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1 Introduction

Group theory and the closely related representation theory have many important applications in
physics, chemistry, and materials science. Group theory is also central to public key cryptography.
In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra.
A module over a ring is a generalization of the notion of vector space over a field, wherein the
corresponding scalars are the elements of an arbitrary given ring (with identity) and a multiplication
(on the left and/or on the right) is defined between elements of the ring and elements of the module.
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In mathematics, given a group G, a G-module is an abelian group M on which G acts compatibly
with the abelian group structure on M . The term G-module is also used for the more general
notion of an R-module on which G acts linearly (i.e. as a group of R-module automorphisms).
Representation theory (G-module theory) has had its origin in the 20th century. In 1965, Zadeh [22]
introduced the concept of fuzzy subset as a generalization of the notion of characteristic function
in classical set theory. The concept of intuitionistic fuzzy set was introduced by Atanassov [2],
as a generalization of the notion of fuzzy set. The theory of intuitionistic fuzzy set is expected to
play an important role in modern mathematics in general as it represents a generalization of fuzzy
set. Fernadez introduced and studied the notion of fuzzy G-modules in [4]. The triangular norm,
T -norm, originated from the studies of probabilistic metric spaces in which triangular inequalities
were extended using the theory of T -norm. Later, Hohle [6], Alsina et al. [1] introduced the
T -norm and the S-norm into fuzzy set theory and suggested that the T -norm be used for the
intersection and union of fuzzy sets. Since then, many other researchers have presented various
types of T -norms for particular purposes [5, 21]. In practice, Zadeh’s conventional T -norm,∧

and
∨

, have been used in almost every design for fuzzy logic controllers and even in the
modelling of other decision-making processes. In previous works [8,11–20], by using norms, we
investigated some properties of fuzzy algebraic structures. Here in this paper, we define anti fuzzy
G-submodules with respect to t-conorms and investigate some of their algebraic properties. Later
we introduce the union and direct sum of them and finally, we prove that the union, direct sum,
homomorphic images and pre images of theirs are also anti fuzzy G-submodules with respect to
norms (T and S).

2 Preliminaries

The following definitions and preliminaries are required in the sequel of our work and hence
presented in brief. For details we refer readers to [3, 7, 9]. Throughout the paper, Q,R,C will
always be rational, real and complex numbers, respectively.

Definition 2.1. Let R be a ring. A commutative group (M,+) is called a left R-module or a left
module over R with respect to a mapping

. : R×M → M

if for all r, s ∈ R and m,n ∈ M ,
(1) r.(m+ n) = r.m+ r.n,

(2) r.(s.m) = (rs).m,

(3) (r + s).m = r.m+ s.m.

If R has an identity 1 and if 1.m = m for all m ∈ M , then M is called a unitary or unital left
R-module.
A right R-module can be defined in a similar fashion. Note that throughout this paper, R-modules
will be left R-modules.

Definition 2.2. Let M be an R-module and N be a nonempty subset of M . Then N is called a
submodule of M if N is a subgroup of M and for all r ∈ R, a ∈ N , we have ra ∈ N.
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Definition 2.3. Let G be a finite group. A vector space M over a field K is called a G-module
if for every g ∈ G and m ∈ M, there exist a product (called the action of G on M ) m.g ∈ M

satisfying the following axioms:
(1) m.1G = m,∀m ∈ M ( 1G being the identity element in G),
(2) m.(g.h) = (m.g).h , ∀m ∈ M : g, h ∈ G, and
(3) (k1m1 + k2m2).g = k1(m1.g) + k2(m2.g) ∀m1,m2 ∈ M : g ∈ G : k1, k2 ∈ K.

Example 2.4. Let G = {1,−1, i,−i} and M = Cn with n ≥ 1. Then M is a vector space over
C and under the usual addition and multiplication of complex numbers, we can show that M is a
G-module.

Remark 2.5. The operation (m, g) → m.g defined above may be called a right-action of G on M

and M may be said to be a right G-module. In a similar way, we can define left-action and left
G-module. We shall consider all G-modules as left G-modules.

Definition 2.6. Let M be a G-module. A vector subspaee N of M is a G-submodule if N is also
a G-module under the same action of G. Thus N is G-submodule of G-module M if and only if
N is submodule of M and N be a G-module.

Example 2.7. LetQ be the field of rationals andG = {1,−1} andM = R.ThenM is aG-module
over Q. Now for each r /∈ Q we get that N = Q(r) is a G-submodule of M.

Definition 2.8. Let M and N be G-modules. A mapping f : M → M is a G-module
homomorphism if

(1) f(k1m1 + k2m2) = k1f(m1) + k2f(m2)

(2) f(gm) = gf(m)

for all m1,m2m ∈ M and k1, k2 ∈ K and g ∈ G.

Definition 2.9. Let X be an arbitrary set. By a fuzzy subset of X , we mean a function from X

into [0, 1]. The set of all fuzzy subsets of X is called the [0, 1]-power set of X and is denoted
[0, 1]X . For a fixed s ∈ [0, 1], the set µs = {x ∈ X : µ(x) ≥ s} is called an upper level of µ and
the set µs = {x ∈ X : µ(x) ≤ s} is called a lower level of µ.

Definition 2.10. LetX be a nonempty set. A complex mappingA = (µA, νA) : X → [0, 1]×[0, 1]

is called an intuitionistic fuzzy set (in short, IFS) in X if µA + νA ≤ 1 where the mappings
µA : X → [0, 1] and νA : X → [0, 1] denote the degree of membership (namely µA(x)) and the
degree of non-membership (namely νA(x)) for each x ∈ X to A, respectively. In particular ∅X
and UX denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined
by ∅X(x) = (0, 1) ∼ 0 and UX(x) = (1, 0) ∼ 1, respectively. We will denote the set of all IFSs
in X as IFS(X).

Definition 2.11. Let φ be a function from set X into set Y such that A = (µA, νA) ∈ IFS(X) and
B = (µB, νB) ∈ IFS(Y ). For all x ∈ X, y ∈ Y, we define

φ(A)(y) = (φ(µA)(y), φ(νA)(y))

=

(sup{µA(x) | x ∈ X,φ(x) = y}, inf{νA(x) | x ∈ X,φ(x) = y}) if φ−1(y) ̸= ∅
(0, 1) if φ−1(y) = ∅
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Also φ−1(B)(x) = (φ−1(µB)(x), φ
−1(νB)(x)) = (µB(φ(x)), νB(φ(x))).

Definition 2.12. A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having the following four
properties:

(T1) T (x, 1) = x (neutral element),
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

for all x, y, z ∈ [0, 1].

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).

Example 2.13. (1) Standard intersection t-norm Tm(x, y) = min{x, y}.
(2) Bounded sum t-norm Tb(x, y) = max{0, x+ y − 1}.
(3) Algebraic product t-norm Tp(x, y) = xy.

(4) Drastic t-norm

TD(x, y) =


y if x = 1

x if y = 1

0 otherwise.

(5) Nilpotent minimum t-norm

TnM(x, y) =

{
min{x, y} if x+ y > 1

0 otherwise.

(6) Hamacher product t-norm

TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest
t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].

Definition 2.14. An s-norm S is a function S : [0, 1] × [0, 1] → [0, 1] having the following four
properties:

(1) S(x, 0) = x,
(2) S(x, y) ≤ S(x, z) if y ≤ z,
(3) S(x, y) = S(y, x),
(4) S(x, S(y, z)) = S(S(x, y), z) ,

for all x, y, z ∈ [0, 1].

Example 2.15. The basic s-norms are Sm(x, y) = max{x, y}, Sb(x, y) = min{1, x + y} and
Sp(x, y) = x + y − xy for all x, y ∈ [0, 1]. Thus Sm is standard union, Sb is bounded sum, Sp is
algebraic sum.

We say that T and S are idempotent if for all x ∈ [0, 1] we have T (x, x) = x and S(x, x) = x.
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Definition 2.16. Let A = (µA, νA) ∈ IFS(X) and B = (µB, νB) ∈ IFS(X). Define

A ∩B = (µA∩B, νA∩B) : X → [0, 1]

as µA∩B(x) = T (µA(x), µB(x)) and νA∩B(x) = S(νA(x), νB(x)) for all x ∈ X.

Lemma 2.17 ([11]). Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

S(S(x, y), S(w, z)) = S(S(x,w), S(y, z)),

for all x, y, w, z ∈ [0, 1].

3 Main results

Definition 3.1. Let G be a finite group and M be a G-module over K, which is a subfield of C.
Define A = (µA, νA) ∈ IFS(M) an intuitionistic fuzzy G-module on M under norms (t-norm T

and s-conorm S) if it satisfies the following inequalities:
(1) µA(ax+ by) ≥ T (µA(x), µA(y)),

(2) µA(gm) ≥ µA(m),

(3) νA(ax+ by) ≤ S(νA(x), νA(y)),

(4) νA(gm) ≤ νA(m),

for all a, b ∈ K : x, y ∈ M : m ∈ M and g ∈ G.

Denote by IFMN(M), the set of all intuitionistic fuzzy G-modules on M under norms (t-norm T

and s-conorm S).

Example 3.2. Let G = {1,−1} and M = R4 is a vector space over real field R. Then M is a
G-module over R. Define µA, νA : M → [0, 1] by

µA(x) =

{
1, if xi = 0, ∀i

0.35, if at least one xi = 0

and

νA(x) =

{
0, if xi = 0,∀i

0.55, if at least one xi = 0

where x = (x1, x2, x3, x4) ∈ R4 such that xi ∈ R. If T (a, b) = Tm(a, b) = min{a, b} and
S(a, b) = Sm(a, b) = max{a, b} for all a, b ∈ [0, 1], then A = (µA, νA) ∈ IFMN(M).

Example 3.3. Let F be a field, K be an extension field of F and a ∈ K. Let F (a) be the field
obtained by adjoining a to F as F (a) = {b0 + b1a+ b2a

2 + · · · } with bi ∈ F . If G = (a), be the
cyclic group generated by a, then M = F (a) will be G-module. Define µA, νA : M → [0, 1] by

µA(x) =


1, if x = 0

0.15, if x ∈ F − {0}
0.55, if x ∈ F (a)− F
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and

νA(x) =


0, if x = 0

0.65, if x ∈ F − {0}
0.25, if x ∈ F (a)− F.

Let T (a, b) = Tb(a, b) = max{0, a + b − 1} and S(a, b) = Sb(a, b) = min{1, a + b} for all
a, b ∈ [0, 1] then A = (µA, νA) ∈ IFMN(M).

Example 3.4. Consider the G-module M = C over the field R where G = {±1}.
Define µA, νA : M → [0, 1] by

µA(z) =


1, if z = 0

0.25, if z ∈ R− {0}
0.35, if z ∈ C− R.

and

νA(z) =


0, if z = 0

0.45, if z ∈ R− {0}
0.55, if z ∈ C− R.

Let T (x, y) = Tp(x, y) = xy and S(a, b) = Sp(a, b) = a + b − ab for all a, b ∈ [0, 1] then
A = (µA, νA) ∈ IFMN(M).

Proposition 3.5. Let M be a G-module over K and µ be a fuzzy set of M. Let A = (µA, νA) ∈
IFMN(M) and T, S be idempotent. Then the As,t = {x ∈ X : A(x) ⊇ (s, t)} is either empty or
a G-submodule of M for every s, t ∈ [0, 1].

Proof. Let A = (µA, νA) ∈ IFMN(M) and As,t = {x ∈ X : A(x) ⊇ (s, t)} be not empty. Let
x, y ∈ U(µ, α) and a, b ∈ K. Then µA(x) ≥ s and µA(y) ≥ s and νA(x) ≤ t and νA(y) ≤ t. Now

µA(ax+ by) ≥ T (µA(x), µA(y)) ≥ T (s, s) = s,

νA(ax+ by) ≤ S(νA(x), νA(y)) ≤ S(t, t) = t,

so A(ax+ by) ⊇ (s, t) then ax+ by ∈ As,t. Also µA(gx) ≥ µA(x) ≥ s and νA(gx) ≤ νA(x) ≤ t

mean that A(gx) ⊇ (s, t) and then gx ∈ As,t. Thus As,t will be G-submodule of M.

Proposition 3.6. Let M be a G-module over K. If A = (µA, νA) ∈ IFMN(M) and B =

(µB, νB) ∈ IFMN(M), then A ∩B = (µA∩B, νA∩B) ∈ IFMN(M).

Proof. Let x, y ∈ M and a, b ∈ K and g ∈ G.

As

(µA∩B)(ax+ by) = T (µA(ax+ by), µB(ax+ by))

≥ T (T (µA(x), µA(y)), T (µB(x), µB(y)))

= T (T (µA(x), µB(x)), T (µA(y), µB(y))) (from Lemma 2.17)
= T ((µA∩B)(x), (µA∩B)(y)),

then (µA∩B)(ax+ by) ≥ T ((µA∩B)(x), (µA∩B)(y)).
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Also
(µA∩B)(gx) = T (µA(gx), µB(gx)) ≥ T (µA(x), µB(x)) = (µA∩B)(x).

Moreover

(νA∩B)(ax+ by) = S(νA(ax+ by), νB(ax+ by))

≤ S(S(νA(x), νA(y)), S(νB(x), νB(y)))

= S(S(νA(x), νB(x)), S(νA(y), νB(y))) (from Lemma 2.17)
= S((νA∩B)(x), (νA∩B)(y)),

then (νA∩B)(ax+ by) ≤ S((νA∩B)(x), (νA∩B)(y)).

Further
(νA∩B)(gx) = S(νA(gx), νB(gx)) ≤ S(νA(x), νB(x)) = (νA∩B)(x).

Therefore A ∩B = (µA∩B, νA∩B) ∈ IFMN(M).

Corollary 3.7. Let Ai = (µAi
, νAi

) ⊆ IFMN(M) for i = 1, 2, 3, 4, . . . , n. Then ∩i=1,2,3,...,nAi ∈
IFMN(M).

Proposition 3.8. Let f : M → N be a G-module epimorphism. If A = (µA, νA) ∈ IFMN(M),

then f(A) = (f(µA), f(νA)) ∈ IFMN(N).

Proof. Let y1, y2 ∈ N and a, b ∈ K.

Then

f(µA)(ay1 + by2) = sup{µA(ax1 + bx2) | x1, x2 ∈ M, f(ax1) = ay1, f(bx2) = by2}
= sup{µA(ax1 + bx2) | x1, x2 ∈ M,af(x1) = ay1, bf(x2) = by2}
≥ sup{T (µA(x1), µ(x2)) | x1, x2 ∈ M, f(x1) = y1, f(x2) = y2}
= T (sup{µA(x1) | f(x1) = y1}, sup{µA(x2) | f(x2) = y2})
= T (f(µA)(y1), f(µA)(y2)),

thus f(µA)(ay1 + by2) ≥ T (f(µA)(y1), f(µA)(y2)).

Also

f(νA)(ay1 + by2) = inf{νA(ax1 + bx2) | x1, x2 ∈ M, f(ax1) = ay1, f(bx2) = by2}
= inf{νA(ax1 + bx2) | x1, x2 ∈ M,af(x1) = ay1, bf(x2) = by2}
≤ inf{S(νA(x1), ν(x2)) | x1, x2 ∈ M, f(x1) = y1, f(x2) = y2}
= S(inf{νA(x1) | f(x1) = y1}, inf{νA(x2) | f(x2) = y2})
= S(f(νA)(y1), f(νA)(y2)),

then
f(νA)(ay1 + by2) ≤ S(f(νA)(y1), f(νA)(y2)).
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Let y ∈ N and g ∈ G.

f(µA)(gy) = sup{µA(gx) | x ∈ M, f(gx) = gy}
= sup{µA(gx) | x ∈ M, gf(x) = gy}
≥ sup{µA(x) | x ∈ M, f(x) = y}
= f(µA)(y),

and so
f(µA)(gy) ≥ f(µA)(y).

Also

f(νA)(gy) = inf{νA(gx) | x ∈ M, f(gx) = gy}
= inf{νA(gx) | x ∈ M, gf(x) = gy}
≤ inf{νA(x) | x ∈ M, f(x) = y}
= f(νA)(y),

thus
f(νA)(gy) ≤ f(νA)(y).

Therefore f(A) = (f(µA), f(νA)) ∈ IFMN(N).

Proposition 3.9. Let f : M → N be a G-module homomorphism. If B = (µB, νB) ∈ IFMN(N),

then f−1(B) = (f−1(µB), f
−1(νB)) ∈ IFMN(M).

Proof. Let x1, x2 ∈ M and a, b ∈ K. Then

f−1(µB)(ax1 + bx2) = µB(f(ax1 + bx2))

= µB(f(ax1) + f(bx2))

= µB(af(x1) + bf(x2))

≥ T (µB(f(x1), µB(f(x2))

= T (f−1(µB)(x1), f
−1(µB)(x2)),

then
f−1(µB)(ax1 + bx2) ≥ T (f−1(µB)(x1), f

−1(µB)(x2)).

Also

f−1(νB)(ax1 + bx2) = νB(f(ax1 + bx2))

= νB(f(ax1) + f(bx2))

= νB(af(x1) + bf(x2))

≤ S(νB(f(x1), νB(f(x2))

= S(f−1(νB)(x1), f
−1(νB)(x2)),

so
f−1(νB)(ax1 + bx2) ≤ S(f−1(νB)(x1), f

−1(νB)(x2)).
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Let x ∈ M and g ∈ G. Then

f−1(µB)(gx) = µB(f(gx)) = µB(gf(x)) ≥ µB(f(x)) = f−1(µB)(x)

and
f−1(νB)(gx) = νB(f(gx)) = νB(gf(x)) ≤ νB(f(x)) = f−1(νB)(x).

Therefore f−1(B) = (f−1(µB), f
−1(νB)) ∈ IFMN(M).

Definition 3.10. Let A = (µA, νA) ∈ IFMN(M) and B = (µB, νB) ∈ IFMN(M). Define

A+B = (µA, νA) + (µB, νB) = (µA + µB, νA + νB) = (µA+B, νA+B) : M → [0, 1]× [0, 1]

as
µA+B(x) = sup{T (µA(y), µB(z)) | x = y + z ∈ M}

and
νA+B(x) = inf{S(νA(y), νB(z)) | x = y + z ∈ M}

for all x ∈ M.

Proposition 3.11. Let A = (µA, νA) ∈ IFMN(M) and B = (µB, νB) ∈ IFMN(M). Then
A+B ∈ IFMN(M).

Proof. Let x1, x2, y1, y2, z1, z2 ∈ M and a, b ∈ K. Then

µA+B(ax1 + bx2)

= sup{T (µA(ay1 + by2), µB(az1 + bz2)) | ax1 + bx2 = ay1 + by2 + az1 + bz2}
≥ sup{T (T (µA(y1), µA(y2)), T (µB(z1), µB(z2))) | ax1 + bx2 = ay1 + az1 + by2 + bz2}
= sup{T (T (µA(y1), µA(y2)), T (µB(z1), µB(z2))) | ax1 = ay1 + az1, bx2 = by2 + bz2}
= sup{T (T (µA(y1), µA(y2)), T (µB(z1), µB(z2))) | x1 = y1 + z1, x2 = y2 + z2}

(from Lemma 2.17)
= sup{T (T (µA(y1), µB(z1)), T (µA(y2), µB(z2))) | x1 + x2 = y1 + z1 + y2 + z2}
= T (sup{T (µA(y1), µB(z1)) | x1 = y1 + z1)}, sup{T (µA(y2), µB(z2)) | x2 = y2 + z2})
= T (µA+B(x1), µA+B(x2)).

Also
νA+B(ax1 + bx2)

= inf{S(νA(ay1 + by2), νB(az1 + bz2)) | ax1 + bx2 = ay1 + by2 + az1 + bz2}
≤ inf{S(S(νA(y1), νA(y2)), S(νB(z1), νB(z2))) | ax1 + bx2 = ay1 + az1 + by2 + bz2}
= inf{S(S(νA(y1), νA(y2)), S(νB(z1), νB(z2))) | ax1 = ay1 + az1, bx2 = by2 + bz2}
= inf{S(S(νA(y1), νA(y2)), S(νB(z1), νB(z2))) | x1 = y1 + z1, x2 = y2 + z2}

(from Lemma 2.17)
= inf{S(S(νA(y1), νB(z1)), S(νA(y2), νB(z2))) | x1 + x2 = y1 + z1 + y2 + z2}
= S(inf{S(νA(y1), νB(z1)) | x1 = y1 + z1)}, inf{S(νA(y2), νB(z2)) | x2 = y2 + z2})
= S(νA+B(x1), νA+B(x2)).
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Let x, y, z ∈ M and g ∈ G.
Further

µA+B(gx) = sup{T (µA(gy), µB(gz)) | gx = gy + gz}
≥ sup{T (µA(y), µB(z)) | x = y + z}
= µA+B(x),

so µA+B(gx) ≥ µA+B(x).

Moreover

νA+B(gx) = inf{S(νA(gy), νB(gz)) | gx = gy + gz}
≤ inf{S(νA(y), νB(z)) | x = y + z}
= νA+B(x),

then νA+B(gx) ≤ νA+B(x).

Therefore we get that
A+B = (µA+B, νA+B) ∈ IFMN(M).

Proposition 3.12. Let M be a G-module and N be a subset of M such that A = (µA, νA) ∈
IFS(M). Let

A(x) = (µA(x), νA(x)) =

{
(1, 0), if x ∈ N

(α, α), if x /∈ N

with α ∈ [0, 1). Then A = (µA, νA) ∈ IFMN(M) if and only if N is a G-submodule of M .

Proof. Let A = (µA, νA) ∈ IFMN(M) and we prove that N is a submodule of M . Let x, y ∈
N ⊆ M and a, b ∈ K. Now

µA(ax+ by) ≥ T (µA(x), µA(y)) = T (1, 1) = 1

and
νA(ax+ by) ≤ S(νA(x), νA(y)) = S(0, 0) = 0

thus A(x) = (µA(x), νA(x)) = (1, 0) and then ax+ by ∈ N.

Also let g ∈ G and then µA(gx) ≥ µA(x) = 1, and νA(gx) ≤ νA(x) = 0, then A(gx) =

(µA(gx), νA(gx)) = (1, 0), thus gx ∈ N. Therefore N is a submodule of M and since N is a
subset of M so N will be a G-submodule of M .

Conversely, let N be a submodule of M , we prove that A = (µA, νA) ∈ IFMN(M).

Suppose x, y ∈ M and a, b ∈ K and we investigate the following conditions:
(1) If x, y ∈ N , then

µA(ax+ by) = 1 ≥ 1 = T (1, 1) = T (µA(x), µA(y))

and
νA(ax+ by) = 0 ≤ 0 = S(0, 0) = S(νA(x), νA(y)).
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(2) For any x ∈ N and y ̸∈ N, then ax+ by /∈ N and so

µA(ax+ by) = α ≥ 0 = T (1, 0) = T (µA(x), µA(y))

and
νA(ax+ by) = α ≤ α = S(0, α) = S(µA(x), µA(y)).

(3) Let x ̸∈ N and y ∈ N, then ax+ by /∈ N and then

µA(ax+ by) = α ≥ 0 = T (0, 1) = T (µA(x), µA(y))

and
νA(ax+ by) = α ≤ α = S(0, α) = S(νA(x), νA(y)).

(4) Finally, if x, y ̸∈ N, so ax+ by /∈ N and so

µA(ax+ by) = α ≥ 0 = T (0, 0) = T (µA(x), µA(y))

and
νA(ax+ by) = α ≤ α = S(α, α) = S(νA(x), νA(y)).

Therefore, from (1)–(4) we have that

µA(ax+ by) ≥ T (µA(x), µA(y))

and
νA(ax+ by) ≤ S(νA(x), νA(y)).

Now let x ∈ M and g ∈ G. Then we have:
(5) If x ∈ N, then gx ∈ N and then µA(gx) = 1 ≥ µA(x) and νA(gx) = 0 ≤ νA(x).

(6) If x ̸∈ N, then gx /∈ N and so µA(gx) = 0 ≥ 0 = µA(x) and νA(gx) = α ≤ α = νA(x).

Therefore from (5) and (6) we have that µA(gx) ≥ µA(x) and νA(gx) ≤ νA(x).

Hence A = (µA, νA) ∈ IFMN(M).

Definition 3.13. Let M be a G-module over K and Mi be G-submodules of M such that
Ai = (µAi

, νAi
) ∈ IFMN(Mi) for all i = 1, 2, 3, . . . , n. Define

A = ⊕n
i=1Ai

= (⊕n
i=1µAi

,⊕n
i=1νAi

)

= (µ⊕n
i=1Ai

, ν⊕n
i=1Ai

) : M

= ⊕n
i=1Mi → [0, 1]× [0, 1]

as

µ⊕n
i=1Ai

(m =
n∑
i

mi) =
∧

{µAi
(mi) : i = 1, 2, 3, ..., n}

and

ν⊕n
i=1Ai

(m =
n∑
i

mi) =
∨

{νAi
(mi) : i = 1, 2, 3, . . . , n}

such that
∧

denotes minimum [infimum] and
∨

denotes maximum [supremum] and
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A(0) = ⊕n
i=1Ai(0)

= (⊕n
i=1µAi

(0),⊕n
i=1νAi

(0))

= (µ⊕n
i=1Ai

(0), ν⊕n
i=1Ai

(0))

= (µAi
(0), νAi

(0))

= Ai(0)

for all i. Thus A = ⊕n
i=1Ai is called the direct sum of Ai.

Proposition 3.14. Let M be a G-module over K and Mi be G-submodules of M such that
Ai = (µAi

, νAi
) ∈ IFMN(Mi) for all i = 1, 2, 3, ..., n. Then A = ⊕n

i=1Ai ∈ IFMN(⊕n
i=1Mi).

Proof. Let x =
∑n

i mi and y =
∑n

j mj and a, b ∈ K and g ∈ G. Thus

µ⊕n
i=1Ai

(ax+ by) = µ⊕n
i=1Ai

(a
n∑
i

mi + b

n∑
j

mj)

= µ⊕n
i=1Ai

(
n∑
i

ami +
n∑
j

bmj)

=
∧

{µAi
(ami + bmj) : i, j = 1, 2, 3, ..., n}

≥
∧

{T (µAi
(mi,mj) : i, j = 1, 2, 3, ..., n} (Since Ai ∈ IFMN(Mi))

= T (
∧

{µAi
(mi) : i = 1, 2, 3, ..., n},

∧
{µAi

(mj) : j = 1, 2, 3, ..., n})

= T (µ⊕n
i=1Ai

(x), µ⊕n
i=1Ai

(y)),

then µ⊕n
i=1Ai

(ax+ by) ≥ T (µ⊕n
i=1Ai

(x)µ⊕n
i=1Ai

(y)).

Also

ν⊕n
i=1Ai

(ax+ by) = ν⊕n
i=1Ai

(a
n∑
i

mi + b
n∑
j

mj)

= ν⊕n
i=1Ai

(
n∑
i

ami +
n∑
j

bmj)

=
∨

{νAi
(ami + bmj) : i, j = 1, 2, 3, ..., n}

≤
∨

{S(νAi
(mi,mj) : i, j = 1, 2, 3, ..., n} (Since Ai ∈ IFMN(Mi))

= S(
∨

{νAi
(mi) : i = 1, 2, 3, ..., n},

∨
{νAi

(mj) : j = 1, 2, 3, ..., n})

= S(ν⊕n
i=1Ai

(x), ν⊕n
i=1Ai

(y)),

then ν⊕n
i=1Ai

(ax+ by) ≤ S(ν⊕n
i=1Ai

(x)ν⊕n
i=1Ai

(y)).

Further
µ⊕n

i=1Ai
(gx) = µ⊕n

i=1Ai
(g

n∑
i

mi)

= µ⊕n
i=1Ai

(
n∑
i

gmi)
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=
∧

{µAi
(gmi) : i = 1, 2, 3, ..., n}

≥
∧

{µAi
(mi) : i = 1, 2, 3, ..., n} (Since Ai ∈ IFMN(Mi))

=
∧

{µAi
(mi) : i = 1, 2, 3, ..., n}

= µ⊕n
i=1Ai

(x),

so µ⊕n
i=1Ai

(gx) ≥ µ⊕n
i=1Ai

(x).

Moreover

ν⊕n
i=1Ai

(gx) = ν⊕n
i=1Ai

(g
n∑
i

mi)

= ν⊕n
i=1Ai

(
n∑
i

gmi)

=
∨

{νAi
(gmi) : i = 1, 2, 3, ..., n}

≤
∨

{νAi
(mi) : i = 1, 2, 3, ..., n} (Since Ai ∈ IFMN(Mi))

=
∨

{νAi
(mi) : i = 1, 2, 3, ..., n}

= ν⊕n
i=1Ai

(x),

thus ν⊕n
i=1Ai

(gx) ≤ ν⊕n
i=1Ai

(x).

Therefore A = ⊕n
i=1Ai ∈ IFMN(⊕n

i=1Mi).

Example 3.15. Let G = {±1} and M = C over R. Then M is a G-module. We have M =

M1 ⊕M2, where M1 = R and M2 = iR. Define A1 = (µA1 , νA1) : M1 → [0, 1]× [0, 1] as

µA1(x) =

{
1 if x = 0
1
2

if x ̸= 0,

and

νA1(x) =

{
0 if x = 0
1
7

if x ̸= 0.

Also A2 = (µA2 , νA2) : M2 → [0, 1]× [0, 1] as

µA2(y) =

{
1 if y = 0
1
2

if y ̸= 0,

and

νA2(y) =

{
0 if y = 0
1
9

if y ̸= 0.

Define
A = A1 ⊕ A2 = (µA1⊕A2 , νA1⊕A2) : M = M1 ⊕M2 → [0, 1]× [0, 1]

as

µA1⊕A2(x+ iy) =


1 if x = y = 0
1
2

if x ̸= 0, y = 0
1
3

if y ̸= 0,
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and

νA1⊕A2(x+ iy) =


0 if x = y = 0
1
10

if x ̸= 0, y = 0
1
11

if y ̸= 0.

Let T (a, b) = Tp(a, b) = ab and S(a, b) = Sp(a, b) = a+ b− ab for all a, b ∈ [0, 1]. Then as
A1 ∈ IFMN(M1) and A2 ∈ IFMN(M2) so A = A1 ⊕ A2 ∈ IFMN(M = M1 ⊕M2).

4 Open problem

In this paper, as using norms (T and S), intuitionistic fuzzy G-modules on M under norms and
some related results like intersection, sum and direct sum of them has also been discussed. Now
one can define and investigate intuitionistic fuzzy G-bimodules as we did for intuitionistic fuzzy
G-modules and this can be an open problem.
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