Sugeno integral with respect to intuitionistic fuzzy-valued fuzzy measures

Adrian I. Ban

Department of Matematics, University of Oradea, str. Armatei Romane 5, 410087 Oradea, Romania e-mail: aiban@uoradea.ro

Abstract We introduce the Sugeno integral of intuitionistic fuzzy-valued mappings with respect to intuitionistic fuzzy-valued fuzzy measures. A decomposition theorem to Sugeno integral of real-valued mappings with respect to fuzzy measures, some properties and examples of calculus are given.

1 Preliminaries

A fuzzy measure on a σ -algebra $\mathcal{A} \subseteq \mathcal{P}(X)$ is a set function $m : \mathcal{A} \to [0, 1]$ which satisfies $m(\emptyset) = 0, m(X) = 1$ and $A \subseteq B$ implies $m(A) \le m(B)$. A fuzzy measure (or generally a set function) m defined on a σ -algebra \mathcal{A} is called continuous from below if for every sequence $(A_n)_{n\in\mathbb{N}} \subset \mathcal{A}$ such that $A_n \subseteq A_{n+1}$, for every $n \in \mathbb{N}$, we have

$$m\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)=\lim_{n\to\infty}m\left(A_{n}\right)$$

and continuous from above if for every sequence $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $A_n\supseteq A_{n+1}$, for every $n\in\mathbb{N}$, we have

$$m\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}m\left(A_n\right).$$

The important set in intuitionistic fuzzy set theory (see [1], [2])

$$\mathcal{L} = \{(x_1, x_2); x_1, x_2 \in [0, 1], x_1 + x_2 \leq 1\}$$

is a complete lattice if we consider

$$(x_1, x_2) \leq_{\mathcal{L}} (y_1, y_2)$$
 if and only if $x_1 \leq y_1$ and $x_2 \geq y_2$,

$$\sup_{\mathcal{L}} A = \left(\sup \left\{ x \in [0, 1] \mid \exists y \in [0, 1] : (x, y) \in A \right\}, \\ \inf \left\{ y \in [0, 1] \mid \exists x \in [0, 1] : (x, y) \in A \right\} \right) \\ \inf_{\mathcal{L}} A = \left(\inf \left\{ x \in [0, 1] \mid \exists y \in [0, 1] : (x, y) \in A \right\}, \\ \sup \left\{ y \in [0, 1] \mid \exists x \in [0, 1] : (x, y) \in A \right\} \right),$$

for each $A \subseteq \mathcal{L}$. The standard negation on \mathcal{L} is introduced by

$$(x_1, x_2)^* = (x_2, x_1).$$

It is obvious that $0_{\mathcal{L}} = (0,1)$ and $1_{\mathcal{L}} = (1,0)$.

The following concepts are introduced in the paper [3].

Definition 1.1 An intuitionistic fuzzy-valued fuzzy measure over a measurable space (X, \mathcal{A}) is a map $v : \mathcal{A} \to \mathcal{L}$ with the following properties:

- (i) $v(\emptyset) = (0,1)$;
- $(ii) \ v(X) = (1,0);$
- (iii) $A \subseteq B$ implies $v(A) \leq_{\mathcal{L}} v(B)$.

Definition 1.2 The intuitionistic fuzzy-valued fuzzy measure $v : A \to \mathcal{L}$, $v(A) = (v_1(A), v_2(A))$ is called:

- (i) continuous from below if v_1 and v_2 are continuous from below;
- (ii) continuous from above if v_1 and v_2 are continuous from above;
- (iii) continuous if it is continuous from below and continuous from above.

The Sugeno integral (in its original form) deals with functions having the range contained in [0, 1] and it is with respect to fuzzy measures on crisp sets. In several publications this integral is simply called a fuzzy integral.

Let (X, \mathcal{A}) be a measurable space and $m : \mathcal{A} \to [0, 1]$ be a fuzzy measure. For any function $f : X \to [0, 1]$ we write

$$F_{\alpha} = \{ x \in X; f(x) \ge \alpha \},\,$$

where $\alpha \in [0, 1]$.

Definition 1.3 (see [5] or [6]) Let $A \in \mathcal{A}$ and $f: X \to [0,1]$ be an \mathcal{A} -measurable function. The Sugeno integral of f on A with respect to m, which is denoted by $(S) \int_A f dm$, is defined by

$$(S) \int_{A} f dm = \sup_{\alpha \in [0,1]} \min \left(\alpha, m \left(F_{\alpha} \cap A \right) \right).$$

The following theorem gives the most important properties of the Sugeno integral.

Theorem 1.4 (see [6], pp. 135-136) Let $m, m_1, m_2 : A \rightarrow [0, 1]$ be fuzzy measures, $A, B \in A$ and $f, f_1, f_2 : X \rightarrow [0, 1]$ be A-measurable functions.

(i) If m(A) = 0 then

$$(S)\int_{A} f dm = 0;$$

(ii) If $f_1 \leq f_2$ then

$$(S)$$
 $\int_A f_1 dm \leq (S) \int_A f_2 dm;$

$$(S) \int_{A} f dm = (S) \int_{X} f \chi_{A} dm,$$

where χ_A is the characteristic function of A;

(iv)

$$(S) \int_{A} adm = \min (a, m(A)),$$

for any constant $a \in [0, 1]$;

(v) If $A \subseteq B$ then

$$(S) \int_{A} f dm \le (S) \int_{B} f dm;$$

(vi)

$$(S) \int_{A} \max(f_1, f_2) dm \ge \max\left((S) \int_{A} f_1 dm, (S) \int_{A} f_2 dm\right);$$

(vii)

$$(S) \int_{A} \min (f_1, f_2) dm \le \min \left((S) \int_{A} f_1 dm, (S) \int_{A} f_2 dm \right);$$

(viii)

$$(S) \int_{A \cup B} f dm \ge \max \left((S) \int_{A} f dm, (S) \int_{B} f dm \right);$$

(ix)

$$(S) \int_{A \cap B} f dm \le \min \left((S) \int_A f dm, (S) \int_B f dm \right);$$

(x) If $m_1 \leq m_2$ then

$$(S)\int_A fdm_1 \leq (S)\int_A fdm_2.$$

For any A-measurable function $f: X \to [0,1]$ we define $f^c: X \to [0,1]$ by

$$f^{c}(x) = 1 - f(x),$$

for every $x \in X$. If m_* denotes the dual fuzzy measure of the fuzzy measure $m : \mathcal{A} \to [0,1]$, that is

$$m_*\left(A\right) = 1 - m\left(A^c\right),\,$$

for every $A \in \mathcal{A}$, then the following result is proved in [4].

Theorem 1.5 If m is a continuous fuzzy measure then for every A-measurable function f there holds

$$(S) \int_{X} f dm = 1 - (S) \int_{X} f^{c} dm_{*}.$$

2 Measurability of intuitionistic fuzzy-valued functions

Taking into account the characterization of the measurability of real-valued functions, the following definition appears to be natural.

Definition 2.1 Let $A \subseteq \mathcal{P}(X)$ be a σ -algebra and $\widetilde{f}: X \to \mathcal{L}$. The function \widetilde{f} is called A-measurable if

$$\left\{x \in X; \widetilde{f}(x) \ge_{\mathcal{L}} a\right\} \in \mathcal{A}$$

and

$$\left\{x \in X; a \geq_{\mathcal{L}} \widetilde{f}(x)\right\} \in \mathcal{A},$$

for every $a \in \mathcal{L}$.

The following result reduces the measurability of an intuitionistic fuzzy-valued function to the measurability of its components.

Theorem 2.2 Let $A \subseteq \mathcal{P}(X)$ be a σ -algebra and $\widetilde{f}: X \to \mathcal{L}$,

$$\widetilde{f}(x) = (g(x), h(x)),$$

for every $x \in X$. The intuitionistic fuzzy-valued function \widetilde{f} is A-measurable if and only if $g, h : X \to [0, 1]$ are A-measurable.

Proof. If q is an A-measurable function then

$$\{x \in X; g(x) \ge a_1\} \in \mathcal{A}$$

and

$$\{x \in X; g(x) \le a_1\} \in \mathcal{A},$$

for every $a_1 \in [0,1]$. If h is an A-measurable function then

$$\{x \in X; h(x) \ge a_2\} \in \mathcal{A}$$

and

$$\{x \in X; h(x) \le a_2\} \in \mathcal{A},$$

for every $a_2 \in [0,1]$.

Let $a \in \mathcal{L}, a = (a_1, a_2)$. Because

$$\left\{x \in X; \widetilde{f}(x) \ge_{\mathcal{L}} a\right\}$$

$$= \left\{x \in X; g(x) \ge a_1\right\} \cap \left\{x \in X; h(x) \le a_2\right\} \in \mathcal{A}$$

and

$$\left\{x \in X; a \geq_{\mathcal{L}} \widetilde{f}(x)\right\}$$

$$= \left\{x \in X; g(x) \leq a_1\right\} \cap \left\{x \in X; h(x) \geq a_2\right\} \in \mathcal{A}$$

we obtain \widetilde{f} is \mathcal{A} -measurable.

Conversely, if f is A-measurable then

$${x \in X; g(x) \ge a_1} \cap {x \in X; h(x) \le a_2} \in \mathcal{A},$$

for every $a_1, a_2 \in [0, 1], a_1 + a_2 \le 1$. If $a_1 = 0$ then $\alpha := a_2 \in [0, 1]$ and

$$\{x \in X; q(x) > a_1\} = X.$$

We have

$$\{x \in X; h(x) \le \alpha\} \in \mathcal{A},$$

for every $\alpha \in [0,1]$, therefore h is \mathcal{A} -measurable. If \widetilde{f} is \mathcal{A} -measurable then

$${x \in X; g(x) \le a_1} \cap {x \in X; h(x) \ge a_2} \in \mathcal{A},$$

for every $a_1, a_2 \in [0, 1], a_1 + a_2 \le 1$. If $a_2 = 0$ then $\alpha := a_1 \in [0, 1]$ and

$${x \in X; h(x) \ge a_2} = X.$$

We have

$$\{x \in X; g(x) \le \alpha\} \in \mathcal{A},$$

for every $\alpha \in [0,1]$, therefore g is \mathcal{A} -measurable.

A consequence of the previous theorem is the easy transfer of the concepts and results from real-valued measurable functions to intuitionistic fuzzy-valued measurable functions.

3 Sugeno integral with respect to intuitionistic fuzzyvalued fuzzy measures

We introduce the Sugeno integral of an intuitionistic fuzzy-valued mapping, on a crisp set, with respect to an intuitionistic fuzzy-valued fuzzy measure as follows.

Definition 3.1 Let (X, A) be a measurable space, $v : A \to \mathcal{L}$ be an intuitionistic fuzzy-valued fuzzy measure and $\widetilde{f} : X \to \mathcal{L}$ be an A-measurable intuitionistic fuzzy-valued mapping. The Sugeno integral type of \widetilde{f} on $A \in \mathcal{A}$ with respect to v, denoted by

$$(S_I)\int_A \widetilde{f} dv,$$

is defined by

$$(S_I)\int_A \widetilde{f} dv = \sup_{a \in \mathcal{L}} \inf_{\mathcal{L}} \left(a, v\left(\widetilde{F}_a \cap A\right) \right),$$

where

$$\widetilde{F}_a = \left\{ x \in X; \widetilde{f}(x) \ge_{\mathcal{L}} a \right\},\,$$

for every $a \in \mathcal{L}$.

The idea in Definition 3.1 was used in [7] to introduce a lattice-valued fuzzy integral of Sugeno type for lattice-valued functions.

To simplify the calculus of the integral we prove the following theorem.

Theorem 3.2 Let (X, \mathcal{A}) be a measurable space, $v : \mathcal{A} \to \mathcal{L}$ be an intuitionistic fuzzy-valued fuzzy measure, $v = (v_1, v_2)$ and $\widetilde{f} : X \to \mathcal{L}$,

$$\widetilde{f}(x) = (g(x), h(x))$$

be an A-measurable intuitionistic fuzzy-valued mapping. Then

$$(S_I) \int_X \widetilde{f} dv = \left(\sup_{a \in [0,1]} \min \left(a, v_1 \left(G_a \right) \right), \inf_{a \in [0,1]} \max \left(a, v_2 \left(H^a \right) \right) \right),$$

where

$$G_a = \{x \in X; g(x) \ge a\}$$

and

$$H^{a} = \left\{ x \in X; h\left(x\right) \le a \right\}.$$

Proof. The definitions of the infimum and supremum in the lattice \mathcal{L} imply

$$(S_{I}) \int_{X} \widetilde{f} dv = \sup_{a \in \mathcal{L}} \inf_{\mathcal{L}} \left(a, v \left(\widetilde{F}_{a} \right) \right)$$

$$= \sup_{(a_{1}, a_{2}) \in \mathcal{L}} \inf_{\mathcal{L}} \left(\left(a_{1}, a_{2} \right), \left(v_{1} \left(\widetilde{F}_{(a_{1}, a_{2})} \right), v_{2} \left(\widetilde{F}_{(a_{1}, a_{2})} \right) \right) \right)$$

$$= \left(\sup_{\substack{a_{1}, a_{2} \in [0, 1] \\ a_{1} + a_{2} \leq 1}} \min \left(a_{1}, v_{1} \left(\left\{ x \in X; \widetilde{f} \left(x \right) \geq_{\mathcal{L}} \left(a_{1}, a_{2} \right) \right\} \right) \right),$$

$$\inf_{\substack{a_{1}, a_{2} \in [0, 1] \\ a_{1} + a_{2} \leq 1}} \max \left(a_{2}, v_{2} \left(\left\{ x \in X; \widetilde{f} \left(x \right) \geq_{\mathcal{L}} \left(a_{1}, a_{2} \right) \right\} \right) \right) \right).$$

Because

$$\left\{ x \in X; \widetilde{f}(x) \ge_{\mathcal{L}} a \right\} = \left\{ x \in X; (g(x), h(x)) \ge_{\mathcal{L}} (a_1, a_2) \right\}$$

$$= \left\{ x \in X; g(x) \ge a_1 \right\} \cap \left\{ x \in X; h(x) \le a_2 \right\},$$

for every $a = (a_1, a_2) \in \mathcal{L}$ and v_1 is non-decreasing we obtain

$$\sup_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \min \left(a_1, v_1 \left(\left\{ x \in X; \widetilde{f} \left(x \right) \geq_{\mathcal{L}} \left(a_1, a_2 \right) \right\} \right) \right)$$

$$= \sup_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \min \left(a_1, v_1 \left(\left\{ x \in X; g \left(x \right) \geq a_1 \right\} \cap \left\{ x \in X; h \left(x \right) \leq a_2 \right\} \right) \right)$$

$$\leq \sup_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \min \left(a_1, v_1 \left(\left\{ x \in X; g \left(x \right) \geq a_1 \right\} \right) \right)$$

$$= \sup_{a \in [0,1]} \min \left(a, v_1 \left(\left\{ x \in X; g \left(x \right) \geq a \right\} \right) \right) .$$

Analogously, we get

$$\begin{split} &\inf_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \max \left(a_2, v_2\left(\left\{x \in X; \widetilde{f}\left(x\right) \geq_{\mathcal{L}} (a_1, a_2)\right\}\right)\right) \\ &= \inf_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \max \left(a_2, v_2\left(\left\{x \in X; g\left(x\right) \geq a_1\right\} \cap \left\{x \in X; h\left(x\right) \leq a_2\right\}\right)\right) \\ &\geq \inf_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \max \left(a_2, v_2\left(\left\{x \in X; h\left(x\right) \leq a_2\right\}\right)\right) \\ &= \inf_{a \in [0,1]} \max \left(a, v_2\left(\left\{x \in X; h\left(x\right) \leq a\right\}\right)\right), \end{split}$$

because v_2 is non-increasing. As a first conclusion,

$$(S_I) \int_X \widetilde{f} dv \leq_{\mathcal{L}} \left(\sup_{a \in [0,1]} \min \left(a, v_1 \left(G_a \right) \right), \inf_{a \in [0,1]} \max \left(a, v_2 \left(H^a \right) \right) \right).$$

To prove the converse inequality we need the following inclusion

$$\{x \in X; g(x) \ge a\} \subseteq \{x \in X; h(x) \le 1 - a\},\$$

for every $a \in [0,1]$. Indeed, if the point $x_0 \in X$ verifies

$$g(x_0) \ge a$$

for a fixed $a \in [0,1]$ then

$$h(x_0) \le 1 - g(x_0) \le 1 - a.$$

Then

$$\sup_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \min \left(a_1, v_1 \left(\left\{ x \in X; \widetilde{f} \left(x \right) \geq_{\mathcal{L}} \left(a_1, a_2 \right) \right\} \right) \right)$$

$$= \sup_{\substack{a_1,a_2 \in [0,1] \\ a_1+a_2 \leq 1}} \min \left(a_1, v_1 \left(\left\{ x \in X; g \left(x \right) \geq a_1 \right\} \cap \left\{ x \in X; h \left(x \right) \leq a_2 \right\} \right) \right)$$

$$\geq \left(\text{taking } a_1 = a \text{ and } a_2 = 1 - a \right)$$

$$\geq \sup_{a \in [0,1]} \min \left(a, v_1 \left(\left\{ x \in X; g \left(x \right) \geq a \right\} \cap \left\{ x \in X; h \left(x \right) \leq 1 - a \right\} \right) \right)$$

$$= \sup_{a \in [0,1]} \min \left(a, v_1 \left(\left\{ x \in X; g \left(x \right) \geq a \right\} \right) \right).$$

Finally,

$$\begin{split} &\inf_{\substack{a_1,a_2\in[0,1]\\a_1+a_2\leq 1}} \max\left(a_2,v_2\left(\left\{x\in X;\widetilde{f}\left(x\right)\geq_{\mathcal{L}}\left(a_1,a_2\right)\right\}\right)\right)\\ &=\inf_{\substack{a_1,a_2\in[0,1]\\a_1+a_2\leq 1}} \max\left(a_2,v_2\left(\left\{x\in X;g\left(x\right)\geq a_1\right\}\cap\left\{x\in X;h\left(x\right)\leq a_2\right\}\right)\right)\\ &\leq (\operatorname{taking}\ a_1=0\ \operatorname{and}\ a_2=a)\\ &\leq \inf_{a\in[0,1]} \max\left(a,v_2\left(\left\{x\in X;g\left(x\right)\geq 0\right\}\cap\left\{x\in X;h\left(x\right)\leq a\right\}\right)\right)\\ &=\inf_{a\in[0,1]} \max\left(a,v_2\left(\left\{x\in X;h\left(x\right)\leq a\right\}\right)\right), \end{split}$$

therefore

$$(S_I)\int_X \widetilde{f}dv \ge_{\mathcal{L}} \left(\sup_{a \in [0,1]} \min\left(a, v_1\left(G_a\right)\right), \inf_{a \in [0,1]} \max\left(a, v_2\left(H^a\right)\right) \right)$$

and the proof is complete.

The following corollary is an obvious consequence of Theorem 3.2.

Corollary 3.3 In the hypothesis of Theorem 3.2,

$$(S_I) \int_A \widetilde{f} dv = \left(\sup_{a \in [0,1]} \min \left(a, v_1 \left(G_a \cap A \right) \right), \inf_{a \in [0,1]} \max \left(a, v_2 \left(H^a \cap A \right) \right) \right),$$

for every $A \in \mathcal{A}$.

4 Properties and calculus of Sugeno integral with respect to intuitionistic fuzzy-valued fuzzy measures

The Sugeno integral of the intuitionistic fuzzy-valued function $\tilde{f} = (g, h)$ can be expressed with the Sugeno integral of the components g and h as follows.

Theorem 4.1 Let (X, A) be a measurable space, $v : A \to \mathcal{L}, v = (v_1, v_2)$ be an intuitionistic fuzzy-valued fuzzy measure and $\widetilde{f} : X \to \mathcal{L}, \widetilde{f} = (g, h)$ be an A-measurable intuitionistic fuzzy-valued mapping. Then

$$(S_I)\int_A \widetilde{f} dv = \left((S)\int_A g dv_1, \left((S)\int_A h^c dv_2^c\right)^c\right),$$

where $h^c: X \to [0,1]$ is defined by

$$h^{c}\left(x\right) = 1 - h\left(x\right),$$

 $v_2^c: \mathcal{A} \to [0,1]$ is defined by

$$v_2^c(A) = 1 - v_2(A)$$

and, for symmetry, we denote $\alpha^c = 1 - \alpha$, for every $\alpha \in \mathbb{R}$.

Proof. Firstly, let us remark that v_2^c is a fuzzy measure on \mathcal{A} and h^c is \mathcal{A} -measurable if h is \mathcal{A} -measurable. Below we use the notations in Theorem 3.2. The equality

$$\sup_{a\in [0,1]} \min\left(a, v_1\left(G_a\cap A\right)\right) = (S) \int_A g dv_1$$

is the definition of Sugeno integral (Definition 1.3). The same definition and the properties of inf and sup imply

$$\begin{split} \left((S) \int_A h^c dv_2^c \right)^c &= \left(\sup_{a \in [0,1]} \min \left(a, v_2^c \left(H_a^* \cap A \right) \right) \right)^c \\ &= \inf_{a \in [0,1]} \max \left(1 - a, v_2 \left(H_a^* \cap A \right) \right) \\ &= \inf_{a \in [0,1]} \max \left(1 - a, v_2 \left(H^{1-a} \cap A \right) \right) \\ &= \inf_{a \in [0,1]} \max \left(a, v_2 \left(H^a \cap A \right) \right), \end{split}$$

where $H_a^* = \{x \in X; h^c(x) \ge a\}$, and the proof is complete. \blacksquare It is obvious that in the fuzzy case, that is

$$v_1(A) + v_2(A) = 1,$$

for every $A \in \mathcal{A}$ and

$$g\left(x\right) +h\left(x\right) =1,$$

for every $x \in X$, the Sugeno integral of intuitionistic fuzzy-valued functions reduces to Sugeno integral.

The following theorem gives the most important properties of the introduced integral.

Theorem 4.2 Let $v: A \to \mathcal{L}$ be an intuitionistic fuzzy-valued fuzzy measure, $\widetilde{f}, \widetilde{f}_1, \widetilde{f}_2: X \to \mathcal{L}$ be A-measurable intuitionistic fuzzy-valued mappings and $A, B \in A$, where A is a σ -algebra on X. Then

(i) If v(A) = (0,1) then

$$(S_I) \int_A \widetilde{f} dv = (0,1);$$

(ii) If $\widetilde{f}_1 \leq_{\mathcal{L}} \widetilde{f}_2$, that is $\widetilde{f}_1(x) \leq_{\mathcal{L}} \widetilde{f}_2(x)$, for all $x \in X$, then

$$(S_I) \int_A \widetilde{f}_1 dv \leq_{\mathcal{L}} (S_I) \int_A \widetilde{f}_2 dv;$$

(iii)

$$(S_I)\int_A \widetilde{f} dv = (S_I)\int_X \widetilde{f} \mathcal{T}_P \widetilde{\chi}_A dv,$$

where, if $\widetilde{f}_1 = (g_1, h_1)$, $\widetilde{f}_2 = (g_2, h_2)$ then $\widetilde{f}_1 \mathcal{T}_P \widetilde{f}_2 : X \to \mathcal{L}$ is defined by

$$\left(\widetilde{f}_{1}\mathcal{T}_{P}\widetilde{f}_{2}\right)\left(x\right)=\left(g_{1}\left(x\right)g_{2}\left(x\right),h_{1}\left(x\right)+h_{2}\left(x\right)-h_{1}\left(x\right)h_{2}\left(x\right)\right),$$

for every $x \in X$, and

$$\widetilde{\chi}_{A}\left(x\right)=\left(\chi_{A}\left(x\right),1-\chi_{A}\left(x\right)\right)$$

for every $x \in X$;

(iv)

$$(S_I)\int_A adv = inf_{\mathcal{L}}(a, v(A)),$$

for any $a \in \mathcal{L}$;

(v) If $A \subseteq B$ then

$$(S_I) \int_A \widetilde{f} dv \leq_{\mathcal{L}} (S_I) \int_B \widetilde{f} dv;$$

(vi)

$$\max_{\mathcal{L}} \left((S_I) \int_A \widetilde{f}_1 dv, (S_I) \int_A \widetilde{f}_2 dv \right) \leq_{\mathcal{L}} (S_I) \int_A \max_{\mathcal{L}} \left(\widetilde{f}_1, \widetilde{f}_2 \right) dv,$$

where

$$max_{\mathcal{L}}\left(\widetilde{f}_{1},\widetilde{f}_{2}\right)\left(x\right)=\left(\max\left(g_{1}\left(x\right),g_{2}\left(x\right)\right),\min\left(h_{1}\left(x\right),h_{2}\left(x\right)\right)\right)$$

for
$$\widetilde{f}_1 = (g_1, h_1), \widetilde{f}_2 = (g_2, h_2);$$

$$(S_I) \int_A \min_{\mathcal{L}} \left(\widetilde{f}_1, \widetilde{f}_2 \right) dv \leq_{\mathcal{L}} \min_{\mathcal{L}} \left((S_I) \int_A \widetilde{f}_1 dv, (S_I) \int_A \widetilde{f}_2 dv \right),$$

where

$$min_{\mathcal{L}}\left(\widetilde{f}_{1},\widetilde{f}_{2}\right)\left(x\right)=\left(\min\left(g_{1}\left(x\right),g_{2}\left(x\right)\right),\max\left(h_{1}\left(x\right),h_{2}\left(x\right)\right)\right)$$

for
$$\widetilde{f}_{1} = (g_{1}, h_{1}), \widetilde{f}_{2} = (g_{2}, h_{2});$$
(viii)

$$max_{\mathcal{L}}\left((S_I)\int_A \widetilde{f}dv, (S_I)\int_B \widetilde{f}dv\right) \leq_{\mathcal{L}} (S_I)\int_{A\cup B} \widetilde{f}dv;$$

(ix)

$$(S_I) \int_{A \cap B} \widetilde{f} dv \leq_{\mathcal{L}} min_{\mathcal{L}} \left((S_I) \int_A \widetilde{f} dv, (S_I) \int_B \widetilde{f} dv \right).$$

Proof. It is an immediate consequence of Theorem 4.1 and Theorem 1.4. As example, we prove (iii).

If
$$\widetilde{f} = (g, h)$$
 then

$$(S_I) \int_X f \mathcal{T}_P \widetilde{\chi}_A dv$$

$$= \left((S) \int_X g \chi_A dv_1, \left((S) \int_X (h + \chi_A^c - h \chi_A^c)^c dv_2^c \right)^c \right)$$

$$= \left((S) \int_X g \chi_A dv_1, \left((S) \int_X h^c \chi_A dv_2^c \right)^c \right)$$

$$= \left((S) \int_A g dv_1, \left((S) \int_A h^c dv_2^c \right)^c \right)$$

$$= (S_I) \int_A \widetilde{f} dv$$

taking into account the property (iii) in Theorem 1.4. ■

Theorem 4.3 Let \widetilde{f} be an \mathcal{A} -measurable intuitionistic fuzzy-valued function and $v: \mathcal{A} \to \mathcal{L}, v = (v_1, v_2)$ be a continuous intuitionistic fuzzy-valued fuzzy measure. Then

$$\left((S_I)\int_X \widetilde{f}^* d\overline{v}\right)^* = (S_I)\int_X \widetilde{f} dv,$$

where \overline{v} is the dual of v, that is $\overline{v}: \mathcal{A} \to \mathcal{L}$ is given by

$$\overline{v}(A) = (v_2(A^c), v_1(A^c)),$$

for every $A \in \mathcal{A}$, $\widetilde{f}^* = (h, g)$ if $\widetilde{f} = (g, h)$ and $(x_1, x_2)^* = (x_2, x_1)$.

Proof. We denote $\overline{v} = (\overline{v}_1, \overline{v}_2)$ that is $\overline{v}_1(A) = v_2(A^c)$ and $\overline{v}_2(A) = v_1(A^c)$. As above, $v_2^c(A) = 1 - v_2(A)$, $\overline{v}_2^c(A) = 1 - \overline{v}_2(A)$. The property of Sugeno integral given in Theorem 1.5 imply

$$(S) \int_X h d\overline{v}_1 = \left((S) \int_X h^c dv_2^c \right)^c$$

and

$$(S) \int_X g dv_1 = \left((S) \int_X g^c d\overline{v}_2^c \right)^c$$

therefore (Theorem 4.1 is used)

$$\left((S_I) \int_X \widetilde{f}^* d\overline{v} \right)^* \\
= \left((S) \int_X h d\overline{v}_1, \left((S) \int_X g^c d\overline{v}_2^c \right)^c \right)^* \\
= \left(\left((S) \int_X g^c d\overline{v}_2^c \right)^c, (S) \int_X h d\overline{v}_1 \right) \\
= \left((S) \int_X g dv_1, \left((S) \int_X h^c dv_2^c \right)^c \right) \\
= (S_I) \int_X \widetilde{f} dv.$$

The previous theorem help us to solve the problem of duality of the Sugeno integral with respect to intuitionistic fuzzy-valued fuzzy measures.

Definition 4.4 An intuitionistic fuzzy-valued fuzzy measure $v = (v_1, v_2)$ on σ -algebra \mathcal{A} is called self-dual if $v = \overline{v}$, that is $v_1(A) = v_2(A^c)$ and $v_2(A) = v_1(A^c)$, for every $A \in \mathcal{A}$.

With the above notations we obtain

Corollary 4.5 If the continuous intuitionistic fuzzy-valued fuzzy measure v is self-dual then the Sugeno integral with respect to v has the property of duality, that is

$$\left((S_I) \int_X \widetilde{f} dv \right)^* = (S_I) \int_X \widetilde{f}^* dv,$$

for every A-measurable intuitionistic fuzzy-valued function \widetilde{f} .

Let us give two examples of calculus of Sugeno integral of an intuitionistic fuzzy-valued function with respect to an intuitionistic fuzzy-valued fuzzy measure.

Example 4.6 Let $X = \{x, y, z\}$, A = P(X) and $v_1, v_2 : A \rightarrow [0, 1]$ defined by

$$v_1(A) = \begin{cases} \frac{cardA}{3}, & if A \neq \{x, y\} \\ 1, & if A = \{x, y\}, \end{cases}$$

and

$$v_{2}\left(A\right)=\left\{\begin{array}{ll}1-\frac{cardA}{3}, & if\ A\neq\{x,y\}\ and\ A\neq\{y,z\}\\0, & if\ A=\{x,y\}\ or\ A=\{y,z\}\,.\end{array}\right.$$

It is easy to prove $v: \mathcal{A} \to \mathcal{L}, v = (v_1, v_2)$ is an intuitionistic fuzzy-valued fuzzy measure. Let $\widetilde{f}: X \to \mathcal{L}, \widetilde{f} = (g, h)$, where $g, h: X \to [0, 1]$ are defined by

$$g(x) = h(x) = \frac{1}{4},$$

 $g(y) = h(z) = \frac{1}{3},$
 $g(z) = h(y) = \frac{2}{3}.$

Then

$$G_{a} = \begin{cases} \{x, y, z\}, & \text{if } a \in \left[0, \frac{1}{4}\right] \\ \{y, z\}, & \text{if } a \in \left[\frac{1}{4}, \frac{1}{3}\right] \\ \{z\}, & \text{if } a \in \left[\frac{1}{3}, \frac{2}{3}\right] \\ \emptyset, & \text{if } a \in \left[\frac{2}{3}, 1\right] \end{cases}$$

and

$$H^{a} = \begin{cases} \{x, y, z\}, & \text{if } a \in \left[\frac{2}{3}, 1\right] \\ \{x, z\}, & \text{if } a \in \left[\frac{1}{3}, \frac{2}{3}\right[\\ \{x\}, & \text{if } a \in \left[\frac{1}{4}, \frac{1}{3}\right[\\ \emptyset, & \text{if } a \in \left[0, \frac{1}{4}\right]. \end{cases}$$

We obtain

$$\sup_{a \in [0,1]} \min (a, v_1 (G_a))$$

$$= \max \left(\min \left(\frac{1}{4}, v_1 (\{x, y, z\}) \right), \min \left(\frac{1}{3}, v_1 (\{y, z\}) \right),$$

$$\min \left(\frac{2}{3}, v_1 (\{z\}) \right) \right)$$

$$= \frac{1}{3}$$

and

$$\begin{split} &\inf_{a \in [0,1]} \max \left(a, v_2\left(H^a\right)\right) \\ &= \min \left(\max \left(\frac{1}{3}, v_2\left(\left\{x\right\}\right)\right), \max \left(\frac{2}{3}, v_2\left(\left\{x, z\right\}\right)\right), \\ &\max \left(1, v_2\left(\left\{x, y, z\right\}\right)\right)\right) \\ &= \frac{2}{3}, \end{split}$$

therefore

$$(S_I)\int_X \widetilde{f} dv = \left(\frac{1}{3}, \frac{2}{3}\right).$$

Example 4.7 Let X = [0, 1], \mathcal{A} be the class of all Borel sets in $X, v : \mathcal{A} \to \mathcal{L}$, $v = (v_1, v_2)$ the intuitionistic fuzzy-valued fuzzy measure defined by

$$v_1(A) = m^2(A),$$

 $v_2(A) = 1 - m^2(A),$

where m is the Lebesgue measure and $\widetilde{f}: X \to \mathcal{L}, \widetilde{f}(x) = (g(x), h(x)),$ defined by

$$g(x) = \begin{cases} \frac{1}{3}, & \text{if } x \in [0, \frac{3}{4}] \\ 1, & \text{if } x \in [\frac{3}{4}, 1], \end{cases}$$
$$h(x) = \begin{cases} \frac{1}{4}, & \text{if } x \in [0, \frac{2}{3}] \\ 0, & \text{if } x \in [\frac{2}{3}, 1]. \end{cases}$$

Then

$$G_a = \{x \in [0, 1]; g(x) \ge a\} = \begin{cases} [0, 1], & \text{if } a \in [0, \frac{1}{3}] \\ \left[\frac{3}{4}, 1\right], & \text{if } a \in \left[\frac{1}{3}, 1\right] \end{cases}$$

and

$$H^{a} = \left\{ x \in \left[0,1\right]; h\left(x\right) \leq a \right\} = \left\{ \begin{array}{ll} \left[0,1\right], & \textit{if } a \in \left[\frac{1}{4},1\right] \\ \left[\frac{2}{3},1\right], & \textit{if } a \in \left[0,\frac{1}{4}\right[. \end{array} \right.$$

We have

$$\sup_{a \in [0,1]} \min\left(a, v_1\left(G_a\right)\right) = \max\left(\frac{1}{3}, \frac{1}{16}\right) = \frac{1}{3}$$

and

$$\inf_{a \in [0,1]} \max (a, v_2(H^a)) = \min \left(\frac{1}{4}, \frac{8}{9}\right) = \frac{1}{4}.$$

We obtain

$$(S_I)\int_X \widetilde{f}dv = \left(\frac{1}{3}, \frac{1}{4}\right).$$

References

- [1] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] Atanassov, K. T., Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Physica Verlag, Heidelberg, 1999.

- [3] Ban, A. I., Intuitionistic fuzzy-valued fuzzy measures, Proceedings of IEEE Second International Conference on Intelligent Systems, Varna, June 2004, 427-429.
- [4] Liu, Xuecheng, Study on the dual problems in the theory of fuzzy measure and fuzzy integral, Journal of Fuzzy Mathematics, 2 (1994), 555-563.
- [5] Sugeno, M., Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of Technology, 1974.
- [6] Wang, Z. and Klir, G., Fuzzy Measure Theory, Plenum Press, 1992.
- [7] Zhang, Guangquan and Meng, Xianli, Lattice-valued fuzzy integrals of lattice-valued functions with respect to lattice-valued fuzzy measure, Journal of Fuzzy Mathematics, 1 (1993), 53-68.