Issues in IFSs and GNs, Vol. 11, 2014, 1-8

Intercriteria Decision Making: A New Approach for Multicriteria Decision Making, Based on Index Matrices and Intuitionistic Fuzzy Sets

Krassimir Atanassov^{1,2}, Deyan Mavrov², Vassia Atanassova¹

¹ Dept. of Bioinformatics and Mathematical Modelling IBPhBME, Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria e-mails: krat@bas.bg, vassia.atanassova@gmail.com ² Prof. Asen Zlatarov University 1 "Prof. Yakimov" Blvd., Burgas8000, Bulgaria e-mail: dq@mavrov.eu

Abstract: A new approach for multicriteria decision making is introduced in the paper. It is called "Intercriteria decision making". It is based on the apparatusa of the index matrices and the intuitionistic fuzzy sets and can be applied for decision making in different areas of science and practice.

Keywords and phrases: Index matrix, InterCriteria decision making, Intuitionistic fuzzy set.

2000 Mathematics Subject Classification: 03E72.

1 Introduction

A novel method for decision making, based on Index Matrices (IMs; see [1, 2, 3]) and Intuitionistic Fuzzy Sets (IFSs, see [4]) is introduced.

The IMs are esentially new and not widely known mathematical objects, that are extensions of the ordinary matrices. They are discussed in Section 3. In the paper we use also the concept of an Intuitionistic Fuzzy Pair (IFP, see [5]), that will be described in Section 2.

The new approach for multicriteria decision making gives possibility to compare some criteria or estimated by them objects. By this reason it is called an *intercriteria decision making method*. It is discussed in Section 4. A possible application is discussed in Section 5. Formulas for evaluation of the predicted values are discussed in Section 6.

2 Short remarks on intuitionistic fuzzy pairs

Initially, we give some remarks on Intuitionistic Fuzzy Pairs (IFPs; see [5]). The IFP is an object in the form of an ordered pair $\langle a, b \rangle$, where $a, b \in [0, 1]$ and $a + b \leq 1$, that is used as an evaluation of some object or process, and which components (a and b) are interpreted, respectively, as degrees of membership and non-membership to a given set, or degrees of validity and non-validity, or degree of correctness and non-correctness, etc.

Let us have two IFPs $x = \langle a, b \rangle$ and $y = \langle c, d \rangle$.

In [5], we defined the relations

 $\begin{array}{ll} x < y & \text{iff} & a < c \text{ and } b > d \\ x \le y & \text{iff} & a \le c \text{ and } b \ge d \\ x = y & \text{iff} & a = c \text{ and } b = d \\ x \ge y & \text{iff} & a \ge c \text{ and } b \le d \\ x > y & \text{iff} & a > c \text{ and } b < d \end{array}$

3 Short remarks on index matrices

The concept of Index Matrix (IM) was introduced in [1] and discussed in more details in [2, 3]. Here, following [2], the basic definitions and properties related to IMs are given.

Let I be a fixed set of indices and \mathcal{R} be the set of all real numbers. By IM with index sets K and $L(K, L \subset I)$, we mean the object,

where $K = \{k_1, k_2, ..., k_m\}$, $L = \{l_1, l_2, ..., l_n\}$, and for $1 \le i \le m$, and $1 \le j \le n : a_{k_i, l_j} \in \mathcal{R}$.

On the basis of the above definition, in [3] the new object – the Intuitionistic Fuzzy IM (IFIM) – was introduced in the form

$$\begin{split} & [K, L, \{ \langle \mu_{k_{i}, l_{j}}, \nu_{k_{i}, l_{j}} \rangle \}] \\ & \equiv \frac{l_{1}}{k_{1}} \frac{l_{2}}{\langle \mu_{k_{1}, l_{1}}, \nu_{k_{1}, l_{1}} \rangle} \frac{\langle \mu_{k_{1}, l_{2}}, \nu_{k_{1}, l_{2}} \rangle}{\langle \mu_{k_{2}, l_{1}}, \nu_{k_{2}, l_{1}} \rangle} \frac{\langle \mu_{k_{1}, l_{2}}, \nu_{k_{1}, l_{2}} \rangle}{\langle \mu_{k_{2}, l_{2}}, \nu_{k_{2}, l_{2}} \rangle} \frac{\langle \mu_{k_{2}, l_{1}}, \nu_{k_{2}, l_{n}} \rangle}{\langle \mu_{k_{2}, l_{2}}, \nu_{k_{2}, l_{2}} \rangle} \frac{\langle \mu_{k_{2}, l_{n}}, \nu_{k_{2}, l_{n}} \rangle}{\langle \mu_{k_{m}, l_{1}}, \nu_{k_{m}, l_{1}} \rangle} \frac{\langle \mu_{k_{m}, l_{2}}, \nu_{k_{m}, l_{2}} \rangle}{\langle \mu_{k_{m}, l_{n}}, \nu_{k_{m}, l_{n}} \rangle} , \end{split}$$

where for every $1 \le i \le m, 1 \le j \le n$: $0 \le \mu_{k_i, l_j}, \nu_{k_i, l_j}, \mu_{k_i, l_j} + \nu_{k_i, l_j} \le 1$, i.e., $\langle \mu_{k_i, l_j}, \nu_{k_i, l_j} \rangle$ is an IFP.

4 The proposed InterCriteria decision making method

Let us have an IM

		O_1		O_k		O_l		O_n
A =	C_1	$a_{C_{1},O_{1}}$		a_{C_1,O_k}		a_{C_1,O_l}		a_{C_1,O_n}
	÷	÷	÷	÷	÷	÷	÷	:
	C_i	a_{C_i,O_1}		a_{C_i,O_k}		a_{C_i,O_l}		a_{C_i,O_n}
	÷	÷	÷	: :	÷	÷	÷	: '
	C_j	a_{C_j,O_1}		a_{C_j,O_k}		a_{C_j,O_l}		a_{C_j,O_n}
	÷	÷	÷	÷	÷	÷	÷	:
	C_m	a_{C_m,O_1}		a_{C_m,O_k}		a_{C_m,O_l}		a_{C_m,O_n}

where for every $p, q, (1 \le p \le m, 1 \le q \le n)$:

- C_p is a criterion, taking part in the evaluation,
- O_q is an object, being evaluated.
- a_{Cp,Oq} is a real number or another object, that is comparable about relation R with the other a-objects, so that for each i, j, k: R(a_{Ck,Oi}, a_{Ck,Oj}) is defined. Let R be the dual relation of R in the sense that if R is satisfied, then R is not satisfied and vice versa. For example, if "R" is the relation "<", then R is the relation ">", and vice versa.

Let $S_{k,l}^{\mu}$ be the number of cases is which $R(a_{C_k,O_i}, a_{C_k,O_j})$ and $R(a_{C_l,O_i}, a_{C_l,O_j})$ are simultaneously satisfied. Let $S_{k,l}^{\nu}$ be the number of cases is which $R(a_{C_k,O_i}, a_{C_k,O_j})$ and $\overline{R}(a_{C_l,O_i}, a_{C_l,O_j})$ are simultaneously satisfied.

Obviously,

$$S_{k,l}^{\mu} + S_{k,l}^{\nu} \le \frac{n(n-1)}{2}.$$

Now, for every k, l, such that $1 \le k < l \le m$ and for $n \ge 2$, we define

$$\mu_{C_k,C_l} = 2 \frac{S_{k,l}^{\mu}}{n(n-1)}, \ \nu_{C_k,C_l} = 2 \frac{S_{k,l}^{\nu}}{n(n-1)}$$

Therefore, $\langle \mu_{C_k,C_l}, \nu_{C_k,C_l} \rangle$ is an IFP. Now, we can construct the IM

	C_1		C_m
C_1	$\langle \mu_{C_1,C_1}, \nu_{C_1,C_1} \rangle$		$\langle \mu_{C_1,C_m}, \nu_{C_1,C_m} \rangle$
÷	:	÷	,
C_m	$\langle \mu_{C_m,C_1}, \nu_{C_m,C_1} \rangle$		$\langle \mu_{C_m,C_m}, \nu_{C_m,C_m} \rangle$

that determine the degrees of correspondence between criteria $C_1, ..., C_m$.

Let $\alpha, \beta \in [0,1]$ be given, so that $\alpha + \beta \leq 1$. We say that criteria C_k and C_l are in

• (α, β) -positive consonance, if

$$\mu_{C_k,C_l} > \alpha \text{ and } \nu_{C_k,C_l} < \beta;$$

• (α, β) -negative consonance, if

$$\mu_{C_k,C_l} < \beta$$
 and $\mu_{C_k,C_l} > \alpha$;

• (α, β) -dissonance, otherwise.

5 An application of the method for prediction

Let the IM A be given and let criterion D (e.g., one of the criteria $C_1, ..., C_m$) be fixed. Let us reduce IM A to the IM B, omitting, if necessary, some rows, so that all criteria corresponding to the rows of B, be in (α, β) -positive or (α, β) -negative consonance with D.

For brevity, we say that these criteria are in consonance.

The important particularity in this case is that elements $b_{D,O_1}, ..., b_{D,O_n}$ are evaluated hardlier than the rest *a*-elements of *B*.

Let us have a new object X with estimations $x_1, ..., x_p$ w.r.t. the criteria $C_1, ..., C_p$. Then we can solve the following problem: "Predict the value y of object X w.r.t. criterion D".

To solve the problem, we can use one of the following two algorithms.

5.1 First algorithm

We realize the following steps for each $i, 1 \le i \le p$:

1.1. Determine the values a_{C_i,O_j} and a_{C_i,O_k} so that $a_{C_i,O_j} < a_{C_i,O_k}$ and $a_{C_i,O_j} \le x_i \le a_{C_i,O_k}$ and a_{C_i,O_j} is the highest a_{C_i,O_r} with this property and a_{C_i,O_k} is the lowest a_{C_i,O_s} with this property (for $1 \le r, s \le p$).

1.2. If criteria C_i and D are in positive consonance, then calculate the value

$$y_i = b_{D,O_j} + (x_i - a_{C_i,O_j}) \cdot \frac{b_{D,O_k} - b_{D,O_j}}{a_{C_i,O_k} - a_{C_i,O_j}}$$

and if criteria C_i and D are in negative consonance, then calculate the value

$$y_i = b_{D,O_j} + (x_i - a_{C_i,O_j}) \cdot \frac{b_{D,O_j} - b_{D,O_k}}{a_{C_i,O_k} - a_{C_i,O_j}}$$

1.3. Determine the values

$$y_{min} = \min_{1 \le i \le p} y_i,$$
$$y_{ave} = \frac{1}{p} \sum_{1 \le i \le p} y_i,$$

$$y_{max} = \max_{1 \le i \le p} y_i.$$

Now, the value of y can be y_{ave} or some other number in interval $[y_{min}, y_{max}]$.

If there is no number a_{C_i,O_j} such that $a_{C_i,O_j} \leq x_i$, or a_{C_i,O_k} such that $x_i \leq a_{C_i,O_k}$, then Step 1.2 is omitted and in Step 1.3, the denominator is p-s, where s is the number of omitted cases (if they are smaller than p). If in Step 1.1, $a_{C_i,O_j} = x_i = a_{C_i,O_k}$ and $b_{D,O_j} < b_{D,O_k}$, then

$$y_i = \frac{1}{2}(b_{D,O_k} - b_{D,O_j})$$

for the case of positive consonance between criteria C_i and D and

$$y_i = \frac{1}{2}(b_{D,O_j} - b_{D,O_k})$$

for the case of negative consonance between these criteria.

5.2 Second algorithm

2.1. Determine those objects O_j , for which for each i $(1 \le i \le p)$: $a_{C_i,O_j} \le x_i$ and those objects O_k , for which for each i $(1 \le i \le p)$: $a_{C_i,O_k} \ge x_i$.

2.2. Determine object O_r , so that a_{C_i,O_r} is the highest *a*-element from the determined in Step 2.1 and $a_{C_i,O_r} \leq x_i$.

2.3. Determine object O_s , so that a_{C_i,O_s} is the lowest *a*-element from the determined in Step 2.1 and $a_{C_i,O_s} \ge x_i$.

2.4. Determine

$$y = \begin{cases} b_{D,O_r} + \frac{b_{D,O_s} - b_{D,O_r}}{p} \cdot \sum_{i=1}^p \frac{x_i - a_{C_i,O_r}}{a_{C_i,O_s} - a_{C_i,O_r}}, & \text{if } b_{D,O_s} \ge b_{D,O_s} \\ \\ b_{D,O_s} + \frac{b_{D,O_r} - b_{D,O_s}}{p} \cdot \sum_{i=1}^p \frac{x_i - a_{C_i,O_r}}{a_{C_i,O_s} - a_{C_i,O_r}}, & \text{otherwise} \end{cases}$$

6 Formulas for evaluation of the predicted values

Now we discuss two (standard) formulas for evaluation of the y-values. Let the IM B be given:

		O_1		O_k		O_n
	C_1	a_{C_1,O_1}		a_{C_1,O_k}		a_{C_1,O_n}
				÷		
B =	C_i	a_{C_i,O_1}		a_{C_i,O_k}		a_{C_i,O_n}
	÷	:	÷	:	:	:
	C_p	a_{C_p,O_1}		a_{C_p,O_k}		a_{C_p,O_n}
	D	b_{D,O_1}	• • •	a_{C_p,O_k} b_{D,O_k}		b_{D,O_n}

1. For every $k \ (1 \le k \le n)$ we construct the IM

$$B_k = B_{(\perp,O_k)}.$$

2. For every $i (1 \le i \le p)$ we put $x_i = a_{C_i,O_k}$.

3. Using the two above described methods (for the fixed number k), for B_k and $x_1, ..., x_p$, we determine y-values $y_{k,1}, y_{k,2}$.

4. For s (s = 1, 2), we determine numbers

$$z_{k,s} = |y_{k,s} - b_{D,O_k}|.$$

5. Evaluate the standard deviation by:

$$\sigma'_{s} = \frac{1}{n(B_{2} - B_{1})} \sum_{k=1}^{n} z_{k,s},$$
$$\sigma''_{s} = \frac{1}{B_{2} - B_{1}} \sqrt{\frac{1}{n} \sum_{k=1}^{n} z_{k,s}^{2}}$$

7 Conclusion

In future, the new method can be applied to different areas. For example, in medicine, it can shows some intercriteria dependencies, related to criteria for decision making about the status of a patient from medical experts. The method can be used for searching of the values of objects, for which we have only partial information, and others.

References

- [1] Atanassov, K., Generalized index matrices, *Comptes rendus de l'Academie Bulgare des Sciences*, Vol. 40, 1987, No. 11, 15–18.
- [2] Atanassov, K., On index matrices, Part 1: Standard cases. *Advanced Studies in Contemporary Mathematics*, Vol. 20, 2010, No. 2, 291–302.
- [3] Atanassov, K., On index matrices, Part 2: Intuitionistic fuzzy case. Proceedings of the Jangjeon Mathematical Society, Vol. 13, 2010, No. 2, 121–126.
- [4] Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
- [5] Atanassov, K., E. Szmidt, J. Kacprzyk, In intuitionistic fuzzy pairs. *Notes* on *Intuitionistic Fuzzy Sets*, Vol. 19, 2013, No. 3, 1–13.