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Abstract: In the present paper, a new auxiliary technique inspired by InterCriteria Analysis is
proposed. It is also based on indexed matrices, however, since the considered estimates (again
in the form of intuitionistic fuzzy pairs) are not pair-wise but triple-wise, it is three dimensional.
The minimum number of required data needed to be stored, for the proposed technique, is given.
The way the meaning of the obtained intuitionistic fuzzy pairs in the auxiliary method differs
from that of the considered here implementation of the InterCriteria Analysis is also commented
upon. Some properties of the proposed auxiliary technique are studied and possible applications
are outlined.
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1 Preliminary definitions and notions

Before outlining the main idea of the proposed auxiliary technique for InterCriteria Analysis
(ICA) we shall remind some basic definitions and notions:

Definition 1 (cf. [8]). An Intuitionistic Fuzzy Pair (IFP) is an ordered pair of real non-negative
numbers 〈a, b〉 such that: a+ b ≤ 1.

Of the relationship between the IFPs, we require the following:

Definition 2 (cf. [8]). We say that the IFP u = 〈a, b〉 is less or equal possibility wise to the IFP
v = 〈c, d〉 and we write: u ≤� v if a ≤ c.

Definition 3 (cf. [2]). An “Extended Index Matrix” (EIM) with index sets K,L (K,L ⊂ I∗) and
elements from set X is called the object:
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[K,L, {aki,lj}] =

l1 . . . lj . . . ln

k1 ak1,l1
... ak1,lj . . . ak1,ln

...
... . . .

... . . .
...

ki aki,l1 . . . aki,lj . . . aki,ln
...

... . . .
... . . .

...
km akm,l1 . . . akm,lj . . . akm,ln

where K = {k1, k2, . . . , km}, L = {l1, l2, . . . , ln} , and for 1 ≤ i ≤ m, 1 ≤ j ≤ n : aki,lj∈ X .

Definition 4 (cf. [3]). A “3D-Extended Index Matrix” (3D-EIM) with index sets K,L and H
(K,L,H ⊂ I∗) and elements from set X is called the object:

[K,L,H, {aki,lj ,hg}] =

hg l1 . . . lj . . . ln

k1 ak1,l1,hg

... ak1,lj ,hg . . . ak1,ln,hg

...
... . . .

... . . .
...

ki aki,l1,hg . . . aki,lj ,hg . . . aki,ln,hg

...
... . . .

... . . .
...

km akm,l1,hg . . . akm,lj ,hg . . . akm,ln,hg

| hg ∈ H

where K = {k1, k2, . . . , km}, L = {l1, l2, . . . , ln} , H = {h1, h2, . . . , hf}, and for 1 ≤ i ≤
m, 1 ≤ j ≤ n, 1 ≤ g ≤ f : aki,lj ,hg∈ X .

Further we will only consider two types of EIMs, namely when X coincides with the set of
all real numbers, or when X coincides with the set of all IFPs.

2 Auxilliary technique for InterCriteria Analysis

In what follows, we expand on an idea proposed in [1]. Basing our auxiliary method on [1, 4, 7]
we will obtain an intuitionistic fuzzy pair as an estimation of the degrees of “agreement” and
“disagreement” between three criteria applied on different objects.

Let us be given an Index Matrix (IM) with real number elements (see [5, 6]), with index sets
consisting of the names of the criteria (for rows) and of the objects (for columns). In what follows
we obtain a three dimensional IM with index sets consisting of the names of the criteria and
elements corresponding to the “agreement” and “disagreement” between the respective criteria in
the form of IFPs.

Further let O denote the set of all objects O1, O2, . . . , On being evaluated, and C(O) be the
set of values assigned by a given criteria C to the objects, i.e.

O
def
= {O1, O2, O3, . . . , On}

C(O)
def
= {C(O1), C(O2), C(O3), . . . , C(On)}

Then we can define:

C∗(O)
def
= {〈x, y〉| x 6= y & 〈x, y〉 ∈ C(O)× C(O)}
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In order to find the agreement of different criteria we construct the vectors of all internal compar-
isons for each criterion, which elements fulfill exactly one of three relations R, R and R̃. In other
words, we require that for a fixed criterion C and any ordered pair 〈x, y〉 ∈ C∗(O) it is true:

〈x, y〉 ∈ R⇔ 〈y, x〉 ∈ R (1)

〈x, y〉 ∈ R̃⇔ 〈x, y〉 /∈ (R ∪R) (2)

R ∪R ∪ R̃ = C∗(O). (3)

From the above it is seen that we need only consider a subset ofC(O)×C(O) for the effective
calculation of the vector of internal comparisons (denoted further by V (C)) since from (1), (2)
and (3) it follows that if the relation between x and y is known, then so is the relation between y
and x. Thus we are only be interested in lexicographically ordered pairs 〈x, y〉. Let us denote for
brevity:

Ci,j = 〈C(Oi), C(Oj)〉

Then for a fixed criterion C we construct the vector:

V (C) = {C1,2, C1,3, . . . , C1,n, C2,3, C2,4, . . . , C2,n, C3,4, . . . , C3,n, . . . , Cn−1,n}

It can be easily seen that it has exactly n(n−1)
2

elements. Let us replace the vector V (C) with
V̂ (C), where for each 1 ≤ k ≤ n(n−1)

2
the k-th component is:

V̂k(C) =


1, iff Vk(C) ∈ R,
2, iff Vk(C) ∈ R̃,
3, otherwise.

When comparing a collection of three criteria we determine their “degree of agreement” as the
number of matching components of the respective vectors (divided by the length of the vector for
normalization purposes). The “degree of disagreement” is the number of components completely
different values (again normalized by the length). An example pseudocode for three criteria C,
C ′ and C ′′ is presented as Algorithm 1.

If we denote the respective degrees by µC,C′,C′′ and νC,C′,C′′ , it is obvious (from the way of
computation) that the order in which the criteria are taken has no effect on their value. It is also
obvious that 〈µC,C′,C′′ , νC,C′,C′′〉 is an IFP.

Remark 1. It is worth noting that while similar to one of the possible implementations of InterCri-
teria Analysis, where we obtain degrees of “agreeement” and “disagreeement” between couples
of criteria C and C ′, the auxiliary method measures these for three criteria in another way. An
important distinction concerns the degree of “disagreement”, which confers the meaning of the
inherent inconsistency presented by the three criteria rather than opposing behavior as in the case
of two criteria. In order to be able to more readily compare the two methods by using the defined
above vectors we present the pseudocode for the considered implementation of pairwise ICA in
Algorithm 2.
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Algorithm 1 Calculating agreement and disagreement between three criteria

Require: Vectors V̂ (C), V̂ (C ′) and V̂ (C ′′)

1: function DEGREES OF AGREEMENT AND DISAGREEMENT(V̂ (C), V̂ (C ′), V̂ (C ′′))
2: V ← V̂ (C)� V̂ (C ′)� V̂ (C ′′) . � denotes Hadamard (entrywise) product
3: µ← 0

4: ν ← 0

5: for i← 1 to n(n−1)
2

do
6: if Vi ∈ {1, 8, 27} then
7: µ← µ+ 1

8: else if (Vi) = 6 then
9: ν ← ν + 1

10: end if
11: end for
12: µ← 2

n(n−1)µ

13: ν ← 2
n(n−1)ν

14: return µ, ν
15: end function

Another difference between the normal and auxiliary method is the required dimension of the
obtained EIM with IFPs. For the standard InterCriteria Analysis we require an IM with IFPs with
index sets K = {C1, C2, . . . , Cm−1} and L = {C2, C3, . . . , Cm} where only m(m−1)

2
of the IFPs

need to be stored. The result would look like the following EIM:

C2 . . . Cj . . . Cm

C1 aC1,C2

... aC1,Cj
. . . aC1,Cm

...
... . . .

... . . .
...

Ci . . . . . . aCi,Cj
. . . aCi,Cm

...
... . . .

... . . .
...

Cm−1 . . . . . . . . . . . . aCm−1,Cm

,

where
aCi,Cj

def
= 〈µCi,Cj

, νCi,Cj
〉.

On the other hand, for the proposed auxiliary method we need a 3D-EIM with K =

{C1, C2, . . . , Cm−2}, L = {C2, C3, . . . , Cm−1} and H = {C3, C4, . . . , Cm} and we have to store
s in number IFPs, where

s =
m−2∑
t=1

t(t+ 1)

2
=

(m− 2)(m− 1)m

6

Since we cannot easily show how the EIM looks in a good fashion we provide the first few

74



Algorithm 2 Calculating agreement and disagreement between two criteria

Require: Vectors V̂ (C), V̂ (C ′)

1: function DEGREES OF AGREEMENT AND DISAGREEMENT(V̂ (C), V̂ (C ′))
2: V ← V̂ (C)� V̂ (C ′) . � denotes Hadamard (entrywise) product
3: µ← 0

4: ν ← 0

5: for i← 1 to n(n−1)
2

do
6: if Vi ∈ {1, 4, 9} then
7: µ← µ+ 1

8: else if (Vi) = 3 then
9: ν ← ν + 1

10: end if
11: end for
12: µ← 2

n(n−1)µ

13: ν ← 2
n(n−1)ν

14: return µ, ν
15: end function

and the last slice of the respective EIM:

C3 C2

C1 bC1,C2,C3

,

C4 C2 C3

C1 bC1,C2,C4 bC1,C3,C4

C2 . . . bC2,C3,C4

,

C5 C2 C3 C4

C1 bC1,C2,C5 bC1,C3,C5 bC1,C4,C5

C2 . . . bC2,C3,C5 bC2,C4,C5

C3 . . . . . . bC3,C4,C5

,

...
Cm C2 . . . Cj . . . Cm−1

C1 bC1,C2,Cm

... bC1,Cj ,Cm . . . bC1,Cm−1,Cm

...
... . . .

... . . .
...

Ci . . . . . . bCi,Cj ,Cm . . . bCi,Cm−1,Cm

...
... . . .

... . . .
...

Cm−2 . . . . . . . . . . . . bCm−2,Cm−1,Cm

,

where
bCi,Cj ,Ck

def
= 〈µCi,Cj ,Ck

, νCi,Cj ,Ck
〉

Based on the way the values are obtained, we may state the following:
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Theorem 1. For every i, j, k such that 1 ≤ i < j < k ≤ m it is fulfilled:

bCi,Cj ,Ck
≤� aCi,Cj

; bCi,Cj ,Ck
≤� aCi,Ck

; bCi,Cj ,Ck
≤� aCj ,Ck

.

Hence, it is clear that the first component of the IFP bCi,Cj ,Ck
provides a lower bound for

the first component of each of the three IFPs above. The same however is not the case for the
second components since they are arrived at in different manner. Despite that fact a high value
of νCi,Cj ,Ck

should suggest an inherent incompatibility between the considered criteria. This is
why we believe that the proposed auxiliary method is a promising exploratory tool that can help
provide better insight in seeking intercriterial relationships.

3 Conclusion

We have proposed a new auxiliary method for InterCriteria Analysis. In it, the “agreement’ and
“disagreement”’ is sought not between two but between three criteria. We hope that this method
will provide more information and assist the search for hidden relations, e.g. by filtering out
incompatibilities or highlighting possible connections, between different criteria.
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