ON INTUITIONISTIC FUZZY VERSIONS OF L. ZADEH'S EXTENSION PRINCIPLE

Lilija Atanassova

IIT - Bulgarian Academy of Sciences,

Acad. G. Bonchev Str., Bl. 2, Sofia-1113, Bulgaria

1 Introduction and basic concepts

K. Atanassov introduced the concept of the Intuitionistic Fuzzy Sets (IFS) in [1]. The book [2] contains some of the most important results of this theory by 1999.

Here we shall discuss some IFS-versions of the extension principle introduced by L. Zadeh in [6] and discussed in a lot of publications, e.g., [3, 4].

Let us have a fixed universe E and its subset A. The set

$$
\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}
$$

where

$$
\begin{equation*}
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1 \tag{1}
\end{equation*}
$$

is called IFS and functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ represent degree of membership (validity, etc.) and non-membership (non-validity, etc.).

For every two IFSs A and B a lot of operations, relations and operators are defined (see, e.g. [2]), two of them are related to the present research:

$$
\begin{aligned}
& C(A)=\{\langle x, K, L\rangle \mid x \in E\}, \\
& I(A)=\{\langle x, k, l\rangle \mid x \in E\},
\end{aligned}
$$

where

$$
K=\sup _{y \in E} \mu_{A}(y), \quad L=\inf _{y \in E} \nu_{A}(y)
$$

and

$$
k=\inf _{y \in E} \mu_{A}(y), \quad l=\sup _{y \in E} \nu_{A}(y) .
$$

Let E_{1} and E_{2} be two universes and let

$$
\begin{aligned}
& A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E_{1}\right\}, \\
& B=\left\{\left\langle x, \mu_{B}(y), \nu_{B}(y)\right\rangle \mid y \in E_{2}\right\},
\end{aligned}
$$

be two IFSs; A - over E_{1}, and B - over E_{2}.

Following [2] we will define:

$$
\begin{aligned}
A \times_{1} B= & \left\{\left\langle\langle x, y\rangle, \mu_{A}(x) \cdot \mu_{B}(y), \nu_{A}(x) \cdot \nu_{B}(y)\right\rangle \mid x \in E_{1} \& y \in E_{2}\right\}, \\
A \times_{2} B= & \left\{\left\langle\langle x, y\rangle, \mu_{A}(x)+\mu_{B}(y)-\mu_{A}(x) \cdot \mu_{B}(y), \nu_{A}(x) \cdot \nu_{B}(y)\right\rangle\right. \\
& \left.\mid x \in E_{1} \& y \in E_{2}\right\}, \\
A \times_{3} B= & \left\{\left\langle\langle x, y\rangle, \mu_{A}(x) \cdot \mu_{B}(y), \nu_{A}(x)+\nu_{B}(y)-\nu_{A}(x) \cdot \nu_{B}(y)\right\rangle\right. \\
& \left.\mid x \in E_{1} \& y \in E_{2}\right\}, \\
A \times_{4} B= & \left\{\left\langle\langle x, y\rangle, \min \left(\mu_{A}(x), \mu_{B}(y)\right), \max \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} \& y \in E_{2}\right\} \\
A \times_{5} B= & \left\{\left\langle\langle x, y\rangle, \max \left(\mu_{A}(x), \mu_{B}(y)\right), \min \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} \& y \in E_{2}\right\} .
\end{aligned}
$$

2 Main results

Now, we shall formulate some IFS-versions of the extension principle introduced by L. Zadeh.

Let X and Y be fixed universes and let $f: X \rightarrow Y$. Let A and B be IFSs over X. Then we can construct the sets

$$
D_{i}=A \times_{i} B,
$$

where $i=1,2, \ldots, 5$ and can obtain the sets

$$
F_{i}=f\left(D_{i}\right) .
$$

Having in mind the idea of G. Pasi, K. Atanassov and R. Yager for intuitionistic fuzzy optimistic and pessimistic estimations (see [5]), the extension principle will have the following 10 forms.

Optimistic forms of the extension principle are:

$$
\begin{gathered}
F_{1}^{o p t}=\left\{\left\langle z, \sup _{z=f(x, y)}\left(\mu_{A}(x) \cdot \mu_{B}(y)\right), \inf _{z=f(x, y)}\left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} \& y \in E_{2}\right\}, \\
F_{2}^{o p t}=\left\{\left\langle z, \sup _{z=f(x, y)}\left(\mu_{A}(x)+\mu_{B}(y)-\mu_{A}(x) \cdot \mu_{B}(y)\right), \inf _{z=f(x, y)}\left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\}, \\
F_{3}^{o p t}=\left\{\left\langle z, \sup _{z=f(x, y)}\left(\mu_{A}(x) \cdot \mu_{B}(y)\right), \inf _{z=f(x, y)}\left(\left(\nu_{A}(x)+\nu_{B}(y)-\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle\right| x \in E_{1} y \in E_{2}\right\}, \\
F_{4}^{o p t}=\left\{\left\langlez, \sup _{z=f(x, y)}\left(\min \left(\mu_{A}(x), \mu_{B}(y)\right), \inf _{z=f(x, y)}\left(\max \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\},\right.\right. \\
F_{5}^{o p t}=\left\{\left\langlez, \sup _{z=f(x, y)}\left(\max \left(\mu_{A}(x)\right), \mu_{B}(y)\right), \inf _{z=f(x, y)}\left(\left(\min \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\} .\right.\right.
\end{gathered}
$$

Pessimistic forms of the extension principle are:

$$
F_{1}^{p e s}=\left\{\left\langle z, \inf _{z=f(x, y)}\left(\mu_{A}(x) \cdot \mu_{B}(y)\right), \sup _{z=f(x, y)}\left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} \& y \in E_{2}\right\}
$$

$$
\begin{gathered}
F_{2}^{\text {pes }}=\left\{\left\langle z, \inf _{z=f(x, y)}\left(\mu_{A}(x)+\mu_{B}(y)-\mu_{A}(x) \cdot \mu_{B}(y)\right), \sup _{z=f(x, y)}\left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\}, \\
F_{3}^{\text {pes }}=\left\{\left\langle z, \inf _{z=f(x, y)}\left(\mu_{A}(x) \cdot \mu_{B}(y)\right), \sup _{z=f(x, y)}\left(\left(\nu_{A}(x)+\nu_{B}(y)-\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle\right| x \in E_{1} y \in E_{2}\right\}, \\
F_{4}^{\text {pes }}=\left\{\left\langlez, \inf _{z=f(x, y)}\left(\min \left(\mu_{A}(x), \mu_{B}(y)\right), \sup _{z=f(x, y)}\left(\max \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\},\right.\right. \\
F_{5}^{\text {pes }}=\left\{\left\langlez, \inf _{z=f(x, y)}\left(\max \left(\mu_{A}(x)\right), \mu_{B}(y)\right), \sup _{z=f(x, y)}\left(\left(\min \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\} .\right.\right.
\end{gathered}
$$

Average forms of the extension principle are:

$$
\begin{gathered}
F_{1}^{\text {ave }}=\left\{\left\langlez, \frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\mu_{A}(x) \cdot \mu_{B}(y)\right),\right.\right. \\
\left.\left.\frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} \& y \in E_{2}\right\}, \\
F_{2}^{\text {ave }}=\left\{\left\langlez, \frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\mu_{A}(x)+\mu_{B}(y)-\mu_{A}(x) \cdot \mu_{B}(y)\right),\right.\right. \\
\left.\left.\frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\}, \\
F_{3}^{\text {ave }}=\left\{\left\langlez, \frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\mu_{A}(x) \cdot \mu_{B}(y)\right),\right.\right. \\
\left.\left.\frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}^{\sum_{2}}\left(\left(\nu_{A}(x)+\nu_{B}(y)-\nu_{A}(x) \cdot \nu_{B}(y)\right)\right\rangle \right\rvert\, x \in E_{1} y \in E_{2}\right\}, \\
\left.\left.\frac{F_{4}^{\text {ave }}=\left\{\left\langlez, \frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\min \left(\mu_{A}(x), \mu_{B}(y)\right),\right.\right.\right.}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\max \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \right\rvert\, x \in E_{1} y \in E_{2}\right\}, \\
F_{5}^{a v e}=\left\{\left\langlez, \frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\max \left(\mu_{A}(x)\right), \mu_{B}(y)\right),\right.\right. \\
\frac{1}{\operatorname{card}(\{z \mid z=f(x, y)\}} \sum_{z=f(x, y)}\left(\left(\min \left(\nu_{A}(x), \nu_{B}(y)\right)\right\rangle \mid x \in E_{1} y \in E_{2}\right\} .
\end{gathered}
$$

References

[1] Atanassov, K. Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.).
[2] Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
[3] Biacino, L., G. Gerla, An extension principle for closure operators, J. of Math. Anal. Appl., Vol. 198, 1996, 1-24.
[4] Gazdik, I., Zadeh's extension principle in design reliability. Fuzzy Sets and Systems archive Volume 83 , Issue 2 (October 1996), 169-178.
[5] Pasi, G., K. Atanassov and R. Yager, Intuitionistic Fuzzy Interpretations of MultiCriteria Multi-Person and Multi-Measurement Tool Decision Making, ...
[6] Zadeh, L., The Concept of a Linguistic Variable and Its Application to Approximate Reasoning, Information Sciences, Vol. 8, 1975, 199-249.

