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Abstract: We present a novel method of attribute selection for data bases which are expressed
via intuitionistic fuzzy sets (IFSs, for short). We use the three term representation of the IFSs
which makes it possible to construct a transparent and justified function that makes it possible to
select attributes for widely understood decision making, e.g., for classification tasks. We test the
proposed method using a well known example from literature. The results obtained are compared
with other methods.
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1 Introduction

The problem of model dimensionality reduction has been investigated for long and in spite of new
approaches constantly proposed (with their pros and cons), the process continues as there is no
overall “best method”. We have two possible approaches to the model dimensionality reduction.
First, so called feature (attribute) extraction when the dimensionality is reduced by using a combi-
nation of features (attributes) which may result in difficulties with model interpretation. Second,

63



the so called feature (attribute) selection when only the most relevant features are selected and
used. Here we will consider the latter, the attribute selection for data sets which are expressed by
intuitionistic fuzzy sets (IFSs for short).

The intuitionistic fuzzy sets [1–3], are a very convenient tool for the modeling of systems
in the presence of a lack of knowledge which is crucial for decision making and the same time
difficult to foresee. The IFSs, being an extension of Zadeh’s fuzzy sets [28], can make it possible
to take into account a lack of knowledge by making use of the so-called hesitation margin or
intuitionistic fuzzy index.

However, the IFS models can again be described by too many variables to efficiently perform
simulations. So, here again, we face the well known problem of the reduction of dimensionality
of data. The well known Principal Component Analysis (PCA) for the IFSs [14,23] gives correct
results but, again, it is quite complicated from the point of view of calculations, and the final
result is not transparent enough for some users.

Here we propose a novel and simple method of feature selection for the data sets which are
expressed by intuitionistic fuzzy sets (IFSs). The three term representation of the IFSs make
possible a simple and efficient feature selection process. The method is transparent and easy
from the point of view of calculations. Moreover, the proposed approach makes it possible to
rank the attributes (not all methods can do this).

We test the proposed method using an example well known from the literature. The results
are compared with those obtained by other methods of dimensionality reduction.

2 A brief introduction to the IFSs

One of the possible generalizations of a fuzzy set in X [28] given by

A
′
= {〈x, µA′ (x)〉|x ∈ X} (1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′ , is an IFS [1–3] A is given
by

A = {〈x, µA(x), νA(x)〉|x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-membership of x ∈
A, respectively. (See Szmidt and Baldwin [15] for deriving memberships and non-memberships
for A-IFSs from data.)

An additional concept for each IFS in X , that is not only an obvious result of (2) and (3) but
which is also relevant for applications, we will call [2]

πA(x) = 1− µA(x)− νA(x) (4)

a hesitation margin of x ∈ A which expresses a lack of knowledge of whether x belongs to A or
not (cf. [2]). It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ X .
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The hesitation margin turns out to be important while considering the distances (Szmidt and
Kacprzyk [16, 17, 19], entropy (Szmidt and Kacprzyk [18, 20]), similarity (Szmidt and Kacprzyk
[21]) for the IFSs, etc. i.e., the measures that play a crucial role in virtually all information
processing tasks (Szmidt [14]).

The hesitation margin turns out to be relevant for applications – in image processing (cf.
Bustince et al. [7]), the classification of imbalanced and overlapping classes (cf. Szmidt and
Kukier [25–27]), the classification applying intuitionistic fuzzy trees (cf. Bujnowski [6]), group
decision making (e.g., [4]), genetic algorithms [12], negotiations, voting and other situations (cf.
Szmidt and Kacprzyk papers).

Below, because of space limitation we present only necessary materials directed a reader to
respective literature.

3 Three term representation of the IFSs
as a foundation for selecting attributes

In [15] we have presented an algorithm of how to derive IFS parameters of a model from relative
frequency distributions (histograms). To justify the (automatic) method, we have shown some
similarities/parallels between the intuitionistic fuzzy set theory and mass assignment theory – a
well known tool for dealing with both the probabilistic and fuzzy uncertainties (the proof is in
Baldwin at al. [5]). Next step of our approach was to recall a semantics for membership functions
– the interpretation having its roots in the possibility theory. Finally, in [15] we have proposed
the automatic algorithm assigning all three terms (memberships, non-memberships and hesitation
margins) describing the intuitionistic fuzzy sets.

In the intuitionistic fuzzy model considered in this paper the attributes are described by the
above mentioned three terms. Having in mind the interpretation of the three terms we can try
to point out the most relevant attributes. As the values of each attribute Ak, k = 1, . . . , K for
different instances are different, an attribute can be described by average values of memberships
(5), non-memberships (6), and hesitancy margins (7), i.e.:

µAk
=

1

n

n∑
i=1

µAk
(xi) (5)

νAk
=

1

n

n∑
i=1

νAk
(xi) (6)

πAk
=

1

n

n∑
i=1

πAk
(xi) (7)

where n is a number of instances.
The most relevant attributes should be most discriminative. For a specific intuitionistic fuzzy

attribute Ak it means that its average intuitionstic fuzzy index (7) should be as small as possi-
ble, and the difference between average membership value and average non-membership value
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|µAk
− νAk

| should be as big as possible. The simplest function which fulfills such conditions for
Ak is:

f(Ak) = [(1− πAk
)(|µAk

− νAk
|)] (8)

Having in mind that function f(Ak) is in fact f(Aµk,νk,πk
), the properties of (8) are:

1. 0 ≤ f(Ak) ≤ 1.

2. f(Ak) = (f(Ak)
C)

3. For a fixed value of |µk − νk|, f(Ak) increases while π decreases.

4. For a fixed value of π, f(Ak) behaves dually to a very simple sort of entropy measure
|µk − νk| (i.e., as 1− (|µk − νk|)).

In Figure 1 we can see the shape of (8), and its contour plot.
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Figure 1. Function (8): a)- shape; b)- contourplot

It is worth noticing that the components in (8) are independent, i.e. |µk − νk| is independent
on π since the shape of |µk − νk| is always the same in spite of π.

From (8) we find “the best” attribute

argmax
Ak

[(1− πAk
)(|µAk

− νAk
|)] (9)

where Ak is the k-th attribute , k = 1, . . . , K.
Repeating (9)K−1 times we can order allK attributes: from the most to the least discriminative.
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4 Results

As an illustration how the proposed method works, we will recall a well known problem formu-
lated by Quinlan [13] but expressed in terms of the IFSs. The Quinlan’s example, the so-called
“Saturday Morning” example, considers the classification with nominal data. This example is
small enough and illustrative, yet is a challenge to many classification and machine learning
methods. The main idea of solving the example by Quinlan was to select the best attributes
(variables) to split the training set (Quinlan used a so-called Information Gain which was a dual
measure to Shannon’s entropy).

In Quinlan’s example [13] (Table 1) we have objects described by attributes. Each attribute
represents a feature and takes on discrete, mutually exclusive values. For example, if the objects
were “Saturday Mornings” and the classification involved the weather, possible attributes might
be [13]:

• outlook, with values {sunny, overcast, rain},

• temperature, with values {cold, mild, hot},

• humidity, with values {high, normal}, and

• windy, with values {true, false},

No. Attributes Class
Outlook Temp Humidity Windy

1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P

10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

Table 1. The “Saturday Morning” data from [13]

The limitation of space does not let us discuss the method of deriving the IFS counterpart of
Quinlan’s example (Table 2) in detail (cf. Szmidt and Kacprzyk [22]) and we only present here
the final results.
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No. Attributes Class
Outlook Humidity Windy Temperature

1 (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0.33, 0.67) N
2 (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) N
3 (1, 0, 0) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0.33, 0.67) P
4 (0.2, 0.11, 0.69) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0, 1) P
5 (0.2, 0.11, 0.69) (0.6, 0, 0.4) (0.2, 0, 0.8) (0.4, 0.11, 0.49) P
6 (0.2, 0.11, 0.69) (0.6, 0, 0.4) (0, 0.33, 0.67) (0.4, 0.11, 0.49) N
7 (1, 0, 0) (0.6, 0, 0.4) (0, 0.33, 0.67) (0.4, 0.11, 0.49) P
8 (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0, 1) N
9 (0, 0.33, 0.67) (0.6, 0, 0.4) (0.2, 0, 0.8) (0.4, 0.11, 0.49) P
10 (0.2, 0.11, 0.69) (0.6, 0, 0.4) (0.2, 0, 0.8) (0, 0, 1) P
11 (0, 0.33, 0.67) (0.6, 0, 0.4) (0, 0.33, 0.67) (0, 0, 1) P
12 (1, 0, 0) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0, 1) P
13 (1, 0, 0) (0.6, 0, 0.4) (0.2, 0, 0.8) (0, 0.33, 0.67) P
14 (0.2, 0.11, 0.69) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0, 1) N

Table 2. The “Saturday Morning” data in terms of the IFSs

Next, making use of the IFS model (Table 2) we compute an average characteristic of the
attributes. The results are in Table 3.

1 2 3 4 5 6
Attribute π µ ν |µ− ν| (1− π)(|µ− ν|

Outlook (A1) 0.48 0.36 0.16 0.2 0.104
Humidity (A2) 0.53 0.30 0.17 0.13 0.061

Windy (A3) 0.74 0.11 0.14 0.03 0.008
Temperature (A4) 0.76 0.11 0.13 0.02 0.005

Table 3. Characteristic of the “Saturday Morning” attributes

In the last column of Table 3 there are values obtained from (8) for each attribute. Making
use of (9) we can order the attributes (the bigger value from (8) the better), namely: Outlook,
Humidity, Windy, Temperature. We can notice that that the values (8) are not too big what is the
result of both substantial values of hesitation margins (second column of Table 3) and not very
big differences between µ and ν.

It is worth noticing that Quinlan [13] obtained 100% classification accuracy, and the optimal
solution (the minimal possible ID3 tree) using the first three attributes as pointed out by our
method (Outlook, Humidity, Windy).

Another selection of the attributes obtained via Hellwig’s method [8] adapted to IFS data (cf.
Szmidt and Kacprzyk [24]) and verified using the Quinlan’s example [24] again gave the same
result.
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Finally, we compared the new results for the same example but obtained by Principal Com-
ponent Analysis (PCA) – one of the best known and widely used linear dimension reduction
technique [9–11] in the sense of mean-square error.

After performing the PCA adapted to the data expressed via the IFSs (cf. Szmidt and Kacprzyk
[23]), we have noticed that the first three eigenvalues explain most of variability of the data (85%),
and summarize the most important features of the data. It is again a sort of confirmation of our
result while using the novel method (9) presented here (PCA as a method of reduction points out
a combination of attributes not the initial attributes).

Clearly, our example is just for illustration as feature reduction makes sense for large problems
(very many features) and then the selection of the attributes is usually considerable and very
welcome.

5 Conclusions

We have proposed a novel method for feature selection for data bases for which the IFS model
is justified. We have used the three term model of IFSs which made it possible to formulate
a very natural and understandable function being a foundation of the selection process. The
method is transparent, simple from the point of view of calculation, intuitively appealing and
gives promising results. We plan to verify the proposed method on bigger data bases.
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