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Abstract: A new – the 207-th – intuitionistic fuzzy implication is introduced over intuitionistic
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1 Introduction
Following [1, 2] we will mention that by the moment there are 206 different intuitionistic fuzzy
implications. In the present research, we will describe a new – the 207-th – intuitionistic fuzzy
implication. Initially, we will give some preliminary definitions, following [1].
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Let a set 𝐸 be fixed. An Intuitionistic Fuzzy set (IFS) 𝐴 in 𝐸 is an object of the following
form:

𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)⟩|𝑥 ∈ 𝐸},

where functions 𝜇𝐴 : 𝐸 → [0, 1] and 𝜈𝐴 : 𝐸 → [0, 1] define the degree of membership and the
degree of non-membership of the element 𝑥 ∈ 𝐸, respectively, and for every 𝑥 ∈ 𝐸:

0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1.

For every two IFSs 𝐴 and 𝐵, in [1] a lot of relations and operations are defined, but we will
use only the following:

𝐴 ⊂ 𝐵 iff (∀𝑥 ∈ 𝐸)(𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) & 𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥));

𝐴 ⊃ 𝐵 iff 𝐵 ⊂ 𝐴;

𝐴 = 𝐵 iff (∀𝑥 ∈ 𝐸)(𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) & 𝜈𝐴(𝑥) = 𝜈𝐵(𝑥));

¬𝐴 = {⟨𝑥, 𝜈𝐴(𝑥), 𝜇𝐴(𝑥)⟩|𝑥 ∈ 𝐸};

Let
𝑂* = {⟨𝑥, 0, 1⟩|𝑥 ∈ 𝐸},

𝑈* = {⟨𝑥, 0, 0⟩|𝑥 ∈ 𝐸},

𝐸* = {⟨𝑥, 1, 0⟩|𝑥 ∈ 𝐸}.

2 Main results
Here, we introduce the 207-th intuitionistic fuzzy implication as follows:

𝐴 →207 𝐵 = {⟨𝑥, sg(max(𝜈𝐴(𝑥), 𝜇𝐵(𝑥))), sg(max(𝜈𝐴(𝑥), 𝜇𝐵(𝑥)))⟩|𝑥 ∈ 𝐸}.

For it, we see that

𝑂* →207 𝑂
* = {⟨𝑥, sg(max(1, 0)), sg(max(1, 0))⟩|𝑥 ∈ 𝐸} = 𝐸*,

𝑂* →207 𝑈
* = {⟨𝑥, sg(max(1, 0)), sg(max(1, 0))⟩|𝑥 ∈ 𝐸} = 𝐸*,

𝑂* →207 𝐸
* = {⟨𝑥, sg(max(1, 1)), sg(max(1, 1))⟩|𝑥 ∈ 𝐸} = 𝐸*,

𝑈* →207 𝑂
* = {⟨𝑥, sg(max(0, 0)), sg(max(0, 0))⟩|𝑥 ∈ 𝐸} = 𝑂*,

𝑈* →207 𝑈
* = {⟨𝑥, sg(max(0, 0)), sg(max(0, 0))⟩|𝑥 ∈ 𝐸} = 𝑂*,

𝑈* →207 𝐸
* = {⟨𝑥, sg(max(0, 1)), sg(max(0, 1))⟩|𝑥 ∈ 𝐸} = 𝐸*,

𝐸* →207 𝑂
* = {⟨𝑥, sg(max(0, 0)), sg(max(0, 0))⟩|𝑥 ∈ 𝐸} = 𝑂*,

𝐸* →207 𝑂
* = {⟨𝑥, sg(max(0, 0)), sg(max(0, 0))⟩|𝑥 ∈ 𝐸} = 𝑂*,

𝐸* →207 𝐸
* = {⟨𝑥, sg(max(0, 1)), sg(max(0, 1))⟩|𝑥 ∈ 𝐸} = 𝐸*.

Therefore, the new implication has “the boundary” properties of the classical implication.
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It has the following two geometrical interpretations, shown on Figures 1 and 2.
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Figure 1. Geometrical interpretation of operation →207 – a first case
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Figure 2. Geometrical interpretation of operation →207 – a second case

Now, we can construct a new operation intuitionistic fuzzy negation:

¬*𝐴 →207 𝑂
* = {⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)⟩|𝑥 ∈ 𝐸} →207 𝑂

*

= {⟨𝑥, sg(max(𝜈𝐴(𝑥), 0)), sg(max(𝜈𝐴(𝑥), 0))⟩|𝑥 ∈ 𝐸}

= {⟨𝑥, sg(𝜈𝐴(𝑥)), sg(𝜈𝐴(𝑥))⟩|𝑥 ∈ 𝐸}.

For the new negation, we see that

¬*𝑂
* = {⟨𝑥, sg(1), sg(1)⟩|𝑥 ∈ 𝐸} = 𝐸*,

¬*𝑈
* = {⟨𝑥, sg(0), sg(0)⟩|𝑥 ∈ 𝐸} = 𝑂*,

¬*𝐸
* = {⟨𝑥, sg(0), sg(0)⟩|𝑥 ∈ 𝐸} = 𝑂*.

Therefore, the specific equalities of the classical negation are valid, for the new negation.
The new negation has the following two geometrical interpretations, shown on Figures 3 and 4.
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Figure 3. Geometrical interpretation of operation ¬* – a first case
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Figure 4. Geometrical interpretation of operation ¬* – a second case

The two new intuitionistic fuzzy operations generate the following three intuitionistic fuzzy
conjunctions and disjunctions:

𝐴 ∩1
207 𝐵 = ¬*(𝐴 →207 ¬*𝐵)

= ¬*({⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)⟩|𝑥 ∈ 𝐸} →207 {⟨𝑥, sg(𝜈𝐵(𝑥)), sg(𝜈𝐵(𝑥))⟩|𝑥 ∈ 𝐸})

= ¬*{⟨𝑥, sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥))), sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥)))⟩|𝑥 ∈ 𝐸}

= {⟨𝑥, sg(sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥)))), sg(sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥))))⟩|𝑥 ∈ 𝐸}

= {⟨𝑥, sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥)))), sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥))))⟩|𝑥 ∈ 𝐸},

because for each real number 𝑎:

sg(sg(𝑎)) =

{︃
if 𝑎 ≤ 0 : 1

if 𝑎 > 0 : 0
= sg(𝑎);

sg(sg(𝑎)) =

{︃
if 𝑎 ≤ 0 : 0

if 𝑎 > 0 : 1
= sg(𝑎).
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𝐴 ∩2
207 𝐵 = ¬*(¬*¬*𝐴 →207 ¬*𝐵)

= ¬*({⟨𝑥, sg(sg(𝜈𝐴(𝑥))), sg(sg(𝜈𝐴(𝑥)))⟩|𝑥 ∈ 𝐸}

→207 {⟨𝑥, sg(𝜈𝐵(𝑥)), sg(𝜈𝐵(𝑥))⟩|𝑥 ∈ 𝐸})

= ¬*({⟨𝑥, sg(𝜈𝐴(𝑥)), sg(𝜈𝐴(𝑥))⟩|𝑥 ∈ 𝐸} →207 {⟨𝑥, sg(𝜈𝐵(𝑥)), sg(𝜈𝐵(𝑥))⟩|𝑥 ∈ 𝐸})

= ¬*{⟨𝑥, sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥))), sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥)))⟩|𝑥 ∈ 𝐸}

= {⟨𝑥, sg(sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥))))),

sg(sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥)))))⟩|𝑥 ∈ 𝐸}

= {⟨𝑥, sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥)))), sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥))))⟩|𝑥 ∈ 𝐸};

𝐴 ∩3
207 𝐵 = ¬(𝐴 →207 ¬𝐵)

= ¬{⟨𝑥, sg(max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))), sg(max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥)))⟩|𝑥 ∈ 𝐸};

= {⟨𝑥, sg(max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))), sg(max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥)))⟩|𝑥 ∈ 𝐸}.

Theorem 1. For every two IFSs 𝐴 and 𝐵

𝐴 ∩1
207 𝐵 = 𝐴 ∩2

207 𝐵 = 𝐴 ∩3
207 𝐵.

Proof. The validity of the Theorem follows from the following facts.
Let 𝑎, 𝑏 ∈ [0, 1]. Then

sg(max(𝑎, 𝑏))− sg(max(𝑎, sg(𝑏)) =

{︃
if 𝑎 = 𝑏 = 0, 1− 1 = 0

if 𝑎 > 0 or 𝑏 > 0, 0− 0 = 0
;

and

sg(max(𝑎, 𝑏))− sg(max(sg(𝑎), sg(𝑏)) =

{︃
if 𝑎 = 𝑏 = 0, 1− 1 = 0,

if 𝑎 > 0 or 𝑏 > 0, 0− 0 = 0.
�

Therefore, below we can denote the 207-th intuitionistic fuzzy conjunction by ∩207. It has the
following geometrical interpretations, shown on Figures 5 and 6.
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Figure 5. Geometrical interpretation of operation ∩207 – a first case
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Figure 6. Geometrical interpretation of operation ∩207 – a second case

On the other hand,

𝐴 ∪1
207 𝐵 = ¬*𝐴 →207 𝐵

= {⟨𝑥, sg(𝜈𝐴(𝑥)), sg(𝜈𝐴(𝑥))⟩|𝑥 ∈ 𝐸} →207 {⟨𝑥, 𝜇𝐵(𝑥), 𝜈𝐵(𝑥)⟩|𝑥 ∈ 𝐸})

= {⟨𝑥, sg(max(sg(𝜈𝐴(𝑥)), 𝜇𝐵(𝑥))), sg(max(sg(𝜈𝐴(𝑥)), 𝜇𝐵(𝑥)))⟩|𝑥 ∈ 𝐸}

𝐴 ∪2
207 𝐵 = ¬*𝐴 →207 ¬*¬*𝐵)

= {⟨𝑥, sg(𝜈𝐴(𝑥)), sg(𝜈𝐴(𝑥))⟩|𝑥 ∈ 𝐸} →207 {⟨𝑥, sg(𝜈𝐵(𝑥)), sg(𝜈𝐵(𝑥))⟩|𝑥 ∈ 𝐸})

= {⟨𝑥, sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥)))), sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥))))⟩|𝑥 ∈ 𝐸}

= {⟨𝑥, sg(max(sg(𝜈𝐴(𝑥))), sg(𝜈𝐵(𝑥)))), sg(max(sg(𝜈𝐴(𝑥))), sg(𝜈𝐵(𝑥))))⟩|𝑥∈𝐸}

𝐴 ∪3
207 𝐵 = 𝐴 →207 ¬𝐵

= ⟨𝑥, sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥)))), sg(max(𝜈𝐴(𝑥), sg(𝜈𝐵(𝑥))))⟩|𝑥 ∈ 𝐸}.

Similarly to the proof of Theorem 1 we can see, that the results of the expressions 𝐴 ∪1
207 𝐵,

𝐴∪2
207𝐵 and 𝐴∪3

207𝐵 do not coincide, while the following assertion is valid as checked as above.

Theorem 2. For every two IFSs 𝐴 and 𝐵

¬*¬*𝐴 ∪1
207 ¬*¬*𝐵 = 𝐴 ∪2

207 𝐵 = ¬¬𝐴 ∪3
207 ¬¬𝐵.

The geometrical interpretations of the three intuitionistic fuzzy disjunctions are shown on
Figures 7–12.
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Figure 7. Geometrical interpretation of operation ∪207 – a first case
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Figure 8. Geometrical interpretation of operation ∪207 – a second case
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Figure 9. Geometrical interpretation of operation ∪2
207 – a first case
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Figure 10. Geometrical interpretation of operation ∪2
207 – a first case
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Figure 11. Geometrical interpretation of operation ∪3
207 – a first case
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Figure 12. Geometrical interpretation of operation ∪3
207 – a second case
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Theorem 3. For every two IFSs 𝐴 and 𝐵 and for 𝑖 = 1, 2:

(a) ¬*(¬*𝐴 ∪𝑖
207 ¬*𝐵) = ¬*¬*𝐴 ∩𝑖

207 ¬*¬*𝐵,

(b) ¬(¬𝐴 ∪3
207 ¬𝐵) = ¬*¬*𝐴 ∩3

207 ¬*¬*𝐵,

(c) ¬*(¬*𝐴 ∩𝑖
207 ¬*𝐵) = ¬*¬*𝐴 ∪𝑖

207 ¬*¬*𝐵,

(d) ¬(¬𝐴 ∩3
207 ¬𝐵) = ¬*¬*𝐴 ∪3

207 ¬*¬*𝐵.

Proof. Let 𝐴 and 𝐵 be given. Then

¬*(¬*𝐴 ∪1
207 ¬*𝐵) = ¬*({⟨𝑥, sg(𝜈𝐴(𝑥)), sg(𝜈𝐴(𝑥))⟩|𝑥 ∈ 𝐸}

∪1
207{⟨𝑥, sg(𝜈𝐵(𝑥)), sg(𝜈𝐵(𝑥))⟩|𝑥 ∈ 𝐸})

= ¬*({⟨𝑥, sg(max(sg(sg(𝜈𝐴(𝑥))), sg(𝜈𝐵(𝑥)))),

sg(max(sg(sg(𝜈𝐴(𝑥))), sg(𝜈𝐵(𝑥))))⟩|𝑥 ∈ 𝐸})

= ¬*({⟨𝑥, sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥)))),

sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥))))⟩|𝑥 ∈ 𝐸})

= {⟨𝑥, sg(sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥))))),

sg(sg(max(sg(𝜈𝐴(𝑥)), sg(𝜈𝐵(𝑥)))))⟩|𝑥 ∈ 𝐸}

= {⟨𝑥, sg(max(sg(𝜈𝐴(𝑥)), sg(sg(𝜈𝐵(𝑥))))),

sg(max(sg(𝜈𝐴(𝑥)), sg(sg(𝜈𝐵(𝑥)))))⟩|𝑥 ∈ 𝐸},

= {⟨𝑥, sg(𝜈𝐴(𝑥)), sg(𝜈𝐴(𝑥))⟩|𝑥 ∈ 𝐸}
∩1{⟨𝑥, sg(𝜈𝐵(𝑥)), sg(𝜈𝐵(𝑥))⟩|𝑥 ∈ 𝐸})

= ¬*¬*𝐴 ∩1 ¬*¬*𝐵.

The proof of the other equalities is similar. �

In the same manner we check the validity of the following theorem.

Theorem 4. For every two IFSs 𝐴 and 𝐵 and for 𝑖 = 1, 2, none of these equalities holds:

(a) ¬*(¬*𝐴 ∪𝑖
207 ¬*𝐵) = 𝐴 ∩𝑖

207 𝐵,

(b) ¬(¬𝐴 ∪3
207 ¬𝐵) = 𝐴 ∩3

207 𝐵,

(c) ¬*(¬*𝐴 ∩𝑖
207 ¬*𝐵) = 𝐴 ∪𝑖

207 𝐵,

(d) ¬(¬𝐴 ∩3
207 ¬𝐵) = 𝐴 ∪3

207 𝐵

The results of both theorems are in accord with the results from [1].
It is obvious that operations ∩1

207,∩3
207,∪3

207 and ∪3
207 are not commutative and associative,

while operators ∩207 and ∪2
207 are commutative and associative.
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3 Conclusion
In the present paper, a new intuitionistic fuzzy implication was introduced and over its basis, a
new intuitionistic fuzzy negation, three conjunctions and three disjunctions were constructed.

For the first time, it was checked that the three intuitionistic fuzzy conjunctions coincide, while
this is not valid for the disjunctions.

For the first time, when such a new implication is being researched, we discover three
coninciding conjunctions generated by one implication whence their respective disjunctions do
not coincide, as is the usual case.

So, it will be interesting in future to be checked for which other intuitionistic fuzzy conjunctions
and disjunctions similar coincidences occur.
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