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Abstract  

All living organisms sustain their life, reproduce and evolve through interaction with the biotic and abiotic 

components of their ecosystems. Therefore the mathematical formalism chosen to describe interactions generally 

predetermines the scope and properties of the ecological models it is part of. The goal of the present paper is to 

introduce Intuitionistic fuzzy estimations of the interaction between two living organisms capable of aggregating 

the positive and negative aspects of the interaction as well as the uncertainty with which they can be determined. 

Using the concept of intuitionistic fuzzy interaction new continuous formulation of the six basic types of 

interactions (neutralism, amensalism, commensalism, competition, mutualism, predation or parasitism) is 

presented. This formulation is capable of incorporating different sources of uncertainty, including the ambiguity in 

the discrimination of direct and environment mediated effects. In the special case when the uncertainty of 

interaction between two living organisms comes from unaccounted small changes in their relatively constant 

environment a method for estimation the interaction components based on observations of interacting objects is 

provided. A simple averaging algorithm is presented for generalizing the results of multiple observations. Future 

extensions and possible applications of the intuitionistic fuzzy estimations of biological interactions are also 

discussed.   

Introduction  

According to Ellis and Ramankutty (2008) more than 75% of the ice free Earth surface is altered as a result of 

human activities. The more extreme and faster these changes are the more off equilibrium the systems become. 

First to adapt to the new conditions are the most abundant and simplest short lifecycle life forms (like bacteria and 

microorganisms) which affect the food web and along with initiating factors the whole ecosystem. The key to 

understanding how organisms adapt or maintain their existence in a pristine natural or anthropogenic ecosystem is 

to understand how they interact with the environment and with other species. Such understanding will help us 

reconnect to the intricate web of life and benefit from the evolutionary gained knowledge of how to live together, 

utilise and recycle resources more efficiently, and become active self aware stability factors in our own 

ecosystems. Brief review some of the existing ecological theories directly involving the notion of interaction is 

provided below. 

Replicator model is widely used for modelling the population dynamics and evolution of traits. Interactions in this 

model change the quantity of one species after encountering another. Populations are presumed to be well mixed 

and every species interact with every other species with fixed in time interaction strength. The model uses 

predefined interaction strengths in the replicator differential equation to determine species concentrations 

change. Different approaches are employed for assigning interaction strengths from random (Diederich and Opper 

1989) trough presumption based i.e. Hebb rule (Poderoso, 2005) to directly measured (Fasham and Evans 1995; 

Berlow et al. 1999; Wootton  and Emmerson 2005). In the classical replicator model only trophic (food web 

related) interactions are considered. Increasing number of studies (Cardinale et al. 2002, Snyder and Prasad  2010) 

suggest a significant role of non-trophic interactions which led some researches to introduce them into replicator 

model in the form of interaction modifications (Fontanari and de Olivera 2000;Goudard  and Loreau 2008). 

Another extension of replicator model is the ability of the model to evolve interaction strength on a different time 

scale of the fast changes in the population dynamics (Poderoso and Fontanari 2007). Despite the recent 

developments the replicator model still possess some limitations emanated from the original assumptions that all 

species interact with fixed frequency in time and space. These two limitations are much better treated by another 

wide spread theory for modelling population dynamics cellular automata. 



A cellular automata (Wolfram, 1986) is a grid of identical cells each of which can be in one of finite number of 

states. States are synchronously updated in function of cell’s state and the state of neighbouring cells. Cells can 

represent individuals or local populations (Darwen and Green, 1996) and functions can represent individual or 

species interactions (Hoekstra et al. Ed 2010), fertility, mortality, migration and other. Comprehensive review of 

cellular automata applications is presented in Molofsky and Bever (2004). They separate the application of cellular 

automata in two broad categories: in illustrating theoretical consequences of different rules and empirical 

applications utilizing parameterized rule systems to model experimental observations. Cellular automata have 

proved to be very flexible and computationally efficient tool for investigation the various aspects of interspecies 

interactions, yet so far models have been build on a case by case basis with rules designed specifically for the 

considered set of species. Development of universal models is hampered by the definition of cellular automata in 

which each cell have to be identical and therefore the more species and possible interaction interactions are 

considered the more complex the definition of the cells become.  

Another important property of natural interactions is their perceived uncertainty and variability. While both of 

these properties could be just the result of our limited knowledge of all contributing factors they still need to be 

considered when building models of biological interactions. Variability – different behaviour under seemingly 

preserved conditions is modelled by probabilities. In cellular automata models this is expressed as probabilistic 

rules (Wootton 2001) and in replicator model as random interactions. There are also entirely probabilistic models 

for predicting the population dynamics (Holland et al. 2009). Uncertainty in generally modelled as fuzziness. In 

cellular automata models is introduced in terms of fuzzy rules and states (Reiter 2002; Bone et al. 2005;). In niches 

theory, which models species interactions implicitly, fuzziness is also used to describe the degree of overlapping 

between niches (Cao 1995; Yimin and Hua, 2008).   

All of the methods above are designed to model forward problems in ecology i.e. finding the state of ecosystem, 

when species and their interactions are known and understood. The inverse problem (Bellman et al. 1965) - 

quantify the interactions when observations of the ecosystem state are provided, proved to be even more 

challenging since discrete experimental observations has to be incorporated in often continuous theoretical 

models. A systematic overview of the origin of the major current methods is offered by Laska and Wootton (1998). 

The four basic theoretical models described in the overview are:  community matrix, Jacobian matrix, Inverted 

Jacobian matrix and removal matrix. Community matrix represents the direct effect an individual from one species 

has on individual of other species.  It can be derived from generalized Lotka-Voltera equation (Levin, 1968; Bender 

et al. 1984). This approach has been extensively studied (Mobley 1973; Kokkoris and Jansen 2003; Dambacher et 

al. 2003) and also applied to interacting populations instead of individuals.  The elements of Jacobain matrix 

represent the direct effect on an individual of one species on the total population of another species at or near 

equilibrium (Bender et al. 1984; Neuhauser and Fargione, 2004). While community and Jacobian matrices account 

only for direct effects on one species to another the inverted Jacobian matrix also accounts for indirect 

interactions (Moon and Moon 2011). This matrix describes the total direct and indirect effects of one species to a 

constant rate of removal or addition of another species (Pine, 1992; Wootton, 1994).  The removal matrix 

measures the interaction strength as a result of complete species removal. Each element in the matrix represents 

the difference in equilibrial abundance between a community with all species present, and the same community 

with one species removed. Various nontrivial extensions of those four major methods has been developed (Gleria 

et al. 2005; Dimakis and Müller-Hoissen 2002) as well as some principally different approaches (Dowd 2003) has 

been introduced. A common assumption in all of these methods is that the structure of the interaction model is 

known and only the interaction coefficients have to be determined. While this could be the case in some well 

studied simple ecosystems in general it is a limiting factor for the complex natural and anthropogenic systems. This 

outlines the need of a general model which can define the individual interaction strengths with no previous 

assumptions based on observations only.  

The goal of the present paper is to introduce a formal description of the interaction between two living organisms 

capable of aggregating the mixture of positive and negative effects rendered from the one organism to the other 

and the ambiguity in the discrimination of direct and environment dependent components of the interaction.  

 



Intuitionistic fuzzy estimations of biological interaction  

Let ����� � �0,1� be the health status of a living organism � in the presence of the set of objects, 
 � ��|� � ���, 

where 0 corresponds to dead organism and 1 to organism in perfect health, and 
�� denotes the set of objects 
 

combined with the object �, or in general case 


���,��,…,�� � ��|� � ��� � ���, ��, … , ���. 

Then the effect of the object � � � over the living organism � � � in the presence of the objects in 
 could be 

described as the intuitionistic fuzzy number 

 �!�,"# � !$�%!�, �#&, '�%!�, �#&#, 

where: !�, �# is the ordered tuple of the two interacting objects, $(: �� * �0,1�  is the positive effect of � over x in 

the presence of 
, '(: �� * �0,1� is the negative effect of y over x in the presence of 
, and 0 + $(%!�, �#& ,'(%!�, �#& + 1. Level of uncertainty -: �� * �0,1� can be defined as -(%!�, �#& � 1 . $(%!�, �#& . '(%!�, �#&.  

The interaction between two objects �, � � � in the presence of the objects in 
 is defined by the tuple  

/�%�, �& � 0 �!�,"#,  �!",�#1. 
The pure or direct effect of y over x can be defined as the effect observable in the constant environment 
3: 

 �3!�,"# �  !�,"# � !$%!�, �#&, '%!�, �#&#,  

The constant environment is 
3 such an environment which is not affected by the presence of x and y, or formally: 

4%� � 
&, ����,56 � ���56 � ����6 � ��6 , and 

4%��, �� � 
&, /�%��, ��& � /���%��, ��& � /��5%��, ��& � /���,5%��, ��&. 
The interaction /�%�, �& is the cumulative 

effect of all direct ineractions in time and 

space between x, y and S (see fig.1). In 

general case this could be very comlicated 

and mutually dependent relationship which 

can not be easily divided into inependent 

components. In the special case when S 

could be treated as relatively unchanged set 

of objects as a result of presnece of x and y 

then the interaction between x and y in the 

enviroment of S is close to direct ineraction. 

In this case we can assume that all 

uncertainty -( for the direct 

interaction /%�, �& comes from the unaccounted small changes in S. This case provides a frameowrk with a great 

practical significance where pure interactions can be studied by comparing the health indeces �����  and ���5"
 of x 

and y living by themselves in the enviroment S with thir health indices ����,5�  and ����,5"
 wnen living together. One 

possible way to estimate the direct effect  �7!�,"# is  

x S  !�,�# 
 !�,�# /%�, 
& y 

 !",�#  !�,"# /%�, 
& 

 !�,"# 

 !",�# 

/%�, �& 



$�7!�,"# � 812 , ∆��7�2 ; max0��7��� , 1 . ��7��� 1? %1 . -(̃%!�, �#&& 

'�7!�,"# � 812 . ∆��7�2 ; max0��7��� , 1 . ��7��� 1? 01 . -(̃%!�, �#&1 

where   ∆��7� � ��7��,5� . ��7���  

and πBC%!x, y#& � max0Eµ0!SH, x#1 . I0!SH, x#1E, Eµ0!SH, y#1 . I0!SH, y#1E1 - one possible measure of the changes in SH as 

a result of presence of x and y. In the expressions above SH denotes relatively constant environment which formally 

can be defined as following: 

4%� � 
&, ����,56 J ���56 J ����6 J ��6 , and 

4%��, �� � 
&, /�%��, ��& J /���%��, ��& J /��5%��, ��& J /���,5%��, ��&. 
The estimation method above presumes maximum activity and represents neutral effects (∆��7�) with their equal 

maximal values $�7!�,"# � '�7!�,"# � 0.5, when  πBC%!x, y#& � 0.  

 

The formal classification of biological interactions is given in table. 1. Naturally occurring interactions often does 

not exclusively fall in a single category but are rather located in the continuum between any of the six main 

categories. This fact is well accommodated by their intuitionistic fuzzy definition which also provides additional 

parameter - quantifying the uncertainty of the described relationship. It also must be noted that these 

relationships are defined as pure interactions in a constant environment 
3 (the index in the definitions is omitted 

for better readability)  

 

Interaction 

type 

Description Effect 

on x 

Effect 

on y 

Intuitionistic Fuzzy 

Definition 

Extreme crisp case -%!�, �#& � 0, -%!�, �#& � 0 

Neutralism Neutralism describes the 

relationship between two 

objects which interact but 

do not affect each other. 

0 0 L$%!�, �#& � '%!�, �#&$%!�, �#& � '%!�, �#&� 
MN
O$%!�, �#& � 0.5'%!�, �#& � 0.5$%!�, �#& � 0.5'%!�, �#& � 0.5

� 
Amensalism Amensalism between two 

objects x, y involves y 

impeding the success of x 

while the x has no effect on 

y 

- 0 L$%!�, �#& P '%!�, �#&$%!�, �#& � '%!�, �#&� 
MN
O $%!�, �#& � 0'%!�, �#& � 1$%!�, �#& � 0.5'%!�, �#& � 0.5

� 

Commensalism Commensalism between 

two objects x, y occurs 

when x benefits from y, 

while x has no effect on y  

+ 0 L$%!�, �#& Q '%!�, �#&$%!�, �#& � '%!�, �#&� 
MN
O $%!�, �#& � 1'%!�, �#& � 0$%!�, �#& � 0.5'%!�, �#& � 0.5

� 



Competition Competition is an 

interaction between two 

objects that is mutually 

detrimental. 

- - Lµ%!x, y#& P '%!x, y#&µ%!y, x#& P '%!y, x#&� 
MN
O$%!�, �#& � 0'%!�, �#& � 1$%!�, �#& � 0'%!�, �#& � 1

� 
Mutualism Mutualism is an interaction 

between two objects, which 

is mutually beneficial. 

+ + L$%!�, �#& Q '%!�, �#&$%!�, �#& Q '%!�, �#&� 
MN
O$%!�, �#& � 1'%!�, �#& � 0$%!�, �#& � 1'%!�, �#& � 0

� 
Predation or 

Parasitism 

Predation or Parasitism 

between two x, y organisms 

is when x benefits at the 

expense of the y 

+ - L$%!�, �#& Q '%!�, �#&$%!�, �#& P '%!�, �#&� 
MN
O$%!�, �#& � 1'%!�, �#& � 0$%!�, �#& � 0'%!�, �#& � 1

� 
 

The more complex interacting organisms are and richer their constant environment is, the more individual 

differences and the accuracy of observational health index estimations can influence the measure of the pure 

interaction. Therefore a simple algorithm can be applied to smooth those differences and combine them in an 

average estimate. This method can be used when all interactions take place in the same constant environment. For 

simplicity as in above definitions the index 
3 will be omitted from the description below. 

We can construct the following Indexed matrix  

 R� R� S R� R�  !�,�#  !�,�# S  !�,�# R�  !�,�#  !�,�# S  !�,�# T T T U T R�  !�,�#  !�,�# S  !�,�# 
 

where R�, R�, S R� are the interacting objects and  !V,W# are the intuitionistic fuzzy estimations of the   pure effect 

of object RW  over object RV  in the constant environment 
3, where X, Y � 1,2, … Z.  The direct interaction can be 

expressed as above: 

/0RV , RW1 � [ !\],\^#,  !\],\^#_. 
Initially all effects are unknown and -!V,W# � -!W,V# � 1,  

 R� R� S R� R� !0,0# !0,0# S !0,0# R� !0,0# !0,0# S !0,0# T T T U T R� !0,0# !0,0# S !0,0# 

 

Let !̀V,W#a  be the k-th observation of the effect of object j on object i   

!̀V,W#a � !$bc%!X, Y#&, 'bc%!X, Y#&#, 

where X, Y � � & 0 + $bc%!�, �#& , 'bc%!�, �#& + 1  



then the k-th intuitionistic fuzzy interaction estimation for the objects I, j can be obtained as a weighted 

combination of the e!V,W#af� and the observation !̀V,W#a  

e!V,W#a � !%g . 1&$hci�%!X, Y#&,$bc%!X, Y#&g , %g . 1&'hci�%!X, Y#&,'bc%!X, Y#&g #. 
Alternatively to prevent error accumulation the above expression can be written in the following form: 

e!V,W#a � !1g j $bk%!X, Y#&a
lm�

, 1g j 'bk%!X, Y#&a
lm�

# 

Using simple averaging does not lead to reduction of uncertainty with increased number of observations, which 

could be a desired property when the algorithm is applied for interaction in relatively constant environment SH 

since the uncertainty there comes from unaccounted cumulative effects. In case of constant environment 
3, other 

operators (Atanassov ???) reducing uncertainty can be used to aggregate the estimations form different 

observations.  

Discussion                                                               

The formalism above focuses on the general case of interaction of two living organisms in given environment. 

These results can be applied in the case when one of the interacting objects is not a living organism but rather 

media or resource. In this case the health status �����  can be viewed as a measure of the availability of the 

resource within the range of: 0 – resource is not available, and 1 resource is available in infinite quantities. Another 

special case of general definition is the interaction without   environment 
 � n. In this case the interaction is 

direct and does not have any third party mediated components. This is also the case which is considered in the 

majority of the existing models including those based on Lotka-Volterra equation and replicator dynamics.   

Direct effect observed in one environment 
7� does not necessary coincide with the direct effect observed in other 
7� . Further investigation is needed to revile what conditions need to be met in order direct effect observed in one 

environment can be adjusted to estimate the direct effect observed in another environment.  

In the current definition only the “quality” (positive, neutral, negative) of the interaction is considered but not its 

magnitude / straight. This however is important factor when the quantitative estimation of the result of the 

interaction is needed.  

In its present form the intuitionistic fuzzy estimation of the biological interaction could not explicitly accommodate 

important properties of natural interactions. Some of these properties are: 

• Living organism state dependency. A simple example of such dependency is the interaction between the 

predator and prey – depending on the current need for food of the predator. Such dependencies can be 

modelled in the future by introduction of state machines models of the organisms;  

• Temporal aspect. This aspect is tightly related to the state dependencies and introduces the time scale in 

which these state changes develop. A generalized measure of such temporal changes is the life stage of 

the living organism which clearly presents different needs and different interaction properties in the 

course of organism development, maturation and decline. Temporal aspect could be easily introduced 

utilizing the existing research in the field of Temporal Intuitionistic Fuzzy Sets (Atanassov ???);  

• Spatial aspect. Interaction strength and polarity (positive neutral negative) generally are significantly 

altered by the distance between the interacting objects. For example a nitrogen fixing plant at optimal 



distance could provide nitrogen for other plants without creating too much root or light competition, thus 

creating overall positive effect. The same plant if closer than optimal could have detrimental effect 

because of shading and diminishing effect if it is too far; 

• Evolutionary aspect. Crossbreeding and mutations – the driving force of evolution also change the way 

living organisms interact; 

• Multidimensional. Interactions can have multiple “dimensions” and can be beneficial in certain aspects 

while detrimental in others. 

Considering all of these properties in a single model might look as an over-complication and unattractive for 

practical application but it could be the only plausible way to establish their relative importance while building a 

better model of arguably complex natural phenomena. More over when considering state machine represented 

individual interacting objects in space, time and physical environment utilizing game theory a simulation of such 

virtual ecosystem does not look unattainable. Such virtual models could chose not to describe the abundant 

diversity of life forms but rather utilize the existing taxonomy classifications and build general models which 

simulates the relationships of kingdoms, genus, classes or families of organisms investigating the evolutionary 

preserved properties of respective taxonomy ranks.  

Conclusions 

The introduction of intuitionistic fuzzy estimation of biological interactions, offers simple yet practically applicable 

framework for studying anthropogenic or natural ecosystems. It presents unified formalism which can be used for 

modelling of both: forward and inverse problems in ecology. A benefit over existing approaches is that 

intuitionistic fuzzy estimations provide explicit estimations of both positive and negative aspects of an interaction 

as well as its uncertainty. It is also important to emphasize that interactions in this framework are conditionally 

defined and depend on the environment in which they are occurring. Intuitionistic fuzzy interactions are also 

defined on individual level and can be used for encoding or predicting direct observations.  
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