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Abstract

In this paper, the interval-valued intuitionistic fuzzy matrix (IVIFM) is introduced. The interval-
valued intuitionistic fuzzy determinant is also defined. Some fundamental operations are also
presented. The need of IVIFM is explain by an example.
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1 Introduction

Matrices play important roles in various areas in science and engineering. The classical matrix
theory can not solve the problems involving various types of uncertainties. That type of problems
are solved by using fuzzy matrix [14]. Later much works have been done by many researchers.
Fuzzy matrix deals with only membership values. These matrices can not deal non membership
values. Intuitionistic fuzzy matrices (IFMs) introduced first time by Khan, Shyamal and Pal [11].
Several properties on IFMs have been studied in [6]. But, practically it is difficult to measure
the membership or non membership value as a point. So, we consider the membership value as
an interval and also in the case of non membership values, it is not selected as a point, it can
be considered as an interval. Here, we introduce the interval valued intuitionistic fuzzy matrices
(IVIFMs) and introduce some basic operators on IVIFMs. The interval-valued intuitionistic fuzzy
determinant (IVIFD) is also defined. A real life problem on IVIFM is presented. Interpretation of

some of the operators are given with the help of this example.
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2 Definition and Preliminaries

In this section, we first define the intuitionistic fuzzy matrix (IFM) based on the definition of intu-
itionistic fuzzy sets introduced by Atanassov [2]. The intuitionistic fuzzy matrices are introduced

by Pal, Khan and Shyamal [11].

Def. 1 Intuitionistic fuzzy matrix (IFM)[11]: An intuitionistic fuzzy matriz (IFM) A of order
m x n is defined as A = (x5, < Qiju, Qiju >)mxn, where aij, and a;j, are called membership and
non membership values of x;; in A, which maintaining the condition 0 < a;j, + aij < 1.

For simplicity, we write A = [2;j, Qijlmxn 07 SIMpPly [aij]lmxn where a;j =< aijpu, aijy >.

Using the concept of intuitionistic fuzzy sets and interval valued fuzzy sets, we define interval-

valued intuitionistic fuzzy matrices as follows:

Def. 2 Interval-valued intuitionistic fuzzy matrix (IVIFM): An interval valued intuitionis-
tic fuzzy matriz (IVIFM) A of order m xn is defined as A = [xi5, < Qiju, Qijy >|mxn where aij, and
aij are both the subsets of [0,1] which are denoted by a;j, = [aijur, aijuu] and aijy = [aijuL, GijuU]

which maintaining the condition a;j,u + ajuy <1 fori=1,2,--- m and j =1,2,---,n.

Def. 3 Interval-valued intuitionistic fuzzy determinant (IVIFD): An interval valued in-
tuitionistic fuzzy determinant (IVIFD) function f : M — F is a function on the set M (of all
n x n IVIFMs) to the set F, where F' is the set of elements of the form < [a,r,auv], [avL, avu] >,
maintaining the condition 0 < a,y +a,y <1, 0 < aur <ayuy <1 and 0 < ayr, < ayy <1 and
0 < ajjur < azjpu < 1 such that A C M then f(A) or |A] or det(A) belongs to F' and is given by

|A‘ = Z H < [a’iU(i)}LL’aiU(i)/.LU]7 [aiU(i)VL7a’iU(i)VU] >
UES’,L =1

and Sy, denotes the symmetric group of all permutations of the symbols {1,2,--- ,n}.

Def. 4 The adjoint IVIFM of an IVIFM: The adjoint IVIFM of an IVIFM A of order n X n,
is denoted by adj.A and is defined by adj.A = [Aj;], where Aj; is the determinant of the IVIFM A
of order (n — 1) x (n — 1) formed by suppressing row j and column i of the IVIFM A. In other

words, Aj; can be written in the form

Z H < [ato(t),uLa ato(t),uUL [ata(t)uLa At (t)vU >
o‘GSninJ- ten;

where, nj = {1,2,...,n}\{j} and Sp,n; is the set of all permutations of set n; over the set n;.

Depending on the values of diagonal elements, the unit IVIFM are classified into two types:

(i) a —unit IVIFM and (i) r — unit IVIFM.
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Def. 5 Acceptance unit IVIFM (a-unit IVIFM): A square IVIFM is a-unit IVIFM if all
diagonal elements are < [1,1],[0,0] > and all remaining elements are < [0,0],[1,1] > and it is

denoted by I 0],[1,1]>-

Def. 6 Rejection unit IVIFM (r-unit IVIFM): A square IVIFM is a r-unit IVIFM if all
diagonal elements are < [0,0],[1,1] > and all remaining elements are < [1,1],]0,0] > and it is

denoted by Iy 1[0,0]>-

Similarly, three types of null IVIFMs are defined on its elements.

Def. 7 Complete null IVIFM (c-null IVIFM): An IVIFM is a c-null IVIFM if all the elements
are < [0,0],[0,0] >

Def. 8 Acceptance null IVIFM (a-null IVIFM): An IVIFM is a a-null IVIFM if all the

elements are < [0,0], [1,1] >.

Def. 9 Rejection null IVIFM (r-null IVIFM): An IVIFM is a r-null IVIFM if all the elements
are < [1,1],]0,0] >

2.1 Some operations on IVIFM

Let A = [< [aijur, Gijuv ], [@ijur, @ijpr) >] and B = [< [bijur, bijuv], [bijur, bijuu] >] be two IVIFMs.
Then,
(1) < laijur, aijuul; laijur, aijuu] > + < [bijur, bijuols [bijur, bijuu] >
=< [max(aijur, bijur), max(aijuv, bijuv)], (min(aijy L, bijyr ), min(aguu, bijuu)] > -
(1) < [asjur, aijuv)s [@ijur, aijuo] > - < [bijur, bijuu], [bijur, bijuu) >

=< [min(aijur, bijur), min(aijuu, bijur )], max(agur, bijur), max(agu, bijur)] >.

(ili) A+ B = [< [max{aijur, bijur } max{a;juu, bijuot], min{agj,r, bijur b, min{aijuu, bijuu }] >].
(iv) A- B = [< [min{aijur, bijur }, min{aijuo, biju ), (max{aijyL, bijer}, max{aiju, biuo}] >]-
(v) A [ [aijuLs Gijuu)s [@ijurs aijpu] >]. (complement of A)

(vi) A" = [< [ajipL, Qjipv)s [@jivL, @jiv] >lnxm- (transpose of A)

(vil) A® B = [< [ajjur + bijur — aijur - bijur, Gijuu + bijuu — aijuu - bijuul,

laijur + bijur, — Gijur - bijur, ajuU + bijuu — aguu - bijuu] >
(viil) A® B = [< [aijur-bijuL, aijuu -bijuu];
laijur + bijur, — Gijur-bijur, Gijur + bijur — @i -bijuu] >].

(ix) AGB = [< [aijuL -2|- bij,uL’ QiU -2|- biqu}’ [aijuL ‘Qf’bijuL’ iU -2|- bz‘qu] >}

(x) ASB = K [\/aij,uL-bijuLa \/aij,uUbij,uUJa {\/aijuL-bijuL, \/aijVU-biquJ >}
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(xi) A#B = [<[ 2ai5,1-bijur 20450 -bijuu } [ 2ai50-bijur. 204500 -bijuU ]>]
aijur, + bijur” @ijur + aijpud Lagurn + bijur” aijuu + bijuu

(xii) A+ B = [<[ @ijuL + bijur aijuu + bijuu } { @ijur + bijur aijuu + bijuu D}
2(aijur-bijur + 1) 2(aijur-bijur + 1) 12(aijur-bijur + 1) 2(aiur-bijo + 1)

(xiii) A < Biff aijur < bijur, aijuu < bijuu, aijur 2 bijur and agjuu > bijuu.

(xiv) A=Biff A< Band B < A.

In the following section, we consider a daily life problem which can be studied using IVIFMs in

better way.

3 Need of IVIFM

We consider a network consisting of six important cities (vertices) in a country. They are intercon-

nected by roads (edges). The network is shown in Figure 1.

Figur 1: A network.

The number adjacent to an edge represents the distance between the cities (vertices). The above
network can be represented with the help of a classical matrix A = [a;], i,j = 1,2,...,n, where,

n is the total number of nodes. The ijth element a;; of A is defined as

0, ifi=y
ajj = 4 oo, the vertices ¢ and j are not directly connected by an edge

wij, w;j is the distance of the road connecting ¢ and j.

Thus the adjacent matrix of the network of Figure 1 is
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0 10 15 30 20 10
10 0 55 40 18 30
15 55 0 70 25 10
30 40 70 0 5 10
20 18 256 5 0 30
10 31 10 10 30 O

S Ot s W N

Since the distance between two vertices are known, precisely, so the above matrix is obviously a
classical matrix. Generally, the distance between two cities are crisp value, so the corresponding
matrix is crisp matrix.

Now, we consider the crowdness of the roads connecting cities. It is clear that the crowdness of
a road obviously, is a fuzzy quantity. The amount of crowdness depends on the decision makers
mentality, habits, natures, etc. i.e., completely depends on the decision maker. The measurement
of crowdness as a point is a difficult task for the decision maker. So, here we consider the amount
of crowdness as an interval instead of a point. Similarly, the loneliness is also considered as an
interval. The crowdness and loneliness of a network can not be represented as a crisp matrix, it
can be represented appropriately by a matrix which we designate by interval-valued intuitionistic
fuzzy matrices (IVIFMs).

For illustration, we consider the crowdness and loneliness of the road (7, j) connecting the places

i and j as follows:

Roads (L,2) (1,3) (1,4) (1,5) (1,6) (2,3) (24) (25)
Crowdness | [.1,.3] [.2,4] [3,4] [2,4] [.3,6] [7,.8] [.3,5] [3,4]
Loneliness | [.2,.5] [1,.5] [.5,.6] [4,.5] [.2,.3] [0,.1] [4,.5] [4,.6]
Roads (2,6) (34) (35) (36) (45) (46) (56)
Crowdness | [.2,.3] [.5,.6] [.3,.5] [.3,.6] [.4,.6] [2,.4] [.3,.5]
Loneliness | [.4,.5] [.2,.3] [.2,.3] [.2,.3] [.3,4] [.3,.5] [.2,4]

Table 1: The crowdness and loneliness of the network of Figure 1.

The matrix representation of the traffic crowdness and loneliness of the network of Figure 1 is

shown in the following IVIFM.
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1] < [0,0],[1,1] > < [.1,.3],[.2,.5] > < [.2,.4],[.1,.5] > < [.3,.4],[.5,.6] > < [.2,.4],[.4,.5] > < [.3,.6],[.2,.3] > ]
2 | <[.1,.3,[.2,.5] > <[0,0],[1,1] > < [7,.8],[0,.1] > < [.3,.5],[4,.5] > < [.3,.4],[4,.6) > < [.2,.3],[4,.5] >
3 | <[24],[1,.5 > <[7.8,[0,.1] > <[0,0],[1,1] > <[5,.6],[.2,.3] > < [.3,.5],[.2,.3] > < [.3,.6],[.2,.3] >
4 | <[.3,.4],[5,.6] > <[.3,.5],[.4,.5] > < [.5,.6],[.2,.3] > < [0,0],[1,1] > < [4,.6],[.3,.4] > < [.2,.4],[.3,.5] >
5 | <[2,.4],[.4,.5] > < [.3,.4],[4,.6] > <[3,.5],[.2,.3] > < [4,.6],[.3,.4] > <[0,0],[1,1] > < [.3,.5],[.2,.4] >
6 | <[.3,.6],[.2,.3] > < [.2,.3],[4,.5] > < [.3,.6],[.2,.3] > < [2,.4],[.3,.5] > < [.3,.5],[.2,.4] > < [0,0],[1,1] >

To explain the meaning of the operators defined earlier we consider two IVIFMs A and B.
Let A and B represent respectively the crowdness and the loneliness of the network at two time
instances t and t’. Now, the IVIFM A+ B represents the maximum amount of traffic crowdness and
minimum amount of loneliness of the network between the time instances ¢ and t’. A.B represents
the minimum amount of traffic crowdness and maximum amount of loneliness of the network. A
matrix represents the loneliness and crowdness of the network. AQB, A$B and A#DB reveals the
arithmetic mean, geometric mean and harmonic mean of the crowdness and loneliness in between

the two time instances t and t' of the network .

([1,.3],[2,.5]) (1.7,.8],0,.1])

([.2,.4],].1,.5])
Figure 2:

([-2,.4],[..4.5]) (1.2, .4],[.3, .5])

([.3,.6],].2,.3])

Figure 3:

To illustrate the operators A.B, A+ B and |A|, we consider a network consisting three vertices
and three edges. The crowdness and loneliness of the network are observed at two different time
instances ¢t and ¢'. The matrices A; and Ay represent the status of the network at ¢ (Figure 2) and
at t' (Figure 3). The number adjacent to the sides represents the crowdness and loneliness of the
roads at two different instances of the same network. A; and Ay be the matrix representation of

crowdness and loneliness at time ¢ and ¢’ respectively,
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<10,0],[1,1] > < [.1,.3],[.2,.5] > < [.2, 4],[.1,.5] >
Let A= | < [1,.3],[.2,.5] > <0,0],[1,1] > < [.7,.8,[0,.1] >
| <[2,.4],[.1,5] > < [.7,.8],[0,.1] > < [0,0],[1,1] > |

<[0,0],[1,1] > < [2,.4],[4,.5] > < [.3,.6],[.2,.3] >
and Ay = | < [.2,4],[.1,.5] > <[0,0],[1,1] > < [.2,.4],[.3,.5] >
< [.3,.6],[.2,.3] > < [.2, 4],[.3,.5] > < [0,0],[1,1] >

<[0,0],[1,1] > <[1,.3],[4,.5] > < [.2,.4],[.2,.5] >
L3 [4,.5] > < [0,0,[1,1] > <[.2,.4],[.3,.5 >

<
1 <
2,4],[2,5] > < [.2,.4],[.3,.5] > < [0,0],[1,1] >

<[0,0],[1,1] > < [2, .4],[.2,.5] > < [3,.6],[.1,.3] >

2,.4],[.2,.5] > <0,0],[1,1] > < [.7,.8],[0,.1] >
.3,.6),1.1,.3] > < [.7,.8],]0,.1] > < [0,0],[1,1] >

1
+ < [.1,.3],].2,.5] > {< [.7,.8],[0,.1] >< [.2,.4],].1,.5] > + < .1,.3],[.2,.5] >< [0,0],[1,1] >}
+ < [.2,.4],[.1,.5] > {< [.1,.3],[.2,.5] >< .7,.8],]0,.1] > + < [0,0],[1,1] >< [.2,.4],[.1,.5] >}
=< 1[0,0],[1,1] > {< [0,0],[1,1] > + < [.7,.8],]0,.1] >}
+ < [1,.3,[.2,.5] > {< [.2, 4], [.1,.5] > + < [0,0],[1,1] >}
+ < [.2,.4],][1,.5] > {< [1,.3],[.2,.5] > + < [0,0],[1,1] >}

+ < [.1,.3],].2,.5] >< [.2,.4],].1,.5] >
+ < [.2,.4],[.1,.5] >< [.1,.3],].2,.5] >
=<[0,0],[1,1] >+ < [.1,.3],[.2,.5] > + < [.1,.3],[.2,.5] >

It may be noted that if the ij-th element of the IVIFM A; is < [0,0],[1,1] > then it indicates
that the road (i, 7) is fully lonely (not crowd), but, if it is < [1,1],[0,0] > then the road (i, j) is
fully crowd or blocked.

4 Properties of IVIFMs

In this section some properties of IVIFMs are presented.
IVIFMs satisfy the commutative and associative properties over the operators +, ., ®, and ®. The

operator ‘.’ is distributed over ‘4’ in left and right but the left and right distribution laws do not
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hold for the operators @& and ®.
(1) A+B=B+A
(2) A+ (B+C) = (A+B)+C
(&AB B.A
(4) A.(B.C) = (A.B).C
wﬂ)(3+m AB+ AC

(i) (B+C).A=B.A+C.A
6) AGB=BaA
() A® (B&C) = (A® B) @ C
8) A0B=BoA
9) A®(B&C) = (A0 B)®C
(10)(i) A® (B&C) £ (A0 B) @ (A6 C)

(i) (B&C)® A+ (BoA) & (C o A)
Proof of (i): Let A = [< [aijur, aijuv); [@ijuL, asjur] >,
B = [< [bijur, bijuv], [bijur, bijuu) >]
and C = [< [¢ijuL, Cijuv), [CijuL, Cijur) >]-
So, B® C = [< [bijur + Cijur — bijur-Cijur, bijuu + cijuv — bijuu-cijuul], [bijur-Cijur, bijuu Cijuu] >]
and A® (B® C) = [< [aijur-(bijur + Cijur — bijur-Cijur), Gijuv (bijuu + Cijuv — bijuu-Cijuu], [ijur +
bijuL-CijuL, — GijuL-DijuL-CijuL, Qijur + bijuu -Cijur — Qijuu -bijuu -Cijuu] >].
A® B = [< [aijur-bijur, aijuu -bijuul, [aijur + bijur, — aijur-bijur, aiuu + bijuu — aguu -bijuu] >,
A C = [< [aijur-CijuL, GijuU-Cijuvu], [@ijuL + Cijul — GijuL-CijuL, QijuU + CijuU — QiU -Cijuu] >
Now, (A® B) & (A® C) = [< [agurbijur + cijur) — 03,-bijur-Cijur, Gijuv (bijuu + cijuu) —
a0 -iguv Cijuv)s [(@ijor +biju L — @i L bijur) -(@iju L+ Cijur — Giju L -CijuL); (@ijuU +bijur —aijur bijuu)-
(aijuU + Cijuu — Gijuu -Cijuu)] >
So, A® (B&C) £ (A® B) & (A C).

Property 1 Let A be an IVIFM of any order then, A+ A = A.

Proof: Let A = [< [aijur, @ijuv], [@ijuL, Gijur] >]
Then A + A = [< [max(aijur, Gijur), Max(aijuu, Giju )], min(agyn, aijr), min(ag,uu, aijur)] >]
= [< laijur, aijuu)s laijur, aijuu] >]
=A.
Property 2 If A be an IVIFM of any order then, A+ I.(og]j0,0> = A where, I 0)0,0> 1S the
null IVIFM of same order.

Proof: Let A = [< [aijuL, ainU], [aiij, aiij] >]

and 1[0 0] (0,0> =< [0,0],[0,0] >
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Then, A+ Icpo0),0,0> = [< [max(aiur,0), max(aij,u, 0)], [min(aijyr, 0), min(ag v, 0)] >]
= [< [a/ijML7 aij,uU]y [07 0] >]
Therefore, A+ I[90],j0,0> > A-

Some more properties on determinant and adjoint of IVIFM are presented below.

Property 3 Like classical matrices the determinant value of an IVIFM and its transpose are equal.

If A be a square IVIFM then |A| = |AT|.

Proof: Let A = [< [aijuL, ainU], [aiij, al-j,,U] >].
Then AT = B = [< [bijur, bijuv), bijur, bijuu] >]
= [< [ajipL, ajinv]; [ajivL, ajiu] >].
Now,
‘B’ = Z < [blo'(l),uL7 blo’(l),uUL [bla(l)uL7 blo’(l)uU] >< [b20'(2),uL7 b20’(2),uU]7 [b20(2)uL7 b20(2)1/U] >
O’GSn
< [bna(n)p,L7 bna(n)uU]a [bna(n)yLa bna(n)uU] >
= Z < aoy1uLs o)1) [0 )10L: Goy1v] >< [@@)2uL, Go@)2u0]: [A0@)20Ls Go2)200] > -
G’GSn
< [aa(n)nuLv ao(n)nuU]a [aa(n)mea aa(n)nyU] >
Let v be the permutation of {1,2...n} such that Yo = I, the identity permutation. Then
1 = o~ !. As o runs over the whole set of permutations, so does .
Let o(i) = j, i = 0~ '(j) = ¥(j).
Therefore, ag(iyiur, = Ajy(i)uLs Go(iyipt = GGyl do(iyivE = GjypGvLs (vt = y(pu for all
i,7.
As i runs over the set {1,2,...,n}, j does so.
Now, < [aa(l)luLa aa(l)luU}a [aa(l)ll/L7 ao’(l)ll/U] >< [a0(2)2uL7 aa(?)QuU]v [aa(2)2uL7 aU(?)QVU] >
< [aa(n)nuLv aa(n)nuU]a [ao(n)nuLa aa(n)m/U] >
=< [a1p(1)uL: M1y )s (019 1)Ls Gp)yu] >< [a2p@)uLs G2p@)uuls [2g@)vLs G2g@wu] > -
< [am[)(n)uLv am[)(n)uU]v [anw(n)yLv am/}(n)l/U] >
Therefore,
|B| = Z < [aa(l)luLa ao’(l)lp,U]? [aa(l)lyLa ao(l)luU] >< [aa(2)2uL7 ao(2)2,u,U]v [aU(Q)QVLa aU(Z)QVU] >
O’ESn

< [ao(n)n,uLv aa(n)nuU]a [aa(n)nuLu aa(n)nuU] >

= > <lagyun Qe 0190w G1pwu] >< [@2p@pur: G200 [02p@w L, G2p@wul > -
PESy

< [amp(n)uLv amp(n)uU]v [an¢(n)uL7 amp(n)uU] >
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Property 4 If A and B be two square IVIFMs and A < B, then, adj. A < adj. B.

Proof: Let, C = [< [cijuL, cijuul; [CijuL, cijuu] >] = adj. A,

D = [< [dijur, dijuv], [dijur, cijuu] >] = adj. B

where, < [eijur, Cijuuls [Cijurs vl > = Yoes, o, Hien; < to@yurs Gowpuls (oL, ttou >
and < [dijur, dijuul, [dijur, cijpu] > = Zaesninj Htenj < [bio(tyurs bot)uv s Bo(tywrs Vo > - It
is clear that < [cijuL, Cijuv), [CijuL, Cijur) > < < [dijur, dijuv], [dijur, Cijur] > .

Since, aio(tyur, < bio(tyuLs Yoty < Vot Uo(twr = bio@wrs ad Gy 2 bioyu

for all t # j, o(t) # o(j).

Therefore C' < D, i.e., adj. A < adj. B.

Property 5 For a square IVIFM A, adj. (AT) = (adj. A)T.

Proof: Let B = adj. A, C = adj. A”.

Therefore, < [bijur, bijuul, bijur: bipv] > = Xoes, . Hien, < latopLs ttoyuvls @t twLs aro@wu >
and < [cijuL, cijuul, [CijuL, cijpu] > = Zaesninj Htenj < [ata(t)uLa ata(t)uU]v [ata(t)uL7 Ot (U =
=< [bijur, bijuvl, [bijur, bijuu] > -

Therefore, adj. (AT) = (adj. A)T.

The following result is not valid for classical matrices, though it is true for IVIFM.
Property 6 For an IVIFM A, |A| = |adj. A|.

Proof: adj. A = [< [Aijur, Aijuu), [Aijur, Aijuu) >).
where, < [Ajjur, Aijuvu], [Aiju, Aijuu] > is the cofactor of the element < [aij.r, aijuv], [aijur, aijur] >
in the IVIFM A.
Therefore, |adj. A| = Y cs, < [Aic()ur Ao)pv]s [Aie)vns Ate)u] >
< [A2@)uLs A2o@)uv]: [A202)w L, A20(2)0U] >
- < [AnomyuLs Anomyuv]s [Ano v Anomyv] >
=Y es, iz < [Aio@urs Aio@)uuls [Aic@wL, Ais@pu] >
= 2oes, |Ilim1 | Zoesn,n, ;) Hien: < awour, wowul, e, aowo] >)}
= ses, [(Htenl < |49, (tyuL» @16, (1) uU s (@16, (80 L 6, (1) U] >> (Hteng < @6, (1)L > @65 (1)U )
[ateg(t)l/Lv at92(t)uU] > ) ce (Htenn < [ath(t)uLa aten(t),uU]? [atOn(t)uL7at0n(t)VU] >>}

(For some 01 € Smnau)ve? € Sngn[,( .00 € Spin

2 o(n)
= > pes, [(< a20, (2)uLs @20, (2)uu s (@20, (2)0L> @20, 2)wv] >< [a30, (3)uL> @30, (3)u0], @36, 3)v 1> G306, (3)0U) >
o+ < [@ngy (nyurs oy () pU)s [, (v Ls Angy (n)vU] >)(< [@10,(1)uLs 10,10 @165 (1)0 L5 @10, (1)00] >

< [a302(3)pLaa302(3)uU]7 [a302(3)uL’a302(3)uU] >...< [anGQ(n)uLa an@g(n),uUL [an92(n)1/La an@g(n)l/U] >)
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(< la16, 1)urs @10, 1)uv]s @10, (1)L @10, (1)0U] >< a0, 2)uLs @20, 20001 (020, (2)0 L5 @20, 200] > -

<A (n—1)0, (n—1)uLs Un—1)0n (n—1)uU s [A(n—1)0, (n—1)v L+ Un—1)0, (n—1)00] >)]

= > oes, [(< a1, (1)urs 010,15 (@162 (1)L @165(1)wr] >< [@10,1) L Q165 (1) 0], [@165 (1)L G105 0] >
- < a1, (1)L @10, (1) )s (010, (v Ly @10, 1)v] >)(< (@20, (2)uL> G20, )]s (020, 2)0 L5 A20, 2)00] >

< [ag0,(2)uL> @205 (2) ) [a204(2 )VL,G293(2)VU] - < [agg,, (2)uL> 20, (2)uU)s (020, (2)0 L+ @20, (2000 >

(< [@ngy (n)uLs @noy () uU)s (@06, (nyw Ls @ngy ()] >< [y ()L s Wby (n)utr]; [@nos(n)vLs Gnoy (nypv] >
- <o,y (nyuL> @01y )]s [@no, 1y (mywLs @nog,_yy(mywv] >)]
= Yoes, [< a0, (1yuzs w160, 1)puls (@164, (1)wr, @10, (1)0U] >
< lasg,, @)ur- @20, 2)u0)s (@204, 201 G20, (2)0] >
- < ano;, (nyuLs by, ()t ) [@no;, (n)wLs Anoy, (] >]
where, f; € {1,2,...,n}\{0},0=1,2,...,n
But since, < [“éefé QAR uv) [aéafé(é)uL’aéQfé(é)uU] >
=< tno(n)uLs @no(m)uvls [ne(myvLs tnompul >
Therefore, |adj. A| = 3, cs, < [a10(1)uLs Q101U (@161 wLs Qo)) >
< lazo2)uL> W202)u0 s [020(2)0Ls Q20 (2)00] > -

< [ana(n),uLa ana(n),uU]? [ana(n)yLv ancr(n)l/U} >
= 4.
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