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1 Introduction

In a series of papers, collected in monographs [2, 5, 6], different types of Expert Systems
(ESs; see, e.g. [4, 7]) are described by in terms of Generalized Nets (GNs; see [1, 3]). Here,
we will construct a new GN-model of an ES, which is an extension of the standard ESs.

The hypotheses of each of the standard ESs are some variables. Here, we will discuss
the case, when the hypotheses have a complex form. Now, it is a Boolean expressions of
different variables, each of which can be interpreted as a separate hypothesis. For example,
the complex hypothesis can have the form A&((B → (C ∨D))→ ¬E).

In the beginning, we will describe the GN that is universal for all ESs from production
type having Data Base (DB) of the facts and Knowledge Base (KB) of the rules.

2 GN that is universal for the ESs from production

type

In [2], it is constructed the first GN which is fully independent on the forms of the ESs whose
functioning and results of work are represented by this net. It is shown on Fig. 1.

For clarity, the places are marked by three different symbols: a, b and c, such that:
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• the token α together with its descendants from all generations after splitting will go
to the a-places;

• the token β will move along transfer to b-places;

• the token γ will move along transfer to c-places.

In the construction below, the tokens’ characteristics will be represented by ordered
tuples whose first component is in turn a vector of natural numbers. When tokens will split,
they will be marked with the number of the current split, keeping the previous numeration,
i.e., if the first component of a token characteristic is 〈s1, s2, ..., sk−1〉 (k ≥ 0; s1, s2, ..., sk−1 -
natural numbers), then its next characteristic will be 〈s1, s2, ..., sk−1, sk〉, where the natural
number sk will correspond to the number of the tokens’s current splitting.
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Fig. 1.

Let ∆ be the DB of a given ES.
Let token α enter place a1 of the GN with an initial characteristic

xα0 = “〈p,H〉”,

where p is the current number of the α-token which enters place a1 and H is a hypothesis.
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Let token β enter place b1 with an initial characteristic

xβ0 = “∆”.

Let token γ enter the place c1 with an initial characteristic

xγ0 = “R”,

where R = {R1, ..., Rn} is the list of the rules in the KB. Each rule Ri has the form (1 ≤ i ≤
n):

Ri = 〈Ci;Ai,1, ..., Ai,si〉,

where Ci is the consequent and Ai,1, ..., Ai,si are the elements of the conjunction which forms
the antecedent, xi denotes the i-th characteristic of the α−token with the highest priority
in a given place.

The transitions of the GN are the following (see Fig. 1).

Z1 = 〈{a1, b1, b9, c1, c7}, {a2, a3, b2, b3, c2, c3}, r1〉,

where

r1 =

a2 a3 b2 b3 c2 c3
a1 ra1,a2 ra1,a3 false false false false
b1 false false rb1,b2 rb1,b3 false false
b9 false false rb9,b2 rb9,b3 false false
c1 false false false false rc1,c2 rc1,c3
c7 false false false false rc7,c2 rc7,c3

and
ra1,a2 = rb1,b2 = rb9,b2 = rc1,c2 = rc7,c2 = “pr2x

α
0 6∈ x

β
0”,

ra1,a3 = ¬ra1,a2 ,
rb1,b3 = rb9,b3 = rc1,c3 = rc7,c3 = ¬ra1,a2 & “there are no new α-tokens that must enter place
a1”,
where ¬P is a negation of predicate P .

The tokens obtain the characteristic

“〈pr1xα0 , !pr2xα0 〉”

in place a3, and they do not obtain any characteristic in the other output places, where !F
denotes that fact F is valid, while ¬!F denotes that it is not valid.

Z2 = 〈{a2, a4, a9, b2, c2}, {a4, a5, a6, a7, b4, b5, c4, c5}, r2〉,

where

r2 =

a4 a5 a6 a7 b4 b5 c4 c5
a2 ra2,a4 ra2,a5 ra2,a6 false false false false false
a4 ra4,a4 ra4,a5 false ra4,a7 false false false false
a9 ra9,a4 ra9,a5 ra9,a6 ra9,a7 false false false false
b2 false false false false rb2,b4 rb2,b5 false false
c2 false false false false false false rc2,c4 rc2,c5
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and
ra2,a4 = ra4,a4 = ra9,a4 = “numb(pr1x

γ
0 , pr2x

α
last) > nc(a4, α) + 1”& ¬ra4,a7 ,

ra2,a5 = ra4,a5 = ra9,a5 = rb2,b4 = rc2,c4 = “numb(pr1x
γ
0 , pr2x

α
last) > nc(a4, α)” & ¬ra4,a7 ,

ra2,a6 = ra9,a6 = rb2,b5 = rc2,c5 = “numb(pr1x
γ
0 , pr2x

α
last) = 0” & ¬ra4,a7 ,

ra4,a7 = ra9,a7 = “the current α-token has pv(pv(pr1x
α
last))-kin in at least one of the places

a11, a14 or a15”,
where the functions numb, nc and pv mean the following:

• numb(Y, y) is the number of the occurrences of the element y in the ordered set Y ,

• nc(l, α) is the number of cycles of the token α in place l,

• pv(〈s1, s2, ..., sk−1, sk〉) = 〈s1, s2, ..., sk−1〉.

The tokens obtain the characteristics

“〈〈pr1xαlast;nc(l4, α) + 1)〉, {A1, ..., Ai|〈pr2xαlast, {A1, ..., Ai}〉 ∈ xγ0 is

appearences for a nc(l4, α) + 1)− step} − xβlast〉”

in place a5 and
“〈pr1xαlast,¬!pr2x

α
last〉”

in place a6, and they do not obtain any characteristic in the other output places.
We must note that the output place priorities must satisfy the following inequality:

πL(a7) > πL(a6) > πL(a5) > πL(a4).

Z3 = 〈{a5, a8}, {a8, a9, a10, a11}, r3)〉,

where

r3 =
a8 a9 a10 a11

a5 ra5,a8 ra5,a9 ra5,a10 ra5,a11
a8 ra8,a8 ra8,a9 ra8,a10 false

where
ra5,a8 = ra8,a8 = “card(pr2x

α
last) > nc(a8, α) + 1”&¬r(a5, a10),

ra5,a9 = ra8,a9 = “card(pr2x
α
last) > nc(a8, α)”&¬ra5,a10 ,

ra5,a10 = ra8,a10 = “in the places a6, a12 or a13 resides a token which is a last-kin of the token
with the highest priority” ,
ra5,a11 = “card(xαlast) = 0”&¬ra5,a10 .

The tokens do not obtain any characteristic in places a8 and a10 and they obtain the
characteristics

“〈〈pr1xαlast;nc(a8, α) + 1)〉, (nc(a8, α) + 1)-th element of the set pr2x
α
last〉”

in place a9 and
“〈pr1xαlast, !pr2xαlast〉”

in place a11.
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We must note that the output place priorities must satisfy the following inequality:

πL(a11) > πL(a10) > πL(a9) > πL(a8).

Z4 = 〈{a6}, {a12, a13}, r4〉,

where

r4 =
a12 a13

a6 ra6,a12 ra6,a13

where
ra6,a12 = “there are tokens outside places a14, a15,..., a18”,
ra6,a13 = ¬ra6,a12 .

The tokens do not obtain any characteristic in place a12. They obtain the characteristic

“〈praxαlast,¬!pr2x
α
0 〉”

in place a13.

Z5 = 〈{a11, a14, a17, b4, b7}, {a14, a15, a16, b6, b7}, r5〉,

where

r5 =

a14 a15 a16 b6 b7
a11 ra11,a14 ra11,a15 ra11,a16 false false
a14 ra14,a14 ra14,a15 ra14,a16 false false
a17 ra17,a14 ra17,a15 ra17,a16 false false
b4 false false false rb4,b6 rb4,b7
b7 false false false rb7,b6 rb7,b7

where
ra11,a14 = ra14,a14 = ra17,a14 = “all last homogeneous kins of the token are in places a4, a5, a8, a9, a11
or a14 and there are no last homogeneous kins in places a6, a12 or a13”,
ra11,a15 = ra14,a15 = ra17,a15 =“the token does not have last homogeneous kins”,
ra11,a16 = ra14,a16 = ra17,a16 =“the token has last homogeneous kins in places a6, a12 or a13”,
rb4,b6 = rb7,b6 = “all interior a-places, with the possible exception of places a15 and a17 are
empty”,
rb4,b7 = rb7,b7 = ¬rb4,b6 .

All last kins merge in place a14 and the resulting token obtains no characteristic; the
tokens obtain the characteristics

“〈pv(pv(pr1x
α
last)), !pr2x

α
last−2)〉”

in place a15 and
“xβlast ∪ {pr2xαlast−2}”

in place b7 and they do not obtain any characteristic in places a16 and b6.
We must note that the β-token obtains the above mentioned characteristic in place b7

which symbolises that the new (local) fact is added to the DB, only if this extension of the
DB is possible. Otherwise, the β-token will not obtain any characteristic in place b7.

Z6 = 〈{a15, b6, c4}, {a17, a18, b8, b9, c6, c7}, r6〉,
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where

r6 =

a17 a18 b8 b9 c6 c7
a15 ra15,a17 ra15,a18 false false false false
b6 false false rb6,b8 rb6,b9 false false
c4 false false false false rc4,c6 rc4,c7

where
ra15,a17 = rb6,b9 = rc4,c7 = ¬ra15,a18 ,
ra15,a18 = rb6,b8 = rc4,c6 = “pr1x

α
last = pr1x

α
0”.

The tokens do not obtain any characteristic in places a17, b8, b9, c6, c7 and they obtain the
characteristic

“〈xαlast, !pr2xα0 〉”
in place a18.

The GN described here has the following universal property: it does not depend on
the particular modelled production system. The only constraint posed on it is the above-
mentioned conditon concerning the type of the rule – namely, that the members of the
antecedents of the ES-rules must be conjunctions of positive variables.

3 A new GN model

The new GN, that we will construct, describes a (hypothetic) ES that can check the validity
of hypotheses, having the form of Boolean expressions. The new GN includes as a subnet
the above described GN, that we will denote by E3.

Let, as above, a token α enter place p1 of the new GN with an initial characteristic

xα0 = “〈p,H〉”,

where p is the current number of the α-token which enters place p1 and H is a hypothesis,
that has the form of Boolean expressions.

The new GN (see Fig. 2) has two new transitions, that we will describe below.

T1 = 〈{p1, p3}, {a1, p2, p3}, s1)〉,

where

s1 =
a1 p2 p3

p1 false true true
p4 true false W4,3

,

where
W4,3 = “the current part of the expression contains at least one variable”.

Token α from place p1 splits to two tokens: α, that enters place p3 with a characteristic

“list of the variables of the expression”

and ω, that enters place p2 without a new characteristic.
Token α from place p3 also splits to two tokens: α and ε. Token α enters place a1 with

a characteristic

“q-th member of the variables list of the expression”,
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where q is the current number of the α-token which enters place a1 and as we mentioned in
the beginning, the q-th member of the list is a hypothesis, that the GN E3 will check.

Token ε enters place p3 with the initial α-characteristic, i.e, the original expression.
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T2 = 〈{a13, a18, p2, p5}, {p4, p5}, s2〉,

where

s2 =

p4 p5
a13 false true
a18 false true
p2 false true
p5 W5,4 W5,5

where
W5,4 = “all places of GN E3 are empty”,
W5,5 = ¬W5,4.

Token ε from place p2 enters place p5 without any characteristic. This token will unite
with each α token trom place a13 or a18 and on the separate steps it will obtain as a charac-
teristic the final characteristic of the α-token. So, when the truth-values of all hypotheses,
represented as α-tokens, are checked, token ε will collect all their values and after this
predicate W5,4 will obtain truth-value true. Then, token ε will enter place p4 with final
characteristic

“truth-value of the initial (complex) hypothesis”.

We will illustrate the work of the present GN-model with the following very simple
example.

Let the hypothesis have the above mentioned form A&((B → (C ∨D))→ ¬E).
Let the ES’s DB be {B,F,G} and the ES’s KB contain rules (written in logical form):

...

Ru : B&G→ C

...
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Rv : C&F → D

...

Rw : P&B → E

...

Rx : C&D → ¬A

...

Let no consequent be equal to ¬E.
The whole GN will start work when a token α enters with the above characteristic. It

will enter place p3 and after this it will generate five tokens α1, α2, ..., α5 that will have,
respectively, characteristics A,B,C,D,¬E. The GN E3 will calculate the truth-values of
these hypotheses and will determine for them that:

• hypothesis A is not valid, i.e., it has truth-value false;

• hypothesis B is valid, because it is a fact from the DB, i.e., its truth-value is true;

• hypotheses C and D are valid, because their validity follows from the validity of DB
facts and their truth-value is true;

• hypothesis ¬E is not valid, i.e., it has truth-value false, because it does not follow
from the KB-rules.

Token ε will obtain these values in place p5 and after this in place p4 it will obtain as a
characteristic the expression

false & ((true→ (true ∨ true))→ false)

that has a final truth-value false.
On the other hand, if the initial (complex) hypothesis was ¬A∨ ((B → (C&D))→ ¬E)

then token ε had to finish with the characteristic true.

4 Conclusion

The constructed here GN-model illustrates the possibilities of the generalized nets apparatus
to describe the functioning and the results of the work of expert systems. In a next research
we will do the next step, complicating the form of the initial hypotheses. So, the new
generalized nets will illustrate more adequately the possibility for describing data mining
processes by generalized nets tools.
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