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1 Introduction

The convergence of different types of intuitionistic fuzzy observables with respect to a different
types of intuitionistic fuzzy probabilities was studied by many authors. In [15] B. Riečan and
K. Lendelová proved the Weak law of large numbers for intuitionistic fuzzy observables with
respect to a separating intuitionistic fuzzy probability. Later in [18] the authors proved the Central
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limit theorem for separating intuitionistic fuzzy probability. In papers [12, 13] was studied a
convergence of intuitionistic fuzzy observables generated by MV-algebra and the Strong law
of large numbers using an intuitionistic fuzzy probability was proved. The almost everywhere
convergence with respect to an intuitionistic fuzzy probability was defined in paper [8]. Another
versions of Strong law of large numbers and the Central limit theorems were studied by P. Nowak
and O. Hryniewicz in [16, 17]. They used a M-probability with the Zadeh connectives and an
intuitionistic fuzzy probability with the Lukasiewicz connectives.

In this paper we introduce the notion of a convergence in distribution, a convergence in
measure and an almost everywhere convergence with respect to an intuitionistic fuzzy probability.
We prove a version of Central limit theorem, a version of Weak law of large numbers and a
version of Strong law of large numbers for intuitionistic fuzzy observables with respect to the
intuitionistic fuzzy probability as an example. We study a connection between convergence of
intuitionistic fuzzy observables with respect the intuitionistic fuzzy probability and a convergence
of random variables, too.

We remark that further in the text we use the denotation “IF” to signify the phrase “intuitionistic
fuzzy”.

2 Basic notions

In this section, we present the basic notions from intuitionistic fuzzy probability theory. Recall
that the notion of intuitionistic fuzzy sets was introduced by K. T. Atanassov in 1983 as a
generalization of Zadeh’s fuzzy sets (see [1–3]).

Definition 2.1. Let Ω be a nonempty set. An IF-set A on Ω is a pair (µA, νA) of mappings
µA, νA : Ω→ [0, 1] such that µA + νA ≤ 1Ω.

Definition 2.2. Start with a measurable space (Ω,S). Hence S is a σ-algebra of subsets of Ω.
An IF -event is called an IF-set A = (µA, νA) such that µA, νA : Ω→ [0, 1] are S-measurable.

The family of all IF-events on (Ω,S) will be denoted by F . The function µA : Ω −→ [0, 1]

will be called the membership function and the function νA : Ω −→ [0, 1] will be called the
non-membership function.

If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then we define the Lukasiewicz binary operations
⊕,� on F by

A⊕B = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),

A�B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω))

and the partial ordering is given by

A ≤ B⇐⇒ µA ≤ µB, νA ≥ νB.

In paper we use max-min connectives defined by

A ∨B = (µA ∨ µB, νA ∧ νB),

A ∧B = (µA ∧ µB, νA ∨ νB)
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and the De Morgan rules

(a ∨ b)∗ = a∗ ∧ b∗,
(a ∧ b)∗ = a∗ ∨ b∗,

where a∗ = 1− a.
Let J be the family of all compact intervals. The notion of an IF-probability was defined

axiomatically by B. Riečan in [19].

Definition 2.3. Let F be the family of all IF-events in Ω. A mapping P : F → J is called an
IF-probability, if the following conditions hold:

(i) P((1Ω, 0Ω)) = [1, 1] , P((0Ω, 1Ω)) = [0, 0];

(ii) if A�B = (0Ω, 1Ω), then P(A⊕B) = P(A) + P(B);

(iii) if An ↗ A, then P(An)↗ P(A).
(Recall that [αn, βn]↗ [α, β] means that αn ↗ α, βn ↗ β, but An = (µAn , νAn)↗ A =

(µA, νA) means µAn ↗ µA, νAn ↘ νA.)

IF-probability P is called separating, if

P
(
(µA, νA)

)
= [P[(µA), 1− P](νA)],

where the functions P[,P] : T → [0, 1] are probabilities.

Of course, each P(A) is an interval, denote it by P(A) = [P[(A),P](A)]. In this way we
obtain two functions

P[ : F → [0, 1],P] : F → [0, 1]

and some properties of P can be characterized by some properties of P[,P], see [20].

Theorem 2.4 ( [20, Theorem 2.3]). Let P : F → J and P(A) = [P[(A),P](A)] for each
A ∈ F . Then P is an IF-probability if and only if P[ and P] are IF-states.

Recall that by an intuitionistic fuzzy state m we understand each mapping m : F → [0, 1]

which satisfies the following conditions (see [21]):

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A�B = (0Ω, 1Ω) and A,B ∈ F , then m(A⊕B) = m(A) + m(B);

(iii) if An ↗ A (i.e., µAn ↗ µA, νAn ↘ νA), then m(An)↗m(A).

Now we introduce the notion of an observable. Let J be the family of all intervals in R of
the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted by B(R) and it is called the σ-algebra of Borel sets, its
elements are called Borel sets (see [25]).
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Definition 2.5. By an IF-observable onF we understand each mapping x : B(R)→ F satisfying
the following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A ∩ B = ∅ and A,B ∈ B(R), then x(A) � x(B) = (0Ω, 1Ω) and x(A ∪ B) =

x(A)⊕ x(B);

(iii) if An ↗ A and An, A ∈ B(R), n ∈ N , then x(An)↗ x(A).

Similarly we can define the notion of n-dimensional IF-observable.

Definition 2.6. By an n-dimensional IF-observable on F we understand each mapping
x : B(Rn)→ F satisfying the following conditions:

(i) x(Rn) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A ∩ B = ∅ and A,B ∈ B(Rn), then x(A) � x(B) = (0Ω, 1Ω) and x(A ∪ B) =

x(A)⊕ x(B);

(iii) if An ↗ A and An, A ∈ B(Rn), n ∈ N , then x(An)↗ x(A).

Now we explain the definition of an IF-mean value with the help of an IF-probability. First, the
notion of integrable observable in the sense of IF-probability appeared in [15]. There P[x = P[◦x
and P]x = P] ◦ x.

Definition 2.7. Let P : F → J be an IF-probability, P(A) = [P[(A),P](A)] for each A ∈ F .
An IF-observable x : B(R)→ F is called integrable, if there exist

E[(x) =

∫
R

t dP[x(t), E](x) =

∫
R

t dP]x(t).

Later, in [13] was defined the notion of a square integrable IF-observable and the notion of
IF-dispersion and IF-mean value in the sense of IF-probability.

Definition 2.8. Let P : F → J be an IF-probability, P[,P] be the corresponding IF-states(
i.e., P(A) = [P[(A),P](A)], A ∈ F

)
and x : B(R) → F be an IF-observable. We say that

IF-observable x is integrable, if the integrals
∫
R
t dP[x(t),

∫
R
t dP]x(t) exist. Then the IF-mean

values are defined by

E[(x) =

∫
R

t dP[x(t) , E](x) =

∫
R

t dP]x(t).

We say that IF-observable x is square integrable, if the integrals
∫
R
t2 dP[x(t),

∫
R
t2 dP]x(t) exist.

Then the IF-dispersions are defined by

D2
[ (x) =

∫
R

(t− E[(x))2 dP[x(t) =

∫
R

t2 dP[x(t)−
(
E[(x)

)2
,

D2
] (x) =

∫
R

(t− E](x))2 dP]x(t) =

∫
R

t2 dP]x(t)−
(
E](x)

)2
.
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Remark 2.9. By Definition 2.8 the IF-mean value (or IF-dispersion) of IF-observable x induced
by IF-probability consists of two IF-mean values (or IF-dispersions) induced by IF-state, i.e.

E(x) = [E[(x),E](x)] and D2(x) = [D2
[ (x),D2

] (x)].

Similarly, we can define an IF-distribution function induced by an IF-probability, see [12].

Definition 2.10. Let P : F → J be an IF-probability and x : B(R) → F be an IF-observable.
Then a mapping F : R→ J defined by formula

F(t) = P ◦ x((−∞, t)) =
[
P[
(
(x(−∞, t))

)
,P]
(
(x(−∞, t))

)]
= [F[(t),F](t)]

for each t ∈ R is called IF- distribution function, where F[,F] : R→ [0, 1] are the corresponding
distribution functions.

Theorem 2.11 ( [7, Theorem 4.5]). For fixed IF-probability P : F → J , IF-observable x :

B(R)→ F define F[ : R→ [0, 1],F] : R→ [0, 1] by the formulas

F[(t) = P[
(
x
(
(−∞, t)

))
, F](t) = P]

(
x
(
(−∞, t)

))
.

Then F[,F] are distribution functions, and

E[(x) =

∫
R

t dF[(t) , E](x) =

∫
R

t dF](t),

D2
[ (x) =

∫
R

(t− E[(x))2 dF[(t) , D2
] (x) =

∫
R

(t− E](x))2 dF](t).

In [14] we introduced the notion of product operation on the family of IF-events F .

Definition 2.12. If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then their product A · B is defined
by the formula

A ·B =
(
µA · µB, 1− (1− νA) · (1− νB)

)
=
(
µA · µB, νA + νB − νA · νB

)
.

B. Riečan defined the notion of a joint IF-observable and he proved its existence, see [22].

Definition 2.13. Let x, y : B(R) → F be two IF-observables. The joint IF-observable of the
IF-observables x, y is a mapping h : B(R2)→ F satisfying the following conditions:

(i) h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω);

(ii) if A,B ∈ B(R2) and A ∩B = ∅, then

h(A ∪B) = h(A)⊕ h(B) and h(A)� h(B) = (0Ω, 1Ω);

(iii) if A,An ∈ B(R2), n ∈ N and An ↗ A, then h(An)↗ h(A);

(iv) h(C ×D) = x(C) · y(D) for each C,D ∈ B(R).

Theorem 2.14 ( [22, Theorem 3.3]). For each two IF-observables x, y : B(R) → F there exists
their joint IF-observable.
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Remark 2.15. The joint IF-observable of IF-observables x, y from Definition 2.13 is two-
dimensional IF-observable.

Very important notion in IF-probability theory is a notion of independence of IF-observables.
First time this notion for a separating IF-probability was appear in [15]. Later B. Riečan introduced
the notion of independence of IF-observables with respect to IF-probability in [23].

Definition 2.16. Let P be an IF-probability, P[,P] be the corresponding IF-states
(
i.e.,

P(A) = [P[(A),P](A)]
)
. IF-observables x1, x2, . . . , xn : B(R) −→ F are independent with

respect to P if for the n-dimensional IF-observable hn : B(Rn) −→ F there holds

P
(
hn(A1×A2× . . .×An)

)
=
[
P[
(
x1(A1)

)
· . . . · P[

(
xn(An)

)
,P]
(
x1(A1)

)
· . . . · P]

(
xn(An)

)]
for each A1, A2, . . . , An ∈ B(R), n ∈ N . The map hn is called the joint IF-observable of
x1, x2, . . . , xn.

Recall that the IF-observables x1, x2, . . . , xn : B(R) −→ F are independent with respect
to IF-state m if for the n-dimensional IF-observable hn : B(Rn) −→ F there holds

m
(
hn(A1 × A2 × . . .× An)

)
= m

(
x1(A1)

)
·m
(
x2(A2)

)
· . . . ·m

(
xn(An)

)
for each A1, A2, . . . , An ∈ B(R), see [11].

If we have several IF-observables and a Borel measurable function, we can define the IF-
observable, which is the function of several IF-observables. Regarding this we provide the
following definition, see [6].

Definition 2.17. Let x1, . . . , xn : B(R) → F be IF-observables, hn be their joint IF-observable
and gn :Rn → R be a Borel measurable function. Then we define the IF-observable gn(x1, ..., xn) :

B(R)→ F by the formula

gn(x1, . . . , xn)(A) = hn
(
g−1
n (A)

)
for each A ∈ B(R).

Example 2.18. Let x1, . . . , xn : B(R)→ F be the IF-observables and hn : B(Rn)→ F be their
joint IF-observable. Then

1. the IF-observable yn = gn(x1, . . . , xn) =
√
n
σ

(
1
n

n∑
i=1

xi − a
)

is defined by the equality

yn = hn ◦ g−1
n , where gn(u1, . . . , un) =

√
n
σ

(
1
n

n∑
i=1

ui − a
)

;

2. the IF-observable yn = gn(x1, . . . , xn) = 1
n

n∑
i=1

xi is defined by the equality yn = hn ◦ g−1
n ,

where gn(u1, . . . , un) = 1
n

n∑
i=1

ui;

3. the IF-observable yn = gn(x1, . . . , xn) = 1
n

n∑
i=1

(xi − E(xi)) is defined by the equality

yn = hn ◦ g−1
n , where gn(u1, . . . , un) = 1

n

n∑
i=1

(ui − E(xi));
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4. the IF-observable yn = gn(x1, . . . , xn) = 1
an

(
max(x1, . . . , xn) − bn

)
is defined by the

equality yn = hn ◦ g−1
n , where gn(u1, . . . , un) = 1

an

(
max(u1, . . . , un)− bn

)
,

for all real numbers u1, . . . , un.

3 Convergence of IF-observables with respect to the IF-state

In papers [4–6, 9–11] we studied a convergence in distribution, a convergence in measure and an
almost everywhere convergence with respect to the IF-state m.

Definition 3.1. Let (yn)n be a sequence of IF-observables in the IF-space (F ,m), where m be
an IF-state. We say that

(i) the sequence (yn)n converges in distribution to a function Ψ : R −→ [0, 1], if for each
t ∈ R

lim
n→∞

m
(
yn((−∞, t))

)
= Ψ(t);

(ii) the sequence (yn)n converges in measure m to 0, if for each ε > 0, ε ∈ R

lim
n→∞

m
(
yn((−ε, ε))

)
= 1;

(iii) the sequence (yn)n converges m-almost everywhere to 0, if

lim
p→∞

lim
k→∞

lim
i→∞

m

(
k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
= 1.

The above definition of convergences of IF-observables with respect to the IF-state m was
inspired by classical definition for random variables.

Definition 3.2. Let (ηn)n be a sequence of random variables in a probability space (Ω,S, P ). We
say that

(i) the sequence (ηn)n converges in distribution to a function F : R −→ [0, 1], if for each
t ∈ R

lim
n→∞

P
(
η−1
n ((−∞, t))

)
= F (t);

(ii) the sequence (ηn)n converges in measure P to 0, if for each ε > 0, ε ∈ R

lim
n→∞

P
(
η−1
n ((−ε, ε))

)
= 1;

(iii) the sequence (ηn)n converges P -almost everywhere to 0, if

P

(
∞⋂
p=1

∞⋃
k=1

∞⋂
n=k

η−1
n

((
− 1

p
,
1

p

)))
= 1,

i.e.,

lim
p→∞

lim
k→∞

lim
i→∞

P

(
k+i⋂
n=k

η−1
n

((
− 1

p
,
1

p

)))
= 1.
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We proved the following three versions of limit theorems for independent IF-observables with
respect to IF-state m in papers [10, 11].

Theorem 3.3 ([11, Theorem 5]). (Central limit theorem) Let (F ,m) be an IF-space, (xn)n be a
sequence of independent IF-observables with the same distribution mx and such that D2(xn) =

σ2, E(xn) = a, (n = 1, 2, . . .) and yn =
√
n
σ

(
1
n

n∑
i=1

xi − a
)

. Then for all t ∈ R

lim
n→∞

m
(
yn((−∞, t))

)
= Φ(t) =

1√
2π

∫ t

−∞
e−

u2

2 du,

i.e., the sequence (yn)n converges in distribution to Φ : R −→ [0, 1].

Theorem 3.4 ( [10, Theorem 5.2]). (Weak law of large numbers) Let (F ,m) be an IF-space,
(xn)n be a sequence of independent IF-observables with the same distribution and such that

E(xn) = a, (n = 1, 2, . . .) and yn = 1
n

n∑
i=1

xi − a. Then for each ε > 0, ε ∈ R

lim
n→∞

m
(
yn((−ε, ε))

)
= 1,

i.e., the sequence (yn)n converges in measure m to 0.

Theorem 3.5 ( [11, Theorem 6]). (Strong law of large numbers) Let (F ,m) be an IF-state
space, (xn)n be a sequence of independent IF-observables such that D2(xn) exists for every

n ∈ N and
∞∑
n=1

D2(xn)
n2 <∞. Then (yn)n converges m-almost everywhere to 0, i.e.,

lim
p→∞

lim
k→∞

lim
i→∞

m

( k+i∧
n=k

yn

(
− 1

p
,
1

p

))
= 1,

where yn = 1
n

n∑
i=1

(xi − E(xi)), n ∈ N.

In paper [9] we studied a connection between a convergence of IF-observables induced by
Borel measurable function and a convergence of random variables.

Proposition 3.1 ( [9, Proposition 3]). Let (xn)n be a sequence of IF-observables in the IF-space
(F ,m), hn : B(Rn) → F be the joint IF-observable of x1, . . . , xn and gn : Rn → R be a
Borel measurable function. Let IF-observable yn = gn(x1, . . . , xn) : B(R) → F be given by
yn = hn ◦ g−1

n and random variable ηn = gn(t1, . . . , tn) : RN → R be defined by ηn = gn ◦ πn,
where πn : RN → Rn is the n-th coordinate random vector defined by πn

(
(tn)n) = (t1, . . . , tn).

It follows that
Pηn = P ◦ η−1

n = m ◦ yn = myn and

(i) the sequence (yn)n converges in distribution to a function F if and only if so does the
sequence (ηn)n;

(ii) the sequence (yn)n converges in measure m to 0 if and only if (ηn)n converges in measure
P to 0;

(iii) if the sequence (ηn)n converges P -almost everywhere to 0, then the sequence (yn)n converges
m-almost everywhere to 0.
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4 Convergence of IF-observables
with respect to the IF-probability

In this section we study three types of convergence of IF-observables with respect to the IF-
probability P . Since the IF-probability P can be decomposed to two IF-states P[,P] (see [20,
23]), so we can use the results from previous section.

4.1 Convergence in distribution

In this subsection we explain a convergence in distribution with respect to the IF-probability. We
were inspired by definition of convergence in distribution for IF-observables with respect to the
IF-state (see Definition 3.1).

Definition 4.1. Let (yn)n be a sequence of IF-observables in the IF-space (F ,P), P be an
IF-probability. We say that (yn)n converges in distribution to a function Ψ : R −→ [0, 1], if
for each t ∈ R

lim
n→∞

P
(
yn((−∞, t))

)
=
[
Ψ(t),Ψ(t)

]
=
{

Ψ(t)
}
.

Now we show a relation between a convergence in distribution with respect to the IF-probability
P and a convergence in distribution with respect to the corresponding IF-states P[, P].

Theorem 4.2. A sequence (yn)n of an IF-observables converges in distribution to a function
Ψ : R −→ [0, 1] with respect to the IF-probability P if and only if it converges in distribution to
a function Ψ with respect to the IF-states P[, P].

Proof. “⇒” Let P be an IF-probability and let a sequence (yn)n of an IF-observables converges
in distribution to a function Ψ : R −→ [0, 1] with respect to the IF-probability P . Then by
Definition 4.1 we have

lim
n→∞

P
(
yn((−∞, t))

)
=
[
Ψ(t),Ψ(t)

]
=
{

Ψ(t)
}

for each t ∈ R. Using Theorem 2.4 we obtain that

P
(
yn((−∞, t))

)
=
[
P[
(
yn((−∞, t))

)
,P]
(
yn((−∞, t))

)]
,

where P[,P] are IF-states. Therefore

lim
n→∞

P[
(
yn((−∞, t))

)
= Ψ(t) and lim

n→∞
P]
(
yn((−∞, t))

)
= Ψ(t),

for each t ∈ R, i.e., a sequence (yn)n of an IF-observables converges in distribution to a function
Ψ with respect to the IF-states P[, P].

“⇐” The opposite direction can be proved by similar way.

Now we present a Central limit theorem for independent IF-observables using IF-probability
P .
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Theorem 4.3. (Central limit theorem) Let (F ,P) be an IF-space with IF-probability P , (xn)n
be a sequence of independent IF-observables with the same distribution Pxn = P ◦ xn and such
that D2(xn) = [D2

[ (xn),D2
] (xn)] = [σ2, σ2] = {σ2},E(xn) = [E[(xn),E](xn)] = [a, a] = {a},

n ∈ N and yn =
√
n
σ

(
1
n

n∑
i=1

xi − a
)

. Then for all t ∈ R

lim
n→∞

P
(
yn((−∞, t))

)
=

[
1√
2π

∫ t

−∞
e−

u2

2 du,
1√
2π

∫ t

−∞
e−

u2

2 du

]
=

{
1√
2π

∫ t

−∞
e−

u2

2 du

}
,

i.e., the sequence (yn)n converges in distribution to a function Ψ(t) = 1√
2π

∫ t
−∞ e

−u2

2 du.

Proof. Let P be an IF-probability. Then it can be decomposed to two IF-states P[,P], see
Theorem 2.4. Hence

P
(
yn((−∞, t))

)
=
[
P[
(
yn((−∞, t))

)
,P]
(
yn((−∞, t))

)]
. (1)

Denote by Ψ(t) = 1√
2π

∫ t
−∞ e

−u2

2 du, t ∈ R. Since a sequence (xn)n is the sequence of independent
IF-observables with respect to the IF-probability P , then by Definition 2.16 there exists a joint
IF-observable hn : B(Rn) −→ F of IF-observables x1, . . . , xn such that

P
(
hn(A1×A2×. . .×An)

)
=
[
P[
(
x1(A1)

)
·. . .·P[

(
xn(An)

)
,P]
(
x1(A1)

)
·. . .·P]

(
xn(An)

)]
(2)

for each A1, A2, . . . , An ∈ B(R), n ∈ N . But using Theorem 2.4 we have

P
(
hn(A1×A2× . . .×An)

)
=
[
P[
(
hn(A1×A2× . . .×An)

)
,P]
(
hn(A1×A2× . . .×An)

)]
(3)

Therefore by (2) and (3) we obtain

P[
(
hn(A1 × A2 × . . .× An)

)
= P[

(
x1(A1)

)
· . . . · P[

(
xn(An)

)
,

P]
(
hn(A1 × A2 × . . .× An)

)
= P]

(
x1(A1)

)
· . . . · P]

(
xn(An)

)
,

for each A1, A2, . . . , An ∈ B(R), n ∈ N , i.e. the IF-observables x1, . . . , xn are independent with
respect to the IF-states P[, P] in IF-spaces (F ,P[), (F ,P]). Moreover

E[(xn) = a = E](xn),D2
[ (xn) = σ2 = D2

] (xn)

and the sequence (xn)n of independent IF-observables have the same distributions P[xn , P]xn in
IF-spaces (F ,P[), (F ,P]). Hence from a Central limit theorem for IF-state (see Theorem 3.3)
we obtain

lim
n→∞

P[
(
yn((−∞, t))

)
= Ψ(t), lim

n→∞
P]
(
yn((−∞, t))

)
= Ψ(t) (4)

for all t ∈ R. Finally using (1) and (4) we have

lim
n→∞

P
(
yn((−∞, t))

)
= lim

n→∞

[
P[
(
yn((−∞, t))

)
,P]
(
yn((−∞, t))

)]
= [Ψ(t),Ψ(t)] = {Ψ(t)}

for all t ∈ R.
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4.2 Convergence in measure

In this section we study a convergence in measureP , whereP is an IF-probability. Again we were
inspired by definition of convergence in measure for IF-observables with respect to the IF-state
(see Definition 3.1).

Definition 4.4. Let (yn)n be a sequence of IF-observables in the IF-space (F ,P), P be an
IF-probability. We say that (yn)n converges in measure P to 0, if for each ε > 0, ε ∈ R

lim
n→∞

P
(
yn((−ε, ε))

)
= [1, 1] = 1.

Theorem 4.5. A sequence (yn)n of an IF-observables converges in measure P to 0 if and only if
it converges in measures P[ and P] to 0.

Proof. “⇒” Let P be an IF -probability and let a sequence (yn)n of an IF-observables converges
in measure P to 0. Then by Definition 4.4 we have

lim
n→∞

P
(
yn((−ε, ε))

)
= [1, 1] = 1

for each ε > 0, ε ∈ R. Using Theorem 2.4 we obtain that

P
(
yn((−ε, ε))

)
=
[
P[
(
yn((−ε, ε))

)
,P]
(
yn((−ε, ε))

)]
,

where P[,P] are IF-states. Therefore

lim
n→∞

P[
(
yn((−ε, ε))

)
= 1 and lim

n→∞
P]
(
yn((−∞, t))

)
= 1,

for each ε > 0, ε ∈ R, i.e., a sequence (yn)n of an IF-observables converges in measures P[ and
P] to 0.

“⇐” The opposite direction can be proved by similar way.

Now we prove a Weak law of large numbers for independent IF-observables using IF-
probability P .

Theorem 4.6. (Weak law of large numbers) Let (F ,P) be an IF-space with IF-probability P ,
(xn)n be a sequence of independent IF-observables with the same distribution Pxn = P ◦ xn and

such that E(xn) = [E[(xn),E](xn)] = [a, a] = {a}, n ∈ N and yn = 1
n

n∑
i=1

xi− a. Then for each

ε > 0, ε ∈ R
lim
n→∞

P
(
yn((−ε, ε))

)
= [1, 1] = 1,

i.e., the sequence (yn)n converges in measure P to 0.

Proof. Let P be an IF-probability. Then it can be decomposed to two IF-states P[,P], see
Theorem 2.4. Hence

P
(
yn((−ε, ε))

)
=
[
P[
(
yn((−ε, ε))

)
,P]
(
yn((−ε, ε))

)]
. (5)
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Since a sequence (xn)n is the sequence of independent IF-observables with respect to IF-
probability P , then by Definition 2.16 there exists a joint IF-observable hn : B(Rn) −→ F of
IF-observables x1, . . . , xn such that

P
(
hn(A1×A2×. . .×An)

)
=
[
P[
(
x1(A1)

)
·. . .·P[

(
xn(An)

)
,P]
(
x1(A1)

)
·. . .·P]

(
xn(An)

)]
(6)

for each A1, A2, . . . , An ∈ B(R), n ∈ N . But using Theorem 2.4 we have

P
(
hn(A1×A2× . . .×An)

)
=
[
P[
(
hn(A1×A2× . . .×An)

)
,P]
(
hn(A1×A2× . . .×An)

)]
(7)

Therefore by (6) and (7) we obtain

P[
(
hn(A1 × A2 × . . .× An)

)
= P[

(
x1(A1)

)
· . . . · P[

(
xn(An)

)
,

P]
(
hn(A1 × A2 × . . .× An)

)
= P]

(
x1(A1)

)
· . . . · P]

(
xn(An)

)
,

for each A1, A2, . . . , An ∈ B(R), n ∈ N , i.e. the IF-observables x1, . . . , xn are independent with
respect to the IF-states P[, P] in IF-spaces (F ,P[), (F ,P]).

Moreover E[(xn) = a = E](xn) and the sequence (xn)n of independent IF-observables have
the same distributions P[xn , P]xn in IF-spaces (F ,P[), (F ,P]). Hence from a Weak law of large
numbers for IF-state (see Theorem 3.4) we obtain

lim
n→∞

P[
(
yn((−ε, ε))

)
= 1, lim

n→∞
P]
(
yn((−ε, ε))

)
= 1 (8)

for each ε > 0, ε ∈ R. Finally using (5) and (8) we have

lim
n→∞

P
(
yn((−ε, ε))

)
= lim

n→∞

[
P[
(
yn((−ε, ε))

)
,P]
(
yn((−ε, ε))

)]
= [1, 1] = 1

for each ε > 0, ε ∈ R.

4.3 P-almost everywhere convergence

In this section we study P-almost everywhere convergence of IF-observables in IF-space (F ,P),
where P is an IF-probability. Recall that the P-almost everywhere convergence of IF-observables
was studied in [8].

Definition 4.7. Let (yn)n be a sequence of IF-observables on an IF-space (F ,P). We say that
(yn)n converges P-almost everywhere to 0, if

lim
p→∞

lim
k→∞

lim
i→∞
P
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
= [1, 1] = 1.

The following theorem says about a connection between P-almost everywhere convergence
and m-almost everywhere convergence.

Theorem 4.8 ( [8, Theorem 5]). A sequence (yn)n of an IF-observables converges P-almost
everywhere to 0 if and only if it converges P[-almost everywhere and P]-almost everywhere to 0.
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Now we formulate a Strong law of large numbers for independent IF-observables using
IF-probability P .

Theorem 4.9. (Strong law of large numbers) Let (F ,P) be an IF-space with IF-probability
P , (xn)n be a sequence of independent IF-observables such that D2(xn) = [D2

[ (xn),D2
] (xn)]

exists for every n ∈ N and
∞∑
n=1

D2
[
(xn)

n2 < ∞,
∞∑
n=1

D2
] (xn)

n2 < ∞ and E(xn) = [E[(xn),E](xn)],

E[(xn) = E](xn). Then a sequence (yn)n of IF-observables converges P-almost everywhere to
0, i.e.,

lim
p→∞

lim
k→∞

lim
i→∞
P
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
= [1, 1] = 1,

where yn = 1
n

n∑
i=1

(xi − E(xi)), n ∈ N .

Proof. Let P be an IF-probability. Then it can be decomposed to two IF-states P[,P], see
Theorem 2.4. Hence

P
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
=

[
P[
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
,P]
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))]
(9)

Since a sequence (xn)n is the sequence of independent IF-observables with respect to IF-probability
P , then by Definition 2.16 there exists a joint IF-observable hn : B(Rn) −→ F of IF-observables
x1, . . . , xn such that

P
(
hn(A1×A2× . . .×An)

)
=
[
P[
(
x1(A1)

)
· . . . · P[

(
xn(An)

)
,P]
(
x1(A1)

)
· . . . · P]

(
xn(An)

)]
(10)

for each A1, A2, . . . , An ∈ B(R), n ∈ N . But using Theorem 2.4 we have

P
(
hn(A1×A2×. . .×An)

)
=
[
P[
(
hn(A1×A2×. . .×An)

)
,P]
(
hn(A1×A2×. . .×An)

)]
(11)

Therefore by (10) and (11) we obtain

P[
(
hn(A1 × A2 × . . .× An)

)
= P[

(
x1(A1)

)
· . . . · P[

(
xn(An)

)
,

P]
(
hn(A1 × A2 × . . .× An)

)
= P]

(
x1(A1)

)
· . . . · P]

(
xn(An)

)
,

for each A1, A2, . . . , An ∈ B(R), n ∈ N , i.e. the IF-observables x1, . . . , xn are independent with
respect to the IF-states P[, P] in IF-spaces (F ,P[), (F ,P]).

Moreover D2
[ (xn) and D2

] (xn) exist for every n ∈ N and
∞∑
n=1

D2
[
(xn)

n2 < ∞,
∞∑
n=1

D2
] (xn)

n2 < ∞,

E(xn) = E[(xn) = E](xn). Hence from a Strong law of large numbers for IF-state (see
Theorem 3.5) we obtain

lim
p→∞

lim
k→∞

lim
i→∞
P[
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
= 1, lim

p→∞
lim
k→∞

lim
i→∞
P]
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
= 1.

(12)
for each ε > 0, ε ∈ R. Finally using (9) and (12) we have
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lim
p→∞

lim
k→∞

lim
i→∞
P
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
=

= lim
p→∞

lim
k→∞

lim
i→∞

[
P[
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))
,P]
( k+i∧
n=k

yn

((
− 1

p
,
1

p

)))]
= [1, 1] = 1,

i.e., the sequence (yn)n of IF-observables converges P-almost everywhere to 0, where yn =

1
n

n∑
i=1

(xi − E(xi)), n ∈ N .

4.4 Convergence of functions of several IF-observables

In this section we show a connection between a convergence of IF-observables induced by Borel
measurable function with respect to the IF-probability and a convergence of random variables.

Proposition 4.1. Let (xn)n be a sequence of IF-observables in the IF-space (F ,P) with IF-
probability P , hn : B(Rn) → F be the joint IF-observable of x1, . . . , xn and gn : Rn → R be
a Borel measurable function. Let IF-observable yn = gn(x1, . . . , xn) : B(R) → F be given by
yn = hn ◦ g−1

n and random variable ηn = gn(t1, . . . , tn) : RN → R be defined by ηn = gn ◦ πn,
where πn : RN → Rn is the n-th coordinate random vector defined by πn

(
(tn)n

)
= (t1, . . . , tn).

It follows that [
P [
ηn , P

]
ηn

]
=
[
P [ ◦ η−1

n , P ] ◦ η−1
n

]
= P ◦ yn = Pyn

and

(i) the sequence (yn)n converges in distribution to a functionF with respect to the IF-probability
P if and only if the sequence (ηn)n converges in distribution to F with respect to the
probabilities P [, P ];

(ii) the sequence (yn)n converges in measure P to 0 if and only if the sequence (ηn)n converges
in measures P [ and P ] to 0;

(iii) if the sequence (ηn)n converges P [-almost everywhere and P ]-almost everywhere to 0, then
the sequence (yn)n converges P-almost everywhere to 0.

Proof. The proof follows from Theorem 2.4, Proposition 3.1, Theorem 4.2, Theorem 4.5 and
Theorem 4.8.

5 Conclusion

We defined a convergence in distribution, a convergence in measure with respect to the IF-
probability and P-almost everywhere convergence for IF-observables. We showed a connection
between a convergence of IF-observables with respect to the IF-probability and a convergence of
IF-observables with respect to the IF-state. We proved a modification of Central limit theorem,
Weak law of large numbers and Strong law of large numbers for an independent sequence of
IF-observables with using IF-probability. We studied a connection between convergence of IF-
observables with respect to the intuitionistic fuzzy probability and a convergence of random
variables, too.
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[6] Čunderlı́ková, K. (2019). m-almost everywhere convergence of intuitionistic fuzzy
observables induced by Borel measurable function. Notes on Intuitionistic Fuzzy Sets, 25(2),
29–40.
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[9] Čunderlı́ková, K. (2022). Convergence of functions of several intuitionistic fuzzy
observables. Proceedings of IWIFSGN’2022, 14 October, 2022, Warszawa, Poland,
submitted.
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[24] Riečan, B. (2012). Analysis of fuzzy logic models. Koleshko, V. (ed.). Intelligent Systems,
INTECH, 219–244.
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