually all
information processing tasks (Szmidt [15]).

The hesitation margin turns out to be relevant for applications – in image processing (cf.
Bustince et al. [7]), the classification of imbalanced and overlapping classes (cf. Szmidt and
Kukier [45–47]), the classification applying intuitionistic fuzzy trees (cf. Bujnowski [6]), attribute
selection [41, 42], ranking of alternatives [43], multiagent decisions, negotiations, voting, group
decision making, etc. (cf. [5,11,19,20,23–25,28,29,31,34]), genetic algorithms [14]. Sometimes
the concept of the hesitation margin is just indispensable, for example, for a proper definition
of the Hausdorff distance [36] and seeing IFSs like different ones from interval- valued fuzzy
sets [40].

3 Three term representation of the IFSs
as a basis for attribute selection

In this paper we use the three term representation of the IFSs, i.e., take into account membership
values µ, non-membership values ν, and hesitation margins π. The tree term representation is
very useful especially from practical points of view (cf. Szmidt [15], Szmidt and Kacprzyk
[21, 22, 26, 27, 34–36, 38, 39]).

We also used an algorithm [16] of how to derive IFS parameters of a model from relative
frequency distributions (histograms) but in further consideration it is assumed that the parameters
are known.
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Having in mind the interpretation of the three terms we can indicate the most relevant attributes.
As the values of each attribute Ak, k = 1, . . . , K for different instances are different, an attribute
can be described by average values of memberships (5), non-memberships (6), and hesitation
margins (7), that are obtained by the weight operator W (cf. [4]), i.e.:

µAk
=

1

n

n∑
i=1

µAk
(xi) (5)

νAk
=

1

n

n∑
i=1

νAk
(xi) (6)

πAk
=

1

n

n∑
i=1

πAk
(xi) (7)

where n is a number of instances.
Description of the attributes by (5)–(7) makes it possible to indicate the most discriminative

attributes. An intuitionistic fuzzy attribute Ak is most discriminative if its average intuitionistic
fuzzy index (7) is as small as possible, and the difference between average membership value and
average non-membership value |µAk

− νAk
| is as big as possible. The simplest function which

makes it possible to find out the most relevant attributes, i.e., the one fulfilling conditions for π
and |µAk

− νAk
| is:

f(Ak) = [(1− πAk
)(|µAk

− νAk
|)] (8)

Function f(Ak) (8) has the following properties

1. 0 ≤ f(Ak) ≤ 1.

2. f(Ak) = (f(Ak)
C)

3. If a value of |µk − νk| is fixed, f(Ak) increases while π decreases.

4. If a value of π is fixed, f(Ak) behaves dually to a very simple sort of entropy measure
|µk − νk| (i.e., as 1− (|µk − νk|)).

The shape of (8), and its contour plot are in Figure 1.
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Figure 1. a) Shape of (8); b) Contourplot of (8)
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Making use of the characteristic of each attribute f(Ak) (8) we find “the best” attribute

argmax
Ak

[(1− πAk
)(|µAk

− νAk
|)] (9)

where Ak is the k-th attribute , k = 1, . . . , K.
We can rank all K attributes from the most to the least discriminative by repeating (9) K − 1

times.

4 Results

We tested the selection method (8)–(9) using the Diabetic Retinopathy dataset available in UCI
Repository: https://archive.ics.uci.edu/ml/datasets/Diabetic+Retino

pathy+Debrecen+Data+Set.
The Diabetic Retinopathy dataset contains features extracted from the Messidor image set [1].

The Diabetic Retinopathy dataset has 20 attributes. The last (20th) attribute is the classification
of whether an image contains signs of diabetic retinopathy or not. There are 1151 instances.

The order of the first 10 best attributes and respective values of measure (8) are in Table 1. In
Figure 2 there are all the attributes evaluated by (8) and presented in descended order from the
best to the worst one.

Table 1. “Diabetic Retinopathy” – first ten attributes selected by f(Ak) (8)

1 2 3 4 5
Attribute No 3 4 5 6 19

Measure f(Ak) 0.020 0.016 0.011 0.006 0.006

6 7 8 9 10
Attribute No 8 7 10 11 12

Measure f(Ak) 0.005 0.004 0.004 0.003 0.003

3 4 5 6 19 8 7 10 11 12 17 15 2 16 14 18 13 9 1

0.0

0.01

0.02

Figure 2. The values of (8) for all the Diabetic Retinopathy attributes
ranked from the best to the worst
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Next, using WEKA (http://www.cs.waikato.ac.\-nz/ml/weka/) we evaluated
the accuracy of different 12 classifiers using all 19 attributes (without selection). A simple
cross-validation method was applied with 10 experiments of the 10-fold cross-validation. The
best results of the classification were obtained for the algorithms:

• function Logistic;

• trees LMT;

• Multilayer Perceptron;

• Random Forest.

Besides the classification accuracy (total proper identification of the instances belonging to
the classes considered), we have also paid attention to the area under ROC curve [8]. The results
are in Table 2.

The accuracy by the best algorithms and all the attributes (Table 2) is equal to 74.62% obtained
by a function Logistic. Accuracy of the other algorithms with best results, namely, tree LMT,
Multilayer Perceptron, and Random Forest is equal to: 71.95%, 71.16%, 68.66%, respectively.

Table 2. “Diabetic Retinopathy” – comparison of the classification accuracy
by different classifiers with all 19 attributes

Classification accuracy (x̄± σ) in %
Algorithm (no selection) Accuracy of both classes AUC ROC

Function Logistic 74.62± 3.38 0.83± 0.03

Trees LMT 71.95± 3.75 0.79± 0.04

Multilayer Perceptron 71.16± 4.60 0.80± 0.04

Random Forest 68.66± 3.74 0.76± 0.04

We wished to see how many attributes are redundant, i.e., for how many attributes after
selection we will still have high accuracy. We started the calculation from only one, the best
attribute, and in the next steps we were adding one by one the next “the best” attribute verifying
accuracy obtained. The procedure of adding the attributes was continued until obtaining satisfactory
accuracy. For data set “Diabetic Retinopathy”, taking into account only 4 “best” attributes
(Table 3) we obtained accuracy 74.07% for function Logistic, 72.19% for tree LMT, 72.02%
for Multilayer Perceptron, and 67.82% for the fourth algorithm (Random Forest).

In the same (Table 3) we have results obtained by PCA, and by the Gain Ratio. The PCA
results are worse for the three first algorithms than the results obtained by the measure (8).

The results obtained by the Gain Ratio (Table 3) are considerably worse and equal: 59%,
59%, 55%, 60% in comparison with 74%, 72%, 72%, 68% obtained by the measure (8).

Summing up, the selecting algorithm (8)–(9) meets our expectations for Diabetic Retinopathy
data set.
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Table 3. “Diabetic Retinopathy” – comparison of the classification accuracy with 4 attributes
pointed out by: f(Ak) (9), PCA, and the Gain Ratio

Classification accuracy (x̄± σ) in %
Algorithm (4 attributes) f(Ak) (9) PCA Gain Ratio

Function Logistic 74.07± 3.71 68.06± 3.67 59.03± 3.52

Trees LMT 72.19± 3.13 69.28± 3.99 58.84± 3.72

Multilayer Perceptron 72.02± 4.41 70.40± 4.01 55.03± 3.13

Random Forest 67.82± 3.91 71.08± 3.96 59.51± 3.81

The advantage of selecting the attributes by the measure (8) in comparison with selecting the
attributes by the Gain Ration is illustrated in Figures 2 and 3.
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Figure 3. The values of the Gain Ratio for all the Diabetic Retinopathy attributes
ranked from the best to the worst

First, we can see that the order of the attributes obtained by the measure (8) in Figure 2, and
the order of the attributes obtained by the Gain Ratio in Figure 3 are different. The best attributes
by (8) are: 3, 4, 5, 6 whereas by the Gain Ratio are quite different: 1, 16, 15, 14. We have
calculated cumulative percentage participation of the four attributes in both measures (cf. Table 4
and Table 5). It turns out that:

• cumulative percentage participation of the four attributes (3, 4, 5, 6) in the measure (8) is
equal to 60.9%,

• the cumulative percentage participation of the four attributes (1, 16, 15, 14) in the Gain
Ratio is equal to 54.1%.

In other words, the four attributes selected by the measure (8) “cover” more area (60.9%)
under the curve in Figure 2 than the four attributes selected by the Gain Ratio (cover less area –
54.1% under the curve in Figure 3). This result explains why the accuracy obtained by the four
attributes selected by the measure (8) is better than the accuracy obtained by the four attributes
selected by the Gain Ratio (cf. Table 3).

150



Table 4. “Diabetic Retinopathy” – the order of the attributes by f(Ak) (8),
the values of the measure (8), and the cumulative value of (8) for the ordered attributes

1 2 3 4 5 6 7
Attribute No 3 4 5 6 19 8 7

Measure f(Ak) (8) 0.020 0.016 0.011 0.006 0.006 0.005 0.004
Cumulative f(Ak) (8) [%] 22.47 41.18 53.86 60.90 67.65 73.28 77.57

8 9 10 11 12 13 14
Attribute No 10 11 12 17 15 2 16

Measure f(Ak) (8) 0.004 0.003 0.003 0.003 0.002 0.002 0.001
Cumulative f(Ak) (8) [%] 81.70 84.89 87.99 90.98 93.08 95.09 96.66

15 16 17 18 19
Attribute No 14 18 13 9 1

Measure f(Ak) (8) 0.0009 0.0009 0.0009 0.0002 0.000
Cumulative f(Ak) (8) [%] 97.73 98.80 99.82 99.99 100

Table 5. “Diabetic Retinopathy” – the order of the attributes by the Gain Ratio (GR),
the values of the measure Gain Ratio, and the cumulative values of the Gain Ratio [%]

for the ordered attributes

1 2 3 4 5 6 7
Attribute No 1 16 15 14 3 13 6
Values of GR 0.114 0.096 0.093 0.064 0.047 0.046 0.043

Cumulative values of GR [%] 16.81 30.96 44.71 54.08 60.97 67.68 74.07

8 9 10 11 12 13 14
Attribute No 4 7 5 9 8 2 19
Values of GR 0.043 0.040 0.034 0.025 0.023 0.011 0.00

Cumulative values of GR [%] 80.37 86.26 91.31 94.97 98.42 100 100

15 16 17 18 19
Attribute No 18 17 12 11 10

Values of GR 0 0.000 0.000 0.000 0.000 0.000
Cumulative values of GR [%] 100 100 100 100 100

The presented method gave promising results also for other data sets (cf. [41]. However, to
determine the satisfactory number of attributes selected, we were performing calculations using
WEKA – for many algorithms and for every algorithm we have started from only one attribute
adding in the next steps other attributes, one by one, in the order pointed out by the proposed
function f(Ak) (8). The approach enables to indicate a satisfactory number of the attributes.
However, having the promising method (8)–(9) of the attributes selection, it is still profitable to
simplify the calculations. We have observed that the number of the selected attributes giving
satisfactory results can be found out using a figure showing the order of the attributes selected by
f(Ak) (8). For the data set Diabetic Retinopathy we use Figure 2. The function f(Ak) (8) is a
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decreasing one. We can observe regions of decreasing followed by the regions of similar values
f(Ak) (8) for the ordered attributes. For example, for attributes: 3, 4, 5, 6 the function decreases,
whereas for the next attributes: 6 and 19 is almost the same, next, the function decreases for
attributes 19, 8, and 7, next, for attributes 7 and 10 is very similar, and next, decreases for
attributes 10 and 11, to be almost the same for attributes 11, 12, 17, etc. The idea of simplifying
the calculations is to verify the successive subsets of the attributes for which the function f(Ak)

(8) decreases instead of verifying the accuracy adding the attributes one by one. In Figure 2
we can see that the first subset of such attributes is {3, 4, 5, 6}, next subsets are: {19, 8, 7},
{10, 11}, {17, 15}, etc. As we have already verified, the first subset of the attributes {3, 4, 5, 6}
is enough to obtain satisfactory accuracy of classification (74.1% (Table 3) instead of 74.6% for
all the attributes (Table 2)). The method of finding out a satisfactory number of the attributes
graphically does not work in the case of the Gain Ration (cf. Figure 3). We have observed similar
dependencies testing other data sets.

5 Conclusions

We have tested and discussed in more details an earlier proposed method for feature selection
for the sets of data represented by the intuitionistic fuzzy sets (IFSs). The IFSs were represented
by the three terms, i.e., by taking into account the degree of membership, non-membership and
hesitation margin. A transparent and easy-to-understand function evaluating the attributes and
making it possible to order them was investigating. The ordered attributes are a basis to select
them. We also used a graphical representation of the ordered attributes with the respective values
of the evaluating function to simplify the calculations. The method is easy to explain and interpret.
simple from the point of view of calculations and gives promising results.
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