Tenth Int. Conf. on IFSs, Sofia, 28-29 Oct. 2006

NIFS Vol. 12 (2006), No. 3, 55-59

On a Class of d-Fuzzy Sets and d-Intuitionistic Fuzzy Sets

Peter Vassilev

CLBME-Bulg. Academy of Sci. e-mail: peter.vassilev@gmail.com

Abstract

In the paper a class of d-Fuzzy Sets (d-FS) and a class of d-Intuitinistic Fuzzy Sets (d-IFS) are introduced and studied. These classes are generated by specific kinds of norms on \mathbb{R}^2 . The investigation follows [1]

1 Keywords

Fuzzy Set, d-Fuzzy Set (d-FS), Intuitionistic Fuzzy Set (IFS), d-Intuitionistic Fuzzy Set (d-IFS), metric, norm

2 Used Denotations

 R^2 - for the standard 2-dimensional vector space, R_+^2 - for the set of all vectors with non-negative components from R^2 ; I - for the interval [0,1]; \times - for Cartesian product of sets; E - for the universe; $\mu: E \to [0,1]$, $\nu: E \to [0,1]$ - for the membership and non-membership functions.

3 Introduction

In [1] for the first time were introduced the so-called d-IFS sets. These sets are generated by an arbitrary metric on R^2 , and they are a continuation of the classical fuzzy sets (FS) (see [2] and of Atanassov's IFS, considered for the first time in [3], because FS and IFS are received for a particular choice of the metric d. Thus in [1] a possibility for a topological point of view on the introduction of FS and IFS has been proposed. In the present paper our aim is to introduce an important classes of d-FS and d-IFS, depending on infinitely many norms ψ_{α} on R^2 , which correspond to the norms φ_{α} that were considered in paragraphs 4 and 5 from [1]. Also, the corresponding domains characterising the above-mentioned classes of d-FS and of d-IFS, depending on the norms ψ_{α} are introduced and studied. The investigation is a continuation and furthering of the results in [1].

4 $d_{\varphi_{\alpha}}$ -FS and $d_{\varphi_{\alpha}}$ - IFS

Below we use some of the results in [1]:

Let $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, +\infty)$ be an arbitrary metric on \mathbb{R}^2 and $\mu: E \to I, \nu: E \to I$ be arbitrary mappings. We call the set

$$\{\mu(x), \nu(x) | x \in E\}$$

d-fuzzy set or d-FS, if it is fulfilled

$$\forall x \in E, d((\mu(x), \nu(x)), (0, 0)) = 1$$

Also we call the set

$$\{\mu(x), \nu(x) | x \in E\}$$

d-Intuitionistic Fuzzy Set or d-IFS, if it is fulfilled:

$$\forall x \in E, d((\mu(x), \nu(x)), (0, 0)) \le 1$$

Let $\varphi: R^2 \to [0, +\infty)$ be an arbitrary norm on R^2 . Then as usual, φ represents a metric $d = d_{\varphi}$ on R^2 , that is given by the formula:

$$d_{\varphi}((\mu_1, \nu_1), (\mu_2, \nu_2)) = \varphi(\mu_1 - \mu_2, \nu_1 - \nu_2), (\forall (\mu_1, \nu_1), (\mu_2, \nu_2) \in \mathbb{R}^2). \tag{1}$$

Therefore, every norm on R^2 generates d_{φ} -FS and d_{φ} -IFS.

Further we suppose that $\alpha \in (0, \infty)$. Then we introduce the following norms on \mathbb{R}^2 :

$$\varphi_{\alpha}(\mu, \nu) = (|\mu|^{\alpha} + |\nu|^{\alpha})^{1/\alpha};$$

$$\varphi_{\infty}(\mu, \nu) = \max(|\mu|, |\nu|);$$
(2)

These norms and their corresponding metrics $d_{\varphi_{\alpha}}$ and $d_{\varphi_{\infty}}$ generate $d_{\varphi_{\alpha}}$ -FS, $d_{\varphi_{\alpha}}$ -IFS, $d_{\varphi_{\infty}}$ -FS,and $d_{\varphi_{\infty}}$ -IFS, respectively. We must note the following:

Fact1: A set **A** is FS, respectively IFS iff **A** is d_{φ_1} -FS, respectively d_{φ_1} -IFS i.e. FS and IFS are generated by the well-known Hamming's norm.

Fact2: $d_{\varphi_{\alpha}}$ -FS are given by:

$$\{(\mu(x), \nu(x)) | x \in E, \mu: E \to I, \nu: E \to I \& ((\mu(x))^{\alpha} + (\nu(x))^{\alpha}) = 1\}$$

Fact3: $d_{\varphi_{\alpha}}$ -IFS are given by:

$$\{(\mu(x), \nu(x)) | x \in E, \mu: E \to I, \nu: E \to I \& ((\mu(x))^{\alpha} + (\nu(x))^{\alpha}) < 1\}$$

Fact4: Any $d_{\varphi_{\infty}}$ -FS or $d_{\varphi_{\infty}}$ -IFS is a limit of $d_{\varphi_{\alpha}}$ -FS or $d_{\varphi_{\alpha}}$ -IFS, respectively when $\alpha \to +\infty$ but μ and ν are the same functions.

We call d_{φ_2} -FS and d_{φ_2} -IFS, Euclidean-FS and Euclidean-IFS, respectively. The reason for this definition is that φ_2 is called Euclidean norm. Let

$$K_{\alpha} := \{(\mu, \nu) | \mu, \nu \in [-1, 1] \& |\mu|^{\alpha} + |\nu|^{\alpha} = 1\}$$

$$\tilde{K}_{\alpha} := \{ (\mu, \nu) | \mu, \nu \in [-1, 1] \& |\mu|^{\alpha} + |\nu|^{\alpha} \le 1 \}$$

Then K_{α} and \tilde{K}_{α} are the unit circle and disk, centered at the origin of R^2 (considered as a plane), with respect to the metric $d_{\varphi_{\alpha}}$, generated by norm φ_{α} on R^2 .

We introduce the sets K_{α}^* and \tilde{K}_{α}^* by:

$$K_{\alpha}^* = K_{\alpha} \cap (I \times I);$$

$$\tilde{K}_{\alpha}^* = \tilde{K}_{\alpha} \cap (I \times I);$$

We introduce the domain \tilde{K}_{∞}^* as $I \times I$.

Below we shall discuss the important question about the connection between $d_{\varphi_{\alpha}}$ -IFS and $d_{\varphi_{\beta}}$ -IFS, when $\alpha, \beta \in (0, +\infty]$ and $\alpha \neq \beta$.

The key to answering this question is hidden behind the fact that the norm φ_{α} is a strictly decreasing function with respect to α , on $(0, +\infty)$ and :

$$\lim_{\alpha \to +\infty} \varphi_{\alpha} = \varphi_{\infty}$$

This was proved in [1].

As a result of the above reasonings we conclude that the closed domains \tilde{K}_{α}^* grow as α increases in value, where $\alpha \in (0, +\infty)$, i.e.

$$\tilde{K}_{\alpha}^* \subset \tilde{K}_{\beta}^*$$

for $\alpha, \beta \in (0, +\infty), \alpha < \beta$ Moreover, there exists

$$\lim_{\alpha \to +\infty} \tilde{K}_{\alpha}^* = \tilde{K}_{\infty}^* = I \times I$$

In short we have:

$$\tilde{K}_1^* \subset \tilde{K}_2^* \subset ... \subset \tilde{K}_{\infty}^* = I \times I$$

Let $\alpha, \beta \in (0, +\infty)$ and $\alpha < \beta$. From the above considerations we obtain that if A is a φ_{α} -IFS then A is φ_{β} -IFS.

It is also seen that any IFS is Euclidean-IFS, and moreover, any IFS is φ_{α} -IFS for $\alpha > 1$ but is not φ_{α} -IFS for $\alpha < 1$.

$oldsymbol{5} \qquad d_{\psi_lpha}$ - $oldsymbol{ ext{FS}}$ and d_{ψ_lpha} - $oldsymbol{ ext{IFS}}$

Let $\alpha \in (-\infty, +\infty)$. We introduce

$$\psi_{\alpha}(\mu,\nu) = \left(\frac{|\mu|^{\alpha} + |\mu|^{\alpha}}{2}\right)^{\frac{1}{\alpha}} \tag{3}$$

Also we introduce

$$\psi_0(\mu, \nu) = \lim_{\alpha \to 0} \psi_\alpha(\mu, \nu) = \sqrt{|\mu||\nu|} \tag{4}$$

and

$$\psi_{+\infty}(\mu,\nu) = \lim_{\alpha \to +\infty} \psi_{\alpha}(\mu,\nu) \tag{5}$$

Considered for a fixed $\alpha, \psi_{\alpha}(\mu, \nu)$ is known as a Power Mean of order α of the numbers $|\mu|, |\nu|$. More specifically $\psi_{-1}(\mu, \nu)$, $\psi_0(\mu, \nu)$, $\psi_1(\mu, \nu)$, $\psi_2(\mu, \nu)$ are known as Harmonic Mean, Geometric Mean (see (4)) and Root-Mean-Square of the numbers $|\mu|, |\nu|$, respectively (see[4]).

It is obvious that

$$\psi_{+\infty}(|\mu|, |\nu|) = \varphi_{\infty}(|\mu|, |\nu|) = \max(|\mu|, |\nu|) \tag{6}$$

(see (2) and (5)).

If we put in (1) $\psi_{\alpha}(\mu, \nu)$ (from (3)) we are able to generate $d_{\psi_{\alpha}}$ and $d_{\psi_{\infty}}$ - metrics on R^2 and as a result $d_{\psi_{\alpha}}$ -FS, $d_{\psi_{\alpha}}$ -IFS, $d_{\psi_{+\infty}}$ -FS, and $d_{\psi_{+\infty}}$ -IFS are introduced. For this purpose we must assume that $|\mu|$ and $|\nu|$ are the values of two non-complementary functions $\mu(x)$ and $\nu(x)$, such that $\mu: E \to I$, $\nu: E \to I$ (e.g. we may interprete these functions from classical point of view as degree of membership to a certain property and a degree non-membership to a different property).

Let $\alpha \in (0, +\infty]$. In this case we introduce the sets:

$$B_{\alpha} := \{ (\mu, \nu) | \mu, \nu \in [-1, 1] \& \psi_{\alpha}(\mu + \nu) = 1 \}$$

and

$$\tilde{B}_{\alpha} := \{ (\mu, \nu) | \mu, \nu \in [-1, 1] \& \psi_{\alpha}(\mu + \nu) \le 1 \}$$

Then B_{α} and \tilde{B}_{α} are the unit circle and disk, centered at the origin of R^2 (considered as a plane), with respect to the metric $d_{\psi_{\alpha}}$, generated by norm ψ_{α} on R^2 . Also we introduce the sets B_{α}^* and \tilde{B}_{α}^* by:

$$B_{\alpha}^* = B_{\alpha} \cap R_+^2;$$

$$\tilde{B}_{\alpha}^* = \tilde{B}_{\alpha} \cap R_+^2;$$

Finally, because of (6), we introduce the domain \tilde{B}_{∞}^* as $I \times I$ (i.e. the domain \tilde{B}_{∞}^* coincides with the domain \tilde{K}_{∞}^* considered in [1]).

Below we shall discuss the important question about the connection between $d_{\varphi_{\alpha}}$ -IFS, $d_{\psi_{\beta}}$ -IFS, $d_{\psi_{\beta}}$ -IFS when $\alpha, \beta \in [0, +\infty]$ and $\alpha \neq \beta$.

It is well-known that considered as a function of α only, $\psi_{\alpha}(\mu, \nu)$ is a strictly increasing function on the interval $(-\infty, +\infty]$ (see [5]). Therefore, $\psi_{\alpha}(\mu, \nu)$ is strictly increasing function with respect to α on the interval $[0, +\infty]$. Hence, the closed domains \tilde{B}^*_{α} diminishes as α increases in value when $\alpha \in [0, +\infty]$. Therefore, if $\alpha, \beta \in (0, +\infty)$ and $\alpha < \beta$ then it is fulfilled:

$$\tilde{B}^*_{\beta} \subset \tilde{B}^*_{\alpha}$$

Hence,

$$I\times I\equiv \tilde{B}_{+\infty}^*\subset \tilde{B}_{\beta}^*\subset \tilde{B}_{\alpha}^*\subset \tilde{B}_0^*$$

It is easy to see that the closed domain B_0^* coincides with the closed domain encapsulated between the coordinate rays of the first quadrant in the Cartesian coordinate system $O_{\mu\nu}$

centered at (0,0) and the branch of the hyperbola given by the equation $\mu\nu = 1$ located in the first quadrant. This follows from the fact that

$$\psi_0(\mu,\nu) = \sqrt{|\mu||\nu|}$$

as it was mentioned above. Thus the following chains of inclusions is fulfilled:

$$\tilde{B}_0^* \supset \tilde{B}_1^* \supset \tilde{B}_2^* \supset \dots \supset \tilde{B}_{+\infty}^* \equiv I \times I$$

But when $0 < \alpha < \beta < +\infty$ we have:

$$\tilde{K}_{\alpha}^* \subset \tilde{K}_{\beta}^* \subset \tilde{K}_{\infty}^* \equiv I \times I \equiv \tilde{B}_{+\infty}^*$$

Hence for $0 < \alpha < \beta < +\infty$ it is fulfilled:

$$\tilde{K}_{\alpha}^* \subset \tilde{K}_{\beta}^* \subset \tilde{K}_{\infty}^* \equiv I \times I \equiv \tilde{B}_{+\infty}^* \subset \tilde{B}_{\beta}^* \subset \tilde{B}_{\alpha}^* \subset \tilde{B}_0^*$$
 (7)

Hence the validity of the double chain of inclusions that is given below

$$\tilde{K}_1^* \subset \tilde{K}_2^* \subset ... \subset \tilde{K}_\infty^* \equiv I \times I \equiv \tilde{B}_{+\infty}^* \subset ... \subset \tilde{B}_2^* \subset \tilde{B}_1^* \subset \tilde{B}_0^*$$

is established because of (7). The above considerations give us the complete answer of the question stated before about the connection between the sets: $d_{\varphi_{\alpha}}$ -IFS, $d_{\psi_{\beta}}$ -IFS, $d_{\psi_{\alpha}}$ -IFS, $d_{\psi_{\alpha}}$ -IFS. They deliver an answer by providing a proof for the following:

Theorem. Let $0 < \alpha < \beta \le +\infty$, then:

 i_1 : If A is $d_{\varphi_{\alpha}}$ -IFS, then A is $d_{\varphi_{\beta}}$ -IFS , $d_{\varphi_{\infty}}$ -IFS , $d_{\psi_{\beta}}$ -IFS and ψ_0 -IFS, simultaneously.

 i_2 : If A is $d_{\psi_{\beta}}$ -IFS, then A is $d_{\psi_{\alpha}}$ -IFS and d_{ψ_0} -IFS too.

 i_3 : $d_{arphi_{\infty}}$ -IFS sets coincide with $d_{\psi_{+\infty}}$ -IFS sets.

It is natural to call: d_{ψ_0} -IFS - Geometric Mean-IFS; d_{ψ_1} -IFS - Arithmetic Mean-IFS; d_{ψ_2} -IFS - Root-Mean-Square-IFS. It is clear that every IFS is d_{φ_α} -IFS, too, when $1 < \alpha \le +\infty$. Also, every IFS is d_{ψ_α} -IFS when $0 \le \alpha \le +\infty$. In particular, every IFS is Geometric Mean-IFS, Arithmetic Mean-IFS and Root-Mean-Square-IFS.

Open problem: Propose a suitable definition of the modal operators possibility and necessity for the $d_{\psi_{\alpha}}$ -IFS, and investigate their properties.

References

- [1] Vassilev, P., A Metric Approach To Fuzzy Sets And Intuitionistic Fuzzy Sets, First Int. Workshop on IFSs, GNs, KE, 6-7 Sept. 2006, :31-38
- [2] Zadeh, L., Fuzzy Sets. Information and Control, Vol. 8, 1965,:338-353
- [3] Atanassov, K, Intuitionsitic Fuzzy Sets. Springer Physica-Verlag, Heidelberg, 1999.
- [4] Cantrell, David W. and Weisstein, Eric W. "Power Mean." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PowerMean.html
- [5] Polya, G. & Szego, G. . Problems and Theorems in Analysis I. Springer-Verlag, New York, 1972.