ON THE INTUITIONISTIC Q-FUZZY IDEALS OF NEAR-RINGS

O. Ratnabala Devi Department of Mathematics, University of Manipur Imphal-795003, Manipur, India E-mail: ord2007mu@yahoo.com

Abstract

In this paper, we introduce the notion of intuitionistic Q-fuzzification of ideals in a near-ring and investigate some related properties. Characterization of intuitionistic Q-fuzzy ideals is given.

Key words and phrases: Q-fuzzy set, Near-rings, Intuitionistic Q-fuzzy set, intuitionistic Q-fuzzy ideals.

2000 Mathematics Subject Classification No. 03F055, 03E72, 16Y30,

1 Introduction and preliminaries:

Zadeh [13] in 1965 introduced fuzzy sets after which several researchers explored on the generalizations of the notion of fuzzy sets and its application to many mathematical branches. Abou-Zaid[1], introduced the notion of a fuzzy subnear-ring and studied fuzzy ideals of a near-ring. This concept is further discussed by many researchers, among whom Cho, Davvaz, Biswas, Jun, Kim.[3,4,5,6,12]

The idea of intuitionistic fuzzy sets was introduced by Atanassov [2] as a generalization of the notion of fuzzy sets. In[3], Biswas applied the concept of intuitionistic fuzzy set to the theory of groups and studied intuitionistic fuzzy subgroups of a group. The notion of an intuitionistic fuzzy R-subgroups of a near-ring is given by Jun, Yon, Cho in [4,12]. Zhan Jianming and Ma Xueling[14], also discussed the various properties on intuitionistic fuzzy ideals of near-rings. Also Cho *et al* in [4] the notion of a normal intuitionistic fuzzy N-subgroup in a near-ring is introduced and related properties are investigated. Recently, Roh *et al* in [11] discussed the intuitionistic Q-fuzzification of the concept of subalgebras in BCK/BCI-algebra and investigated various properties. Osman Kazanci *et al* in [7] have introduced the notion of intuitionistic Q-fuzzification of N-subgroups(subnear-rings) in a near-ring and investigated some related properties. In this paper, we introduce the concept of intuitionistic Q-fuzzification of ideals in a near-ring and investigate some related properties.

By a near-ring we mean a nonempty set N with two binary operations + and . satisfying the following axioms

- (i) (N, +) is a group
- (ii) (N, .) is a semigroup
- (iii) (x+y).z = x.z + y.z for all $x, y, z \in N$

Precisely speaking it is a right near-ring because it satisfies the right distributive law. We use xy to denote x.y. A near-ring N is called zero symmetric if x.0 = 0for all $x \in N$. An ideal of a near-ring N is a subset I of N such that

- (i) (I,+) is a normal subgroup of (N,+)
- (ii) $IN \subseteq I$
- (iii) $y(x+i) y \cdot x \in I$ for all $x, y \in N$ and $i \in I$

By a fuzzy set μ in a nonempty set X, we mean a function $\mu: X \to [0,1]$ and the complement of μ denoted by $\bar{\mu}$ is the fuzzy set in X given by $\bar{\mu}(x) = 1 - \mu(x)$, for $x \in X$. For any $t \in [0,1]$, and a fuzzy set μ in a nonempty set X, the set $U(\mu;t) = \{x \in X | \mu(x) \ge t\}$ is called an upper t-level cut of μ and the set $L(\mu;t) = \{x \in X | \mu(x) \le t\}$ is called a lower t-level cut of μ .

An intuitionistic fuzzy set (IFS)A in a nonempty set X is an object having the form $IFSA = \{(x, \alpha_A(x), \beta_A(x)) | x \in X\}$ where the functions $\alpha_A : X \to [0, 1]$ and $\beta_A : X \to [0, 1]$ denote the degree of membership and the degree of non membership respectively, and $0 \le \alpha_A(x) + \beta_A(x) \le 1, x \in X$.

In what follows, let Q and N denote a set and a near-ring, respectively, unless otherwise stated. A mapping $\mu : N \times Q \to [0,1]$ is called a Q-fuzzy set in N. For any Q-fuzzy set μ in N and any $t \in [0,1]$ we define two sets $U(\mu;t) = \{x \in X | \mu(x,q) \ge t, q \in Q\}$ and $L(\mu;t) = \{x \in X | \mu(x,q) \le t, q \in Q\}$ which are called an upper and lower t-level cut of μ and can be used to give the characterization of μ . An intuitionistic Q-fuzzy set (IQFS for short) A is an object having the form A = $\{(x,q), \alpha_A(x,q), \beta_A(x,q)) | x \in X, q \in Q\}$, where the functions $\alpha_A : X \times Q \to [0,1]$ and $\beta_A : X \times Q \to [0,1]$ denote the degree of membership and the degree of non membership for each element (x,q) to the set A respectively, and $0 \le \alpha_A(x,q) +$ $\beta_A(x,q) \le 1$ for all $x \in X$ and $q \in Q$. For the sake of simplicity we shall use the symbol $A = (\alpha_A, \beta_A)$ for the $IQFSA = \{((x,q), \alpha_A(x,q), \beta_A(x,q)) | x \in X, q \in Q\}$.

Definition 1.1 (O. Kazanci *et al* [7]) A Q-fuzzy set μ in a near-ring N is called Q-fuzzy subnear-ring of N if

 $\begin{aligned} & (QF1) \ \mu(x-y,q) \geq \min\{\mu(x,q),\mu(y,q)\} \\ & (QF2) \ \mu(xy,q) \geq \min\{\mu(x,q),\mu(y,q)\} \ for \ all \ x,y \in N \ and \ q \in Q. \end{aligned}$

Definition 1.2 (O. Kazanci *et al* [7]) A Q-fuzzy set μ in a near-ring N is called Q-fuzzy N-subgroup of N if μ satisfies (QF1) and

 $(QF3) \ \mu(nx,q) \ge \mu(x,q)$

 $(QF4) \ \mu(xn,q) \ge \mu(x,q) \text{ for all } x, n \in N \text{ and } q \in Q.$

Definition 1.3 A Q-fuzzy set μ in a near-ring N is called Q-fuzzy ideal of N if μ satisfies (QF1), (QF4) and

(QF5) $\mu\{n(y+x) - ny, q\} \ge \mu(x, q)$ for all $x, y, n \in N$ and $q \in Q$.

Definition 1.4 Let θ be a mapping from X to Y. For any $IFSB = (\alpha_B, \beta_B)$ in Y, we define a new IFS denoted as $\theta^{-1}(B) = (\alpha_{\theta^{-1}(B)}, \beta_{\theta^{-1}(B)})$ in X where $\alpha_{\theta^{-1}(B)}(x,q) = \alpha_B(\theta(x),q), \beta_{\theta^{-1}(B)}(x,q) = \beta_B(\theta(x),q)$ for all $x \in X, q \in Q$. For any $IFSA = (\alpha_A, \beta_A)$ in X we define $\theta(A)$ denoted as $\theta(A) = (\alpha_{\theta(A)}, \beta_{\theta(A)})$ in Yby

$$\alpha_{\theta(A)}(y,q) = \begin{cases} \sup_{x \in \theta^{-1}(y)} \alpha_A(x,q), & \text{if } \theta^{-1}(y) \neq \phi; \\ 0, & \text{otherwise.} \end{cases}$$

$$\beta_{\theta(A)}(y,q) = \begin{cases} \inf_{x \in \theta^{-1}(y)} \beta_A(x,q), & \text{if } \theta^{-1}(y) \neq \phi; \\ 1, & \text{otherwise.} \end{cases}$$

for all $y \in Y, q \in Q$

2 Intuitionistic Q-fuzzy ideals of near-rings:

In what follows, let Q and N denote a set and a near-ring, respectively, unless otherwise specified.

Definition 2.1 (O. Kazanci *et al* [7]) An $IQFSA = (\alpha_A, \beta_A)$ in N is called an intuitionistic Q-fuzzy subnear-ring of N if

 $(IQF1) \ \alpha_A(x-y,q) \ge \min\{\alpha_A(x,q), \alpha_A(y,q)\} \ and \ \beta_A(x-y,q) \le \max\{\beta_A(x,q), \beta_A(y,q)\}$

 $(IQF2) \ \alpha_A(xy,q) \ge \min\{\alpha_A(x,q), \alpha_A(y,q)\} \ and \ \beta_A(xy,q) \le \max\{\beta_A(x,q), \beta_A(y,q)\}$ $for all x, y \in N \ and q \in Q.$

Definition 2.2 (O. Kazanci *et al* [7]) An $IQFSA = (\alpha_A, \beta_A)$ in N is called an intuitionistic Q-fuzzy N-subgroup of N if A satisfies (IQF1) and

(IQF3) $\alpha_A(nx,q) \ge \alpha_A(x,q)$ and $\beta_A(nx,q) \le \beta_A(x,q)$

(IQF4) $\alpha_A(xn,q) \ge \alpha_A(x,q)$ and $\beta_A(xn,q) \le \beta_A(x,q)$ for all $x, n \in N$ and $q \in Q$.

If A satisfies (IQF1) and (IQF3), then A is called an intuitionistic Q-fuzzy left N-subgroup of N, and if A satisfies (IQF1) and (IQF4), then A is called an intuitionistic Q-fuzzy right N-subgroup of N.

Definition 2.3 An $IQFSA = (\alpha_A, \beta_A)$ in N is called an intuitionistic Q-fuzzy ideal of N if A satisfies (IQF1), (IQF4) and

(IQF5) $\alpha_A(y+x-y,q) \ge \alpha_A(x,q)$ and $\beta_A(y+x-y,q) \le \beta_A(x,q)$

(IQF6) $\alpha_A\{n(x+y) - nx, q\} \ge \alpha_A(x, q)$ and $\beta_A\{n(x+y) - nx, q\} \le \beta_A(x, q)$ for all $x, y, n \in N$ and $q \in Q$.

Example 1 Let $N = \{a, b, c, d\}$ be set with two binary operations as follows:

+	a	b	c	d		a	b	c	d
\overline{a}	a	b	c	d	a	a	a	a	a
b	b	a	d	c	b	a	a	a	a
c	c	d	b	a	c	a	a	a	b
d	d	c	a	b	d	a	a	a	b

Then (N,+,.) is a near-ring. Let $Q = \{p,q\}$. We define an $IQFSA = (\alpha_A, \beta_A)$ in N as follows:

$$\alpha_A(a,p) = \frac{3}{4}, \alpha_A(a,q) = 1, \alpha_A(b,p) = \frac{1}{3}, \alpha_A(b,q) = \frac{1}{4},$$

$$\alpha_A(c,p) = \frac{1}{5} = \alpha_A(d,p), \alpha_A(c,q) = 0 = \alpha_A(d,q).$$

$$\beta_A(a,p) = \frac{1}{4}, \beta_A(a,q) = 0, \beta_A(b,p) = \frac{1}{4}, \beta_A(b,q) = \frac{1}{3},$$

$$\beta_A(c,p) = \frac{4}{5} = \beta_A(d,p), \beta_A(c,q) = 1 = \beta_A(d,q).$$

It is easy to verify that $IQFSA = (\alpha_A, \beta_A)$ is an intuitionistic Q-fuzzy ideal of N.

Lemma 2.4 If an $IQFSA = (\alpha_A, \beta_A)$ satisfies the condition (IQF1), then

- (i) $\alpha_A(0,q) \ge \alpha_A(x,q)$ and $\beta_A(0,q) \le \beta_A(x,q)$
- (ii) $\alpha_A(-x,q) = \alpha_A(x,q)$ and $\beta_A(-x,q) = \beta_A(x,q)$ for all $x \in N$ and $q \in Q$.

Lemma 2.5 If an $IQFSA = (\alpha_A, \beta_A)$ satisfies the condition IQF5, then $\alpha_A(x+y,q) = \alpha_A(y+x,q)$ and $\beta_A(x+y,q) = \beta_A(y+x,q)$ for all $x, y \in N$ and $q \in Q$.

Proof: It follows by using the condition IQF5 twice.

Proposition 2.6 If an $IQFSA = (\alpha_A, \beta_A)$ satisfies the condition (IQF1), then (i) $\alpha_A(x - y, q) \ge \alpha_A(0, q)$ implies $\alpha_A(x, q) = \alpha_A(y, q)$

(*ii*)
$$\beta_A(x-y,q) \leq \beta_A(0,q)$$
 implies $\beta_A(x,q) = \beta_A(y,q)$ for all $x, y \in N$ and $q \in Q$.

Proof: It is clear by using lemma 2.4.

Theorem 2.7 Let $\{A_i\} = \{(\alpha_i, \beta_i) \mid i \in I\}$ be a family of intuitionistic Q-fuzzy ideals in a near-ring N. Then $(\bigcap_{i \in I} A_i)$ is an intuitionistic Q-fuzzy ideal of N where $(\bigcap_{i \in I} A_i) = \{(\bigcap_{i \in I} \alpha_{A_i}, \bigcup_{i \in I} \beta_{A_i}\}.$

Proof: Let $(\bigcap_{i \in I} \alpha_{A_i}, \bigcup_{i \in I} \beta_{A_i}) = (\alpha, \beta)$ and for all $x, y, n \in N$, and $q \in Q$

$$\begin{aligned} \alpha(x-y,q) &= \inf_{i\in I} \alpha_{A_i}(x-y,q) \\ &\geq \inf_{i\in I} \{\min\{\alpha_{A_i}(x,q), \alpha_{A_i}(y,q)\}\} \\ &= \min\{\inf_{i\in I} \alpha_{A_i}(x,q), \inf_{A_i\in I} \alpha_{A_i}(y,q)\} \\ &= \min\{\alpha(x,q), \alpha(y,q)\} \end{aligned}$$

and

$$\begin{aligned} \beta(x-y,q) &= \sup_{i \in I} \beta_{A_i}(x-y,q) \\ &\leq \sup_{i \in I} \{ \max\{\beta_{A_i}(x,q), \beta_{A_i}(y,q)\} \} \\ &= \max\{ \sup_{i \in I} \beta_{A_i}(x,q), \sup_{i \in I} \beta_{A_i}(y,q) \} \\ &= \max\{\beta(x,q), \beta(y,q)\} \end{aligned}$$

Also,

$$\begin{aligned} \alpha(xn,q) &= \inf_{i \in I} \alpha_{A_i}(xn,q) \\ &\geq \inf_{i \in I} \{ \alpha_{A_i}(x,q) \} = \alpha(x,q) \end{aligned}$$

and,

$$\beta(xn,q) = \sup_{\substack{i \in I \\ i \in I}} \beta_i(xn,q)$$

$$\leq \sup_{\substack{i \in I \\ \beta(x,q)}} \beta_i(x,q)$$

$$= \beta(x,q) \}$$

Again,

$$\alpha \{n(x+y) - nx, q\} = \inf_{i \in I} \alpha_{A_i} \{n(x+y) - nx, q\}$$

$$\geq \inf_{i \in I} \{\alpha_{A_i}(y, q)\}$$

$$= \alpha(y, q)$$

and

$$\beta\{n(x+y) - nx, q\} = \sup_{\substack{i \in I \\ i \in I}} \beta_i\{n(x+y) - nx, q\}$$
$$\leq \sup_{\substack{i \in I \\ i \in I}} \{\beta_i(y, q)\}$$
$$= \beta(y, q)\}$$

Thus, $(\bigcap_{i \in I} A_i)$ is an intuitionistic Q-fuzzy ideal of N.

Lemma 2.8 An $IQFSA = (\alpha_A, \beta_A)$ is an intuitionistic Q-fuzzy ideal of a nearring N if and only if α_A and $\overline{\beta_A}$ are Q-fuzzy ideals of N.

Proof: It is trivial.

Theorem 2.9 Let $IQFSA = (\alpha_A, \beta_A)$ be in N. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic Q-fuzzy ideal of N if and only if $\diamond A = (\alpha_A, \overline{\alpha_A})$ and $\Box A = (\overline{\beta_A}, \beta_A)$ are intuitionistic Q-fuzzy ideals of N.

Proof: It follows from lemma 2.8.

Theorem 2.10 Let $IQFSA = (\alpha_A, \beta_A)$ be an intuitionistic Q-fuzzy ideal of N. Then the sets

$$N_{\alpha_A} = \{x \in N | \alpha_A(x,q) = \alpha_A(0,q)\}$$
 and $N_{\beta_A} = \{x \in N | \beta_A(x,q) = \beta_A(0,q)\}$

are ideals of N for all $q \in Q$.

Proof: Let $x, y \in N_{\alpha_A}$ and $q \in Q$. Then $\alpha_A(x,q) = \alpha_A(0,q), \alpha_A(y,q) = \alpha_A(0,q)$. Since $A = (\alpha_A, \beta_A)$ is an intuitionistic *Q*-fuzzy ideal of *N*, we get $\alpha_A(x - y, q) \ge \min\{\alpha_A(x,q), \alpha_A(y,q)\} = \alpha_A(0,q)$. By using lemma 2.4 we get $\alpha_A(x - y,q) = \alpha_A(0,q)$. Hence $x - y \in N_{\alpha_A}$. For $n \in N, x \in N_{\alpha_A}$ we have $\alpha_A(xn,q) \ge \alpha_A(x,q) = \alpha_A(0,q)$. By using lemma 2.4 we get $\alpha_A(xn,q) \ge \alpha_A(x,q) = \alpha_A(0,q)$. By using lemma 2.4 we get $\alpha_A(xn,q) = \alpha_A(0,q)$. Hence $xn \in N_{\alpha_A}$. Similarly, we can show that for $y \in N_{\alpha_A}, n, x \in N$ and $n(x + y) - nx \in N_{\alpha_A}$. Therefore, N_{α_A} is an ideal of *N*. Similarly, N_{β_A} is an ideal of *N*.

Theorem 2.11 Let $IQFSA = (\alpha_A, \beta_A)$ be an intuitionistic Q-fuzzy ideal of N. Then the sets $U(\alpha_A; t)$ and $L(\beta_A; t)$ are ideals of N for all for all $q \in Q, t \in Im(\alpha_A) \cap Im(\beta_A)$.

Proof: Let $t \in Im(\alpha_A) \cap Im(\beta_A) \subseteq [0,1]$ and let $x, y \in U(\alpha_A; t)$ then $\alpha_A(x,q) \ge t, \alpha_A(y,q) \ge t$ so, $\alpha_A(x-y,q) \ge \min\{\alpha_A(x,q), \alpha_A(y,q)\} \ge t$ which implies that $x-y \in U(\alpha_A; t)$. For any $n \in N, \alpha_A(xn,q) \ge \alpha_A(x,q) \ge t$ which implies that $xn \in U(\alpha_A; t)$. Let $n, y \in N$ and $x \in U(\alpha_A; t)$ then, $\alpha_A(y+x-y,q) \ge \alpha_A(x,q) \ge t$ and $\alpha_A\{n(y+x)-ny,q\} \ge \alpha_A(x,q) \ge t$ which implies that $y+x-y, n(y+x)-ny \in U(\alpha_A; t)$. Thus, $U(\alpha_A; t)$ is an ideal of N. Similarly we can prove that $L(\beta_A; t)$ is an ideal of N.

Theorem 2.12 If $IQFSA = (\alpha_A, \beta_A)$ is an intuitionistic Q-fuzzy set in N such that all the non-empty level sets $U(\alpha_A; t)$ and $L(\beta_A; t)$ are ideals of N then $A = (\alpha_A, \beta_A)$ is an intuitionistic Q-fuzzy ideal of N.

Prof: Assume that all the non-empty level sets $U(\alpha_A; t)$ and $L(\beta_A; t)$ are ideals of N. If $t_1 = \min\{\alpha_A(x,q), \alpha_A(y,q)\}$ and $t_2 = \max\{\beta_A(x,q), \beta_A(y,q)\}$ for $x, y \in N, q \in Q$ then $x - y \in U(\alpha_A; t_1)$ and $x - y \in L(\beta_A; t_2)$. Hence, $\alpha_A(x - y,q) \geq \min\{\alpha_A(x,q), \alpha_A(y,q)\}$ and $\beta_A(x - y,q) \leq \max\{\beta_A(x,q), \beta_A(y,q)\}$ Let $t_3 = \alpha_A(x,q), t_4 = \beta_A(x,q)$ for some $x \in N, q \in Q$ then $x \in U(\alpha_A; t_3), x \in L(\beta_A; t_4)$. Since $U(\alpha_A; t_3)$ and $L(\beta_A; t_4)$ are ideals of $N, xn \in U(\alpha_A; t_3)$ and $xn \in L(\beta_A; t_4)$ which implies that $\alpha_A(xn,q) \geq \alpha_A(x,q)$ and $\beta_A(xn,q) \leq \beta_A(x,q)$. Also for any $y \in N \ y + x - y \in U(\alpha_A; t_3)$ and $y + x - y \in L(\beta_A; t_4)$ which implies that $\alpha_A(y,q)$ and $\beta_A(y + x - y,q) \leq \beta_A(x,q)$. Lastly if $n \in N$, then $n(y + x) - ny \in U(\alpha_A; t_3)$ and $n(y + x) - ny \in L(\beta_A; t_4)$ so that $\alpha_A\{n(y + x) - ny, q\} \geq \alpha_A(x,q)$ and $\beta_A\{n(y + x) - ny, q\} \leq \beta_A(x,q)$. Thus,

 $A = (\alpha_A, \beta_A)$ is an intuitionistic *Q*-fuzzy ideal of *N*. **Example 2**: Let *I* be an ideal of *N* and α_A and β_A be the *Q*-fuzzy sets in *N* given by

$$\alpha_A(x,q) = \begin{cases} t & \text{if } x \in I, \\ s & \text{otherwise.} \end{cases} \quad \beta_A(x,q) = \begin{cases} u & \text{if } x \in I, \\ v & \text{otherwise.} \end{cases}$$

for all $x \in N, q \in Q$ where $0 \leq s < t, 0 \leq u < v$ and $t + u \leq 1, s + v \leq 1$. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic Q-fuzzy ideal of N. Since $U(\alpha_A; t) = I$ or N and $L(\beta_A; t) = I$ or N which are ideals of N, A is an intuitionistic Q-fuzzy ideal of N by theorem 2.12.

Theorem 2.13 Let N and N' be two near-rings and $\theta : N \to N'$ a homomorphism. If $B = (\alpha_B, \beta_B)$ is an intuitionistic Q-fuzzy ideal in N' then the preimage $\theta^{-1}(B) = (\alpha_{\theta^{-1}(B)}, \beta_{\theta^{-1}(B)})$ of B under θ is an intuitionistic Q-fuzzy ideal of N.

Proof: We assume that $B = (\alpha_B, \beta_B)$ is an intuitionistic *Q*-fuzzy ideal in N' and let $x, y, n \in N, q \in Q$. Then

$$\begin{aligned} \alpha_{\theta^{-1}(B)}\{n(x+y) - nx, q\} &= \alpha_B[\theta\{n(x+y) - nx, q\}] \\ &= \alpha_B[\theta(n)\{\theta(x) + \theta(y)\} - \theta(n)\theta(x), q] \\ &\geq \alpha_B\{\theta(y), q\} \\ &= \alpha_{\theta^{-1}(B)}(y, q) \end{aligned}$$

and,

$$\beta_{\theta^{-1}(B)} \{ n(x+y) - nx, q \} = \beta_B[\theta\{n(x+y) - nx, q\}]$$

$$= \beta_B[\theta(n)\{\theta(x) + \theta(y)\} - \theta(n)\theta(x), q]$$

$$\leq \alpha_B\{\theta(y), q\}$$

$$= \beta_{\theta^{-1}(B)}(y, q)$$

Similarly, the remaining properties can be easily verified. We can also state the converse of the above theorem if we strengthen the condition of θ as follows.

Theorem 2.14 Let N and N' be two near-rings and $\theta : N \to N'$ an epimorphism. If $B = (\alpha_B, \beta_B)$ is an intuitionistic Q-fuzzy set in N' such that the preimage $\theta^{-1}(B) = (\alpha_{\theta^{-1}(B)}, \beta_{\theta^{-1}(B)})$ of B under θ is an intuitionistic Q-fuzzy ideal of N, then $B = (\alpha_B, \beta_B)$ is an intuitionistic Q-fuzzy ideal in N'.

Proof: Let $x, y, r \in N', q \in Q$. Then there exist $a, b, n \in N$ such that $\theta(a) = x, \theta(b) = y, \theta(n) = r$. We only check the condition IQF6 as the other conditions follow trivially.

$$\alpha_B\{r(x+y) - rx, q\} = \alpha_B[\theta(n)\{\theta(a) + \theta(b)\} - \theta(n)\theta(a), q]$$

= $\alpha_B[\theta\{n(a+b) - na\}, q]$
= $\alpha_{\theta^{-1}(B)}\{n(a+b) - na, q\}$
 $\geq \alpha_{\theta^{-1}(B)}(b, q)$

$$= \alpha_B\{\theta(b), q\} \\ = \alpha_B(y, q)$$

and

$$\beta_B\{r(x+y) - rx, q\} = \beta_B[\theta(n)\{\theta(a) + \theta(b)\} - \theta(n)\theta(a), q]$$

$$= \beta_B[\theta\{n(a+b) - na\}, q]$$

$$= \beta_{\theta^{-1}(B)}\{n(a+b) - na, q\}$$

$$\leq \beta_{\theta^{-1}(B)}(b, q)$$

$$= \beta_B\{\theta(b), q\}$$

$$= \beta_B(y, q)$$

Therefore $B = (\alpha_B, \beta_B)$ is an intuitionistic Q-fuzzy ideal in N'.

REFERENCES:

1. S. Abou-Zaid, On fuzzy sub near-rings and ideals, Fuzzy sets and systems 44(1991)p. 139-143.

2. K.T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy sets and systems 20(1986) p. 87-96.

3. R. Biswas, Intuitionistic fuzzy subgroups, Math Forum 10 (1987) p. 37-46

4. Y.O. Cho, Y.B. Jun, On Intuitionistic fuzzy R-subgroups of near-rings, J. Appl. Math. and Computing 18(2005) No. 1-2 p. 665-671.

5. T.K. Dutta, B.K. Biswas, *Fuzzy ideals of near-rings*, Bull. Cal. Math. Soc. 89(1997) p. 457-460.

6. S.M. Hong, Y.B. Jun, H.S. Kim, *Fuzzy ideals in near-rings*, Bull of Korean Math Soc. 35(3) (1998) p. 455-464.

7. O. Kazanci, S. Yamak, S. Yilmaz, On Intuitionistic Q-fuzzy R-subgroups of nearrings, International Math Forum, 2, 2007(59) 2859-2910.

8. Kwon, Young-In, *Fuzzy near-ring modules over fuzzy near-rings*, Pusan Kyongnam Math. J. 10, (1994) p. 53-57.

9. O. Ratnabala, M. Ranjit, *On fuzzy ideals of N-groups*, Bull.Pure and Appl. Sciences, Vol26E (No.1)(2007) p. 11-23.

10. O. Ratnabala, *Intuitionistic fuzzy near-rings and its properties* (to appear in Journal of Indian Mathematics Society)

11. H. Roh, K.H. Kim, J.G. Lee, *Intuitionistic Q-fuzzy subalgebras of BCK/BCI-algebras*, International Math Forum 1,2006(24) 1167-1174.

12. Y.H. Yon, Y.B. Jun, K.H. Kim Intuitionistic fuzzy R-subgroups of near-rings, Shoochow J. Math,27(No.3)(2001) p. 243-253.

13. L.A. Zadeh, Fuzzy Sets, Information and Controls, Vol.83(1965)p. 338-353.

14. Zhan Jianming, Ma Xueling, *Intuitionistic fuzzy ideals of near-rings*, Scientae Math Japonicae, 61 (No.2)(2004)p. 219-223.