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Abstract

Several operators on intuitionistic fuzzy sets, such as union, intersection,
sum and product, have been de¯ned using common triangular norms
and conorms. In this paper we introduce and analyse the properties
of a generalised union and a generalised intersection of intuitionistic
fuzzy sets using a general t-norm and t-conorm. In particular we will
investigate properties such as commutativity, associativity, distributivity,
idempotency, Morgan-laws, and absorption laws.

Keywords : intuitionistic fuzzy set, generalised union, generalised
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1 De¯nitions

Intuitionistic fuzzy sets (IFSs, for short) constitute a generalisation of the
notion of a fuzzy set (FS, for short) and were introduced by K. T. Atanassov
in 1983 in [?]. While fuzzy sets give the degree of membership of an element
in a given set, intuitionistic fuzzy sets give both a degree of membership and
a degree of non-membership. As for fuzzy sets, the degree of membership is
a real number between 0 and 1. This is also the case for the degree of non-
membership, and furthermore the sum of these two degrees is not greater
than 1. In [?] intuitionistic fuzzy sets are de¯ned as follows :

De¯nition 1 An intuitionistic fuzzy set in a universe E is an object of the
form

A = f(x; ¹A(x); ºA(x)) j x 2 Eg;
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where ¹A(x) (2 [0; 1]) is called the \degree of membership of x in A",
ºA(x) (2 [0; 1]) is called the \degree of non-membership of x in A",
and where ¹A and ºA satisfy the following condition :

(8x 2 E)(¹A(x) + ºA(x) · 1):

Every fuzzy set can be identi¯ed with an intuitionistic fuzzy set for which
the degree of non-membership equals one minus the degree of membership.

On intuitionistic fuzzy sets analogous operators as on fuzzy sets can be
de¯ned. These operators are backwards compatible with fuzzy sets in the
sense that, if applied to FSs, the fuzzy operators and their intuitionistic fuzzy
counterparts give the same FS as a result. For instance, the union of two
IFSs can be de¯ned using the max-operation for the degree of membership
and the min-operation for the degree of non-membership, and the result is
still an IFS. Other common operators over FSs can directly be extended to
IFSs, and the result of the operation is again an IFS. The set-theoretical
properties that these operators establish for fuzzy sets generally still hold in
the case of intuitionistic fuzzy sets. In [?] these operators are described and
their properties are investigated.

In this paper we will discuss a generalisation of these properties using
triangular norms and conorms. Triangular norms and conorms are de¯ned
as follows.

De¯nition 2 A triangular norm (t-norm, for short) T is a [0; 1]2 ¡ [0; 1]
map which satis¯es :

(T.1) (8x 2 [0; 1]) (T (x; 1) = x),

(T.2) (8(x; y) 2 [0; 1]2) (T (x; y) = T (y; x)),

(T.3) (8(x; y; z) 2 [0; 1]3) (T (x; T (y; z)) = T (T (x; y); z)),

(T.4) (8(x1; y1; x2; y2) 2 [0; 1]4)
(x1 · y1 ^ x2 · y2T (x1; x2) · T (y1; y2)).

De¯nition 3 A triangular conorm (t-conorm, for short) S is a [0; 1]2¡[0; 1]
map which satis¯es :

(S.1) (8x 2 [0; 1]) (S(x; 0) = x),
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(S.2) (8(x; y) 2 [0; 1]2) (S(x; y) = S(y; x)),

(S.3) (8(x; y; z) 2 [0; 1]3) (S(x; S(y; z)) = S(S(x; y); z)),

(S.4) (8(x1; y1; x2; y2) 2 [0; 1]4)
(x1 · y1 ^ x2 · y2S(x1; x2) · S(y1; y2)).

Some examples of t-norms and t-conorms are :

1. min is a t-norm, max is a t-conorm;

2. Z is a norm and Z¤ is a conorm, where Z and Z¤ are de¯ned by Z(x,y)

=

(
min(x; y) if max(x; y) = 1;
0 if max(x; y) < 1;

Z¤(x; y) =

(
max(x; y) if min(x; y) = 0;
1 if0 < min(x; y):

Furthermore,

for each norm T and conorm S the following inequalities hold : Z ·
T · min and max · S · Z¤.

3. \W is a norm and +b is a conorm, where

(8(x; y) 2 [0; 1]2) (x \W y = max(0; x+ y ¡ 1))
(8(x; y) 2 [0; 1]2) (x+b y = min(1; x+ y))

4. ¢ is a norm and +̂ is a conorm, where

(8(x; y) 2 [0; 1]2) (x ¢ y = xy)
(8(x; y) 2 [0; 1]2) (x +̂ y = x+ y ¡ xy)

Now we can generalise the operators on intuitionistic fuzzy sets.

De¯nition 4 For two intuitionistic fuzzy sets A and B in E, we de¯ne the
generalised intersection and union as : A \T;SB = f(x; T (¹A(x); ¹B(x)); S(ºA(x); ºB(x)) j
x 2 Eg;A [S;TB = f(x; S(¹A(x); ¹B(x)); T (ºA(x); ºB(x)) j x 2 Eg;where T
denotes a t-norm and S a t-conorm.

For instance, the Atanassov-intersection of two intuitionistic fuzzy sets
A and B can be obtained by A \min;max B, the sum by A [+̂;¢ B, . . .

The generalised intersection A \T;S B will be an intuitionistic fuzzy
set in E if T (¹A(x); ¹B(y)) + S(ºA(x); ºB(y)) · 1. Since A and B are
IFSs, we have ºA(x) · 1 ¡ ¹A(x) and ºB(y) · 1 ¡ ¹B(y), and because
of (S.4), S(1¡ ¹A(x); 1¡ ¹B(y)) ¸ S(ºA(x); ºB(y)), which is equivalent to
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S¤(¹A(x); ¹B(y)) = 1¡S(1¡¹A(x); 1¡¹B(y)) · 1¡S(ºA(x); ºB(y)), where
equality holds ifA andB are fuzzy sets. So, if (8(x; y) 2 E2) (T (¹A(x); ¹B(y)) ·
S¤(¹A(x); ¹B(y)));thenA\T;SB is an intuitionistic fuzzy set inE. Analogously,
the generalised union A [S;T B will be an intuitionistic fuzzy set when
(8(x; y) 2 E2) (S(¹A(x); ¹B(y)) · T ¤(¹A(x); ¹B(y)));where T ¤(x; y) = 1 ¡
T (1¡ x; 1¡ y), the so-called t-conorm dual to the t-norm T .

2 Properties of \T;S and [S;T
We will now investigate the lattice order-theoretical properties of these
operators. For a certain universe E we will denote by E the set f(x; 1; 0) j
x 2 Eg, and by the set f(x; 0; 1) j x 2 Eg. We note that there exists
an ordering on intuitionistic fuzzy sets de¯ned by A µ B () (8x 2
E) (¹A(x) · ¹B(x) ^ ºA(x) ¸ ºB(x)). Then the following properties hold
for A, B, C and D intuitionistic fuzzy sets in E.

(1) E =

(1') = E

(2) (A) = A

(3) (A[S;TB) = A\T;SB SinceA[S;TB = f(x; S(¹A(x); ¹B(x)); T (ºA(x); ºB(x)) j
x 2 Eg, the left hand of the equality is equal to f(x; T (ºA(x); ºB(x));
S(¹A(x); ¹B(x))) j x 2 Eg. Since A = f(x; ºA(x); ¹A(x)) j x 2 Eg and
B = f(x; ºB(x); ¹B(x)) j x 2 Eg, the right hand of the equality also
equals f(x; T (ºA(x); ºB(x)); S(¹A(x); ¹B(x))) j x 2 Eg.

(3') (A \T;S B) = A [S;T B

(4) A [S;T A ¶ A (weakened idempotency law) The left hand of the
inequality is equal to f(x; S(¹A(x); ¹A(x)); T (ºA(x); ºA(x)) j x 2 Eg.
Since for all (a; b) 2 [0; 1]2 there holds max(a; b) · S(a; b), we obtain
¹A(x) = max(¹A(x); ¹A(x)) · S(¹A(x); ¹A(x)). For all (a; b) 2 E
there holds T (a; b) · min(a; b), so that we obtain T (¹A(x); ¹A(x)) ·
min(¹A(x); ¹A(x)) = ¹A(x). From these two inequalities follows the
property.

Suppose that equality holds, then (8x 2 E) (S(¹A(x); ¹A(x)) = ¹A(x)
^T (ºA(x); ºA(x)) = ºA(x)). Suppose that for arbitrary x; y 2 E,
¹A(x) · ¹A(y), then ¹A(y) = max(¹A(x); ¹A(y)) · S(¹A(x); ¹A(y)) ·
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S(¹A(y); ¹A(y)) = ¹A(y). We obtain S(¹A(x); ¹A(y) = max(¹A(x);
¹A(y)), 8x; y 2 E. Similarly it follows that T=ºA(E)£ºA(E) = min.
Hence the union is idempotent if and only if S=¹A(E)£¹A(E) = max ^ T=ºA(E)£ºA(E) =
min :

(4') A \T;S A µ A

(5) A [S;T B = B [S;T A
A\T;SB = B\T;SA This follows immediately from the commutativity
of T and S.

(6) (A [S;T B) [S;T C = A [S;T (B [S;T C) Follows easily from the
associativity of T and S.

(6') (A \T;S B) \T;S C = A \T;S (B \T;S C) (weakened absorption law)

(7) A[S;T (A\T 0;S0 B) ¶ A An element of the set in the left hand of the
inequality has the form (x, S(¹A(x); T

0(¹A(x); ¹B(x))); T (ºA(x); S0(ºA(x); ºB(x))))Since
for all (a; b) 2 [0; 1]2 holds that S(a; b) ¸ max(a; b) ¸ a and T (a; b) ·
min(a; b) · a, we obtain S(¹A(x); T

0(¹A(x); ¹B(x))) ¸ ¹A(x) and
T (ºA(x); S

0(ºA(x); ºB(x))) · ºA(x). So we obtainA[S;T (A\T 0;S0B) ¶
A, which we had to prove.

(7') A \T;S (A [S0;T 0 B) µ A (weakened absorption law)

(8) A µ A [S;T B
B µ A [S;T B

(8') A ¶ A \T;S B
B ¶ A \T;S B

(9) A[S;T = A Because of (T.1) and (S.1) we obtain the following
equalities

A[S;T
= f(x; S(¹A(x); 0); T (ºA(x); 1)) j x 2 Eg
= f(x; ¹A(x); ºA(x)) j x 2 Eg
= A

(9') A \T;S E = A
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(10) A [S;T E = E

(10') A\T;S =

(11) A [max;min B µ A [S;T B µ A [Z¤;Z B,
A\min;maxB ¶ A\T;SB ¶ A[Z;Z¤B. This follows immediately from
the fact that Z · T · min and max · S · Z¤, for every norm T and
conorm S.

(12) A µ BB µ A

(13) A µ B ^C µ DA [S;T C µ B [S;T D From ¹A(x) · ¹B(x), ¹C(x) ·
¹D(x) and (S.4) follows that S(¹A(x); ¹C(x)) · S(¹B(x); ¹D(x)),
and similarly from ºA(x) ¸ ºB(x), ºC(x) ¸ ºD(x) and (T.4) follows
T (ºA(x); ºC(x)) ¸ T (ºB(x); ºD(x)).

(13') A µ B ^ C µ DA \T;S C µ B \T;S D

(14) A µ B () A [S;T B = B if and only if S=¹A(E)£¹B(E) = max and
T=ºA(E)£ºB(E) = min. IfA[S;TB = B, then S(¹A(x); ¹B(x)) = ¹B(x)
and from ¹B(x) · max(¹A(x); ¹B(x)) · S(¹A(x); ¹B(x)) it follows
¹B(x) = max(¹A(x); ¹B(x)) = S(¹A(x); ¹B(x)). Thus ¹A(x) · ¹B(x),
and this holds for all x 2 E. We also have that S=¹A(E)£¹B(E) =
max. Analogously, from T (ºA(x); ºB(x)) = ºB(x) and from ºB(x) ¸
min(ºA(x); ºB(x)) ¸ T (ºA(x); ºB(x)) it follows that ºB(x) = min(ºA(x); ºB(x)) =
T (ºA(x); ºB(x)), and thus ºA(x) ¸ ºB(x), for all x 2 E, and T=ºA(E)£ºB(E)
= min.

Conversely, the reverse implication holds when S=¹A(E)£¹B(E) = max
and T=ºA(E)£ºB(E) = min, since then from ¹A(x) · ¹B(x) and from
ºA(x) ¸ ºB(x) it follows ¹B(x) = max(¹A(x); ¹B(x)) and ºA(x) =
min(ºA(x); ºB(x)). Suppose that the reverse implication also holds
for S=¹A(E)£¹B(E) 6= max or T=ºA(E)£ºB(E) 6= min. In the case of
S=¹A(E)£¹B(E)6= max there exists an x 2 E such that S(¹A(x); ¹B(x))
> max(¹A(x); ¹B(x)). If (8x 2 E) (¹A(x) · ¹B(x) S(¹A(x); ¹B(x))
= ¹B(x) = max(¹A(x); ¹B(x))), then we have a contradiction. Analogously,
the assumption that T=ºA(E)£ºB(E) 6= min leads to a contradiction.
So we can conclude that the reverse implication holds if and only if
S=¹A(E)£¹B(E) = max and T=ºA(E)£ºB(E) = min.
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(14') A µ B () A \T;S B = A if and only if T=¹A(E)£¹B(E) = min and
S=ºA(E)£ºB(E) = max.

(15) If S=¹A(E)£¹B(E) · +b, then the following holds :

A [S;T B = EA µ B
A \T;S B = A µ B

If S(¹A(x); ¹B(x)) · min(1; ¹A(x) + ¹B(x)) then

S(¹A(x); ¹B(x)) = 1

min(1; ¹A(x) + ¹B(x)) = 1

¹A(x) + ¹B(x) ¸ 1(
¹A(x) ¸ 1¡ ¹B(x) ¸ ºB(x)
ºA(x) · 1¡ ¹A(x) · ¹B(x)

A µ B

The second statement is proved in the same way.

(15') If T=¹A(E)£¹B(E) · \W , then the following holds :

½ A \T;S BA ½ B
A [S;T B ½ EA ½ B

If T (¹A(x); ¹B(x)) · max(1; ¹A(x) + ¹B(x)¡ 1) then

T (¹A(x); ¹B(x)) > 0

max(0; ¹A(x) + ¹B(x)¡ 1) > 0
¹A(x) + ¹B(x)¡ 1 > 0(
¹A(x) > 1¡ ¹B(x) ¸ ºB(x)
ºA(x) · 1¡ ¹A(x) < ¹B(x)

A ½ B

The second statement is proved in the same way.

(16) If S = max and T = min, then A µ C ^B µ CA [S;T B µ C.
From ¹A(x) · ¹C(x) and ¹B(x) · ¹C(x) it does not follow S(¹A(x); ¹B(x)) ·
¹C(x). Consider for instance S = Z¤, 0 < ¹A(x) · ¹C(x) < 1 and
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0 < ¹B(x) · ¹C(x), then S(¹A(x); ¹B(x)) = 1 6· ¹C(x). But if
S=¹A(E)£¹B(E) = max then it follows from the given conditions that
S(¹A(x); ¹B(x)) = max(¹A(x); ¹B(x)) · ¹C(x).

Similarly from ºA(x) ¸ ºC(x) and ºB(x) ¸ ºC(x) it does not follow in
general that T (ºA(x); ºB(x)) ¸ ºC(x). But it does if T=ºA(E)£ºB(E) =
min. We conclude that the assertion holds if S = max and T = min.

(16') C µ A ^ C µ BC µ A \T;S B if T = min and S = max.

(17) k0; 1
2
µ A [S;T A, where k0; 1

2
= f(x; 0; 12) j x 2 Eg (weakened law of

excluded middle).

An element of the set in the right hand of the inequality has the
form (x; S(¹A(x); ºA(x)); T (ºA(x); ¹A(x))). Now we have T (ºA(x);
¹A(x)) · min(ºA(x); ¹A(x)) · min(ºA(x); 1 ¡ ºA(x)) · 1

2 , since
(8x 2 E) (¹A(x) + ºA(x) · 1), and since either ºA(x) or 1 ¡ ºA(x)
is smaller than 1

2 (because ºA(x) · 1). Obviously S(¹A(x); ºA(x)) ¸ 0
holds.

(17') A \T;S A µ k 1
2
;0, where k 1

2
;0 = f(x; 12 ; 0) j x 2 Eg (weakened law of

contradiction).

An element of the set in the left hand of the inequality has the form
(x; T (¹A(x); ºA(x)); S(ºA(x); ¹A(x))). Now we have T (¹A(x); ºA(x)) ·
min(¹A(x); ºA(x)) · min(¹A(x); 1¡¹A(x)) · 1

2 , since (8x 2 E) (¹A(x)+
ºA(x) · 1), and since either ¹A(x) or 1 ¡ ¹A(x) is smaller than 1

2
(because ¹A(x) · 1). Obviously S(¹A(x); ºA(x)) ¸ 0 holds.

(18) In general we cannot obtain one of the following inclusions :

A \T;S (B \T 0;S0 C) µ (A \T;S B) \T 0;S0 (A \T;S C);
A \T;S (B [S0;T 0 C) µ (A \T;S B) [S0;T 0 (A \T;S C);
A \T;S (B \T 0;S0 C) ¶ (A \T;S B) \T 0;S0 (A \T;S C);
A \T;S (B [S0;T 0 C) ¶ (A \T;S B) [S0;T 0 (A \T;S C);
A [S;T (B \T 0;S0 C) µ (A [S;T B) \T 0;S0 (A [S;T C);
A [S;T (B [S0;T 0 C) µ (A [S;T B) [S0;T 0 (A [S;T C);
A [S;T (B \T 0;S0 C) ¶ (A [S;T B) \T 0;S0 (A [S;T C);
A [S;T (B [S0;T 0 C) ¶ (A [S;T B) [S0;T 0 (A [S;T C);

8



Consider for the second and the fourth inequality the case where
T = Z. Then for an arbitrary x 2 E such that 0 < ¹A(x) < 1 and such
that ¹B(x) = ¹C(x) = 1, we obtain Z(¹A(x); S

0(¹B(x); ¹C(x))) =
Z(¹A(x); S

0(1; 1)) = ¹A(x) and S0(Z(¹A(x); ¹B(x)); Z(¹A(x); ¹C(x)))
= S0(Z(¹A(x); 1); Z(¹A(x); 1)) = S0(¹A(x); ¹A(x)). Since (8a 2 [0; 1])
(a · S0(a; a)) and equality only holds when S0 = max, we obtain
Z(¹A(x); S

0(1; 1)) · S0(Z(¹A(x); 1); Z(¹A(x); 1)), where the equality
only holds when S0 = max.
For arbitrary x 2 E such that 0 < ¹A(x) < ¹B(x) < ¹C(x) < 1
and S0(¹B(x); ¹C(x)) = 1, we ¯nd that Z(¹A(x); S0(¹B(x); ¹C(x))) =
¹A(x) and S

0(Z(¹A(x); ¹B(x)); Z(¹A(x); ¹C(x))) = 0. Under the given
conditions, we thus ¯nd that Z(¹A(x); S

0(¹B(x); ¹C(x)))> S0(Z(¹A(x);
¹B(x)); Z(¹A(x); ¹C(x))).
This excludes the second and the fourth inequality in the most general
case.

Analogous examples show that the other inequalities don't hold either
in the general case.

(19) A = 0pt® 2]0; 1]¯ 2 [0; 1[
[
(®; ¯)A¯® = 0pt® 2 (¹A) n f0g¯ 2 (

A = 0pt® 2 [0; 1[¯ 2]0; 1]
[
(®; ¯)A¯® ¶ 0pt® 2 (¹A) n f1g¯ 2 (

where
A¯® = fx j x 2 E ^ ¹A(x) ¸ ® ^ ºA(x) · ¯g;8® 2]0; 1];8¯ 2 [0; 1[;

A¯® = fx j x 2 E ^ ¹A(x) > ® ^ ºA(x) < ¯g;8® 2 [0; 1[;8¯ 2]0; 1];
(®; ¯)A¯® = f(x; ¹(®;¯)A¯®(x); º(®;¯)A¯®(x)) j x 2 Eg and

(®; ¯)A¯® = f(x; ¹(®;¯)A¯
®

(x); º
(®;¯)A¯

®

(x)) j x 2 Eg
with

¹
(®;¯)A¯®

(x) =

(
® if x 2 A¯®
0 if x 2 E nA¯®

º
(®;¯)A¯®

(x) =

(
¯ if x 2 A¯®
1 if x 2 E nA¯®

and

¹
(®;¯)A¯

®

(x) =

8<: ® if x 2 A¯®
0 if x 2 E nA¯®
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º
(®;¯)A¯

®

(x) =

8<: ¯ if x 2 A¯®
1 if x 2 E nA¯®

0pt® 2]0; 1]¯ 2 [0; 1[
[
(®; ¯)A¯® = 0pt® 2]0; 1]¯ 2 [0; 1[

[
f(x; ¹

(®;¯)A¯®
(x); º

(®;¯)A¯®
(x)) j x 2 Eg

= f(x; supf¹
(®;¯)A¯®

(x) j ® 2]0; 1] ^ ¯ 2 [0; 1[g;
inffº

(®;¯)A¯®
(x) j ® 2]0; 1] ^ ¯ 2 [0; 1[g) j x 2 Eg

Consider for instance the degree of non-membership (the calculations
are analogous for the degree of membership). We obtain

inffº
(®;¯)A¯®

(x) j ® 2 ]0; 1] ^ ¯ 2 [0; 1[g

= inffº
(®;¯)A¯®

(x) j ® 2 ]0; 1] ^ ¯ 2 [0; 1[^x 2 A¯®g
= inffº

(®;¯)A¯®
(x) j ® 2 ]0; 1] ^ ¯ 2 [0; 1[^¹A(x) ¸ ® ^ ºA(x) · ¯g

= inff¯ j ® 2 ]0; 1] ^ ¯ 2 [0; 1[^¹A(x) ¸ ® ^ ºA(x) · ¯g
= ºA(x)

So we obtain 0pt® 2]0; 1]¯ 2 [0; 1[S(®; ¯)A¯® = f(x; ¹A(x); ºA(x)) j
x 2 Eg = AThe other proofs are analogous.

3 Conclusion

We see that most of the set-theoretical properties that hold for the special
cases of \T;S and [S;T still hold for intuitionistic fuzzy sets, in some cases
under a slightly modi¯ed form. However, in the general case, the law of the
excluded middle survives only in a very weak form, and the distributivity
laws don't hold at all. The characterisation of A µ B by A [S;T B = B or
by A \T;S B = A only holds if T = min and S = max.
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