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Abstract. In this paper a hybrid scheme using GA and SQP method is
introduced. In the hybrid GA-SQP the role of the GA is to explore the
search place in order to either isolate the most promising region of the
search space. The role of the SQP is to exploit the information gathered
by the GA. To demonstrate the usefulness of the presented approach, two
cases for parameter identification of different complexity are considered.
The hybrid scheme is applied for modeling of E. coli MC4110 fed-batch
cultivation process. The results show that the GA-SQP takes the advan-
tages of both GA’s global search ability and SQP’s local search ability,
hence enhances the overall search ability and computational efficiency.

1 Introduction

Robust and efficient methods for parameter identification are of key importance
in system biology and related areas. Nowadays the most common direct methods
used for global optimization are evolutionary algorithms such as genetic algo-
rithms (GA). The principal advantages of GA are domain independence, non-
linearity and robustness. The GA effectiveness has been already demonstrated
for identification of fed-batch cultivation processes [2, 11]. The same qualities
that make the GA so robust also can make it more computationally intensive and
slower than other methods [8]. On the contrary, local search methods have faster
convergence due to the use of local information for determination of the most
promising search direction by creating logical movements. One of the leading
methods for solving constrained non-linear optimization problems is sequential
quadratic programming (SQP) [3, 5]. Algorithms in this class guarantee global
convergence and typically require few iterations to locate a solution point. How-
ever, local search methods can easily be entrapped in local minima. An approach
that overcomes the above disadvantages is to combine GA with local search
methods, to design more efficient methods with relatively faster convergence
than the pure GA. Hybrid GA have received significant interest in recent years
and are being increasingly used to solve real-world problems [1]. Different local
search methods have got attention in such combinations [7, 9, 13].

In this paper a parameter identification of an E. coli MC4110 fed-batch
fermentation process using hybrid GA is proposed. To improve the performance



of the conventional GA, a combine scheme using the GA and SQP method
is introduced. Thus, optimizers work jointly to locate efficiently quality design
points better than either could alone.

This paper is organized as follows. Outline of the introduced hybrid algorithm
is described in Section 2. In Section 3 a discussion of the obtained numerical
results of E. coli cultivation process model parameter identification is presented.
Conclusion remarks are done in Section 4.

2 Outline of the hybrid GA-SQP

GA is very effective at finding optimal solutions to a variety of complex op-
timization problems because it does not impose many of the limitations of the
traditional techniques. The same characteristics that make the GA so robust can
make it more computationally intensive and hence slower than other methods.
To improve the performance of the conventional GA, a hybrid scheme using GA
and SQP method is proposed.

Background of the GA. GA was developed to model adaptation processes
mainly operating on binary strings and using a recombination operator with
mutation as a background operator. The GA maintains a population of individ-
uals, P (t) = xt1, ..., x

t
n for generation t. Each individual represents a potential

solution to the problem and is implemented as some data structure S. Each so-
lution is evaluated to give some measure of its “fitness”. Fitness of an individual
is assigned proportionally to the value of the objective function of the individ-
uals. Then, a new population (generation t + 1) is formed by selecting more
fit individuals (selected step). Some members of the new population undergo
transformations by means of “genetic” operators to form new solution. There
are unary transformations mi (mutation type), which create new individuals by
a small change in a single individual (mi : S → S), and higher order transforma-
tions cj (crossover type), which create new individuals by combining parts from
several individuals (cj : S × . . . × S → S). After some number of generations
the algorithm converges - it is expected that the best individual represents a
near-optimum (reasonable) solution. The combined effect of selection, crossover
and mutation gives so-called reproductive scheme growth equation [4]:

ξ (S, t+ 1) ≥ ξ (S, t) · eval (S, t) /F̄ (t)

[
1− pc ·

δ (S)

m− 1
− o (S) · pm

]
.

A pseudo code of a GA is presented as:

1 Set generation number to zero (t = 0)
2 Initialise usually random population of individuals (P (0))
3 Evaluate fitness of all initial individuals of population
4 Begin major generation loop in k:

4.1 Test for termination criterion
4.2 Increase the generation number
4.3 Select a sub-population (select P (i) from P (i− 1))
4.4 Recombine the genes of selected parents (recombine P (i))



4.5 Perturb the mated population stochastically (mutate P (i))
4.6 Evaluate the new fitness (evaluate P (i))

5 End major generation loop

Background of the SQP algorithm. SQP is one of the most popular and ro-
bust algorithms for nonlinear continuous optimization. The general optimiza-
tion problem to minimize an objective function f under nonlinear equality and
inequality constraints is [5]:

min
x∈Rn

f (x) , c (x) = 0, b (x) ≥ 0, xl ≤ x ≤ xu,

where x is an n-dimensional parameter vector. It is assumed that all problem
functions f(x), c(x) and b(x) are continuously differentiable on the whole Rn.

At an iteration xk (for the equality constrains), a basic SQP algorithm defines
an appropriate search direction dk as a solution to the QP subproblem

min
d∈Rn

f (xk) + g (xk)
T
d+ 1

2d
T∇2

xxf (x) +
t∑

i=1

λi∇2
xxc

i (x)

s.t. c (xk) +A (xk) d = 0

is equal to, or is a symmetric approximation for, the Hessian of the Lagrangian.
A pseudo code of SQP algorithm could be presented as:

1 Set the initial point x = x0
2 Set the Hessian matrix (H0 = I)
3 Evaluate f0, g0, c0 and A0

4 Solve the QP subproblem to find search direction dk
5 Update xk+1 = xk + αkdk
6 Evaluate fk+1, gk+1, ck+1 and Ak+1

7 Convergence check
If yes, go to exit
If no, obtain Hk+1 by updating Hk and go back to Step 4

3 Numerical results and discussion

E. coli MC4110 fed-batch cultivation model. The mathematical model of the
considered process can be represented by [11]:

dX
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= µmax

S

kS + S
X − Fin
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dV

dt
= Fin (5)

where: X is biomass concentration, [g/l]; S - substrate concentration, [g/l]; A
- acetate concentration, [g/l]; pO2 - dissolved oxygen concentration, [%]; pO∗2 -
saturation concentration of dissolved oxygen, [%]; Fin - feeding rate, [l/h]; V
- bioreactor volume, [l]; Sin - substrate concentration in the feeding solution,
[g/l]; µmax - maximum value of the specific growth rate, [h−1]; ki - saturation
constants; kLa - volumetric oxygen transfer coefficient, [h−1]; Yi/X - yield coef-
ficients, [-]. For the parameter estimation problem real experimental data of the
E. coli MC4110 fed-batch cultivation process are used. The cultivation condition
and the experimental data have been presented in [12].

For comparison of the performance of the presented here hybrid GA-SQP
with pure GA and SQP a two cases are examined. In the first case (Case 1 )
the system (1)-(2) and (5) is considered. The estimated parameters are: µmax,
kS and YS/X . In the second case (Case 2 ) the full system (1)-(5) is considered
with unknown parameters: µmax, kS , kA, kpO2 , YS/X , YA/X , YpO2/X and pO∗2 .
The objective function is presented as a minimization of a distance measure J
between experimental and model predicted values, represented by the vector y:

J =

n∑
i=1

m∑
j=1

{[yexp(i)− ymod(i)]j}2 → min (6)

where n is the number of data for each state variable m; yexp - the experimental
data; ymod - model predictions with a given set of the parameters.

Algorithm parameters. Based on results in [11, 10], genetic algorithm opera-
tors and parameters for considered here parameter identification of fermentation
process are as follows: A binary 20 bit representation is considered. The selection
method used here is the roulette wheel selection. A double point crossover and
a bit inversion mutation are applied. Crossover rate should generally be high -
here it is set to 70%. Mutation is randomly applied with low probability - 0.01. A
value of 97% for the rate of the selected individuals (generation gap) is accepted.
Particularly important parameters of GA are the population size and number of
generations. If there are too low number of chromosomes, GA has a few possibil-
ities to perform crossover and only a small part of search space is explored. On
the other hand, if there are too many chromosomes, GA slows down. The number
of individuals is set to 100. The number of generations is 200 (pure GA) and 10
(hybrid GA-SQP). The division of the hybrid’s time between the two methods
influences the efficiency and the effectiveness of the search process. Numerous
tests are performed to find the optimal division of the algorithm’s time. The GA
is run for 5, 10, 15, 20, 25, 30 generations before the SQP algorithm is started.
The obtained results show that the optimal number of generations is 10. For 10
generations the GA reaches near optimum solution, which is a good initial point
for the SQP algorithm. The use of 20 or 30 generations reflects mainly on the
computational cost and has negligible improvement on the initial point.

Results from parameter identification. All computations are performed using
a PC/Intel Core 2 Quad CPU Q8200 @2.34GHz platform running Windows



XP, Matlab 7.5 environment. Initially the algorithms (GA, SQP and GA-SQP)
were tested for parameter estimation of model (1)-(5) using generated data. The
results were explicit: (i) The estimates of SQP were very sensitive to the initial
points. The algorithm reached the value of J between 0.0063 and 0.013 according
to the considered initial point. The computational time was 40-60 s. (ii) The best
result of GA is J=0.0137 (for 5 runs). The computational time was 117.04 s. (iii)
The result from GA-SQP was J=0.0063 for each run of the algorithm. The GA
is run for 10 generations. The computational time varied between 55-75 s. In the
second step the algorithms are used for parameter estimation of two considered
models (Case 1 and Case 2 ) using real experimental data. The experimental
data were used without filtration or any processing. The idea was to test the
algorithms in such hard real conditions. The numerical results (Case 2 ) from
the parameter identification are presented in Table 1.

Table 1. Search parameters utilized in the different algorithms

Search parameter GA SQP GA-SQP

µmax 0.4780 0.4742 0.4741

kS 0.0145 0.0148 0.0148

1/YS/X 2.0313 2.0137 2.0137

1/YA/X 8.6169 12.3012 9.3365

1/YpO2/X 0.0340 0.0388 0.0368

kA 54.3274 67.1266 50.9262

kpO2 0.0017 0.001 0.001

kLa 282.4246 300.0062 282.9080

pO∗
2 21.2696 21.2988 21.2988

In Table 1, considering GA and GA-SQP the average values of 30 runs are
presented. One-factor ANOVA analysis is performed to see if the means of the
obtained 30 groups are equal. The results are displayed in Fig. 1. The esti-
mated parameter values of the algorithms are in admissible ranges [6, 14]. The
parameters estimates obtained by the three algorithms are very close. The only
exceptions are the parameters YA/X and kA. The acetate concentration during
the cultivation process is very small in comparison with the concentrations of the
other state variables. So, the influence of acetate error on the objective function
is smaller than the other errors. In contrast, the influence of biomass error is
tolerable and the result is almost equal estimates of µmax, kS and YS/X .

Fig. 1. One-factor ANOVA results

For the simple task (Case 1 ) the SQP and the hybrid GA-SQP algorithms
obtain same values of the objective function. Moreover, the pure SQP has bet-



ter convergence time. SQP enjoy global convergence guarantees and requires few
function evaluations to locate a solution point. The pure GA has obtained almost
the same J but for greater computational time - 88.1875 s. GA reaches the area
near an optimum point relatively quickly but it took many function evaluations
to achieve convergence. In Case 2 when 9 parameters were estimated simultane-
ously the effectiveness of the hybrid GA-SQP is more evident. The result values
of the objective function (Eq. (6)) and computation time are given in Table 2.
The best result (J = 6.5470) is obtained using the hybrid GA-SQP after a total
computation time of 72.1719 s. The GA-SQP hybrid technique merges a lot of
features of the GA and the SQP optimality criterion. A combination of a genetic
algorithm and a local search method speed up the search to locate the exact
global optimum. It exhibits the robust global search capability of the GA while
preserving the efficient local search capability afforded by SQP. Very close result
was obtained by SQP with a “good” initial point. If the initial point is “bad” the
algorithm falls in another local extrema with J = 6.6822. The solution depends
on the choice of the start points as the pure SQP usually seeks a solution in
the neighborhood of the start point. The obtained result from the pure GA is
J = 6.5617 for longer computational time of 208.75 s. Since pure GAs consider
a group of points in each search space in each generation, they are best suited
for global search. But their main operations (i.e. reproduction, crossover, and
mutation) are not very efficient for local search. The obtained through genera-
tions objective function values are presented in Fig. 2. As it can be seen the best
performance show hybrid GA-SQP.

Table 2. Results of the search methods in Case 2

Criterion GA SQP GA-SQP

J 6.5617 6.54831/6.68222 6.5470

CPU time, s 208.7500 67.85941/66.32812 72.17198
1 “good” initial point, 2 “bad” initial point
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A quantitative measure of the differences between modelled and measured
values is another important criterion for the adequacy of a model. The graphical
results of the comparison between the model predictions of state variables, based
on hybrid GA-SQP algorithm estimations, and the experimental data points of
the real E. coli cultivation are presented in Fig. 3.
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Fig. 3. Comparison between the model predictions and the real process variables

The presented graphics show a very good correlation between the experimen-
tal and predicted data.

4 Conclusion

In this paper a hybrid GA-SQP algorithm is proposed. In such a hybrid, ap-
plying a local search to the solutions guided by a genetic algorithm in the most
promising region can accelerate convergence to the global optimum. The hybrid
algorithm is compared with pure GA and SQP algorithms for parameter identifi-
cation procedure. Algorithms performance is illustrated using a set of non-linear



models of E. coli MC4110 fed-batch cultivation process. As evident from graph-
ical and numerical results, the proposed optimization hybrid algorithm performs
very well. The algorithm takes the advantages of both GA’s global search abil-
ity and SQP’s local search ability, hence enhances the overall search ability and
computational efficiency. The speed of convergence of the hybrid algorithm is
superior to that of pure GA as well as the obtained objective function.
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