The Inclusion-Exclusion principle for IF-events

Karol Samuelčík, Jana Kelemenová
Faculty of Natural Science, Matej Bel University
Department of Mathematics
Tajovského 40
97401 Banská Bystrica, Slovakia

1 Introduction.

Let (Ω, \mathcal{S}, P) denote a Kolmogorov probability space, Ω be an abstract set, \mathcal{S} be a $\sigma-$ algebra of subsets of $\Omega, P: \mathcal{S} \rightarrow[0,1]$ be a probability measure. If A_{1}, \ldots, A_{n} is a collection of arbitrary members of \mathcal{S} and $n \in N$ then

$$
(*) P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-\ldots+(-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_{i}\right) .
$$

Atanassov [1] introduced the concept of IF-events. Atanassov theory works with IFevents, i.e. each pairs

$$
A=\left(\mu_{A}, \nu_{A}\right),
$$

such that $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1], \mu_{A}+\nu_{A} \leq 1$, and μ_{A}, ν_{A} are measurable. Denote by \mathcal{F} the set of all IF-events. We shall use basic operations on IF-sets.Probability theory on IF-events depends on connective used for the definition of the additivity of corresponding probability measure. We shall use Lukasiewicz connectives;

$$
\begin{gathered}
\mu_{A} \oplus \mu_{B}=\left(\mu_{A}+\mu_{B}\right) \wedge 1, \\
\nu_{A} \odot \nu_{B}=\left(\nu_{A}+\nu_{B}-1\right) \vee 0, \\
A \oplus B=\left(\mu_{A} \oplus \mu_{B}, \nu_{A} \odot \nu_{B}\right), \\
A \odot B=\left(\mu_{A} \odot \mu_{B}, \nu_{A} \oplus \nu_{B}\right)
\end{gathered}
$$

Representation theorem for probabilities on IF-events is given by Ciungu-Riečan in [2] and by Petrovičov-Riečan in [3]. Grzegorzewski [4] generalize the probability version of the inclusion-exclusion principle for IF-events for two versions corresponding to different t-conorms.

In this paper we generalize the probability version of the inclusion-exclusion principle for IF-events with probability measure $\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}$,

$$
\mathcal{P}\left(\mu_{A}, \nu_{A}\right)=\left[\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right), \int_{\Omega} \mu_{A} d R+\beta\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d S\right)\right] .
$$

The Grzegorzewski result can be obtained with special choises $\alpha=0, \beta=1, P=Q=R=$ S, then

$$
\mathcal{P}(A)=\left[\int_{\Omega} \mu_{A} d P, 1-\int_{\Omega} \nu_{A} d P\right] .
$$

2 Probability on family of IF-events.

Definition 1 Probability is considered as a mapping

$$
\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}
$$

where $\mathcal{J}=\{[a, b] ; a, b \in R, a \leq b\})$ satisfying the following conditions:
(i) $\mathcal{P}((1,0))=[1,1], \mathcal{P}((0,1))=[0,0]$,
(ii) if $A \odot B=(0,1)$, then $\mathcal{P}(A \oplus B)=P(A)+P(B)$,
(iii) if $A_{n} \nearrow A$,then $\mathcal{P}\left(A_{n}\right) \nearrow \mathcal{P}(A)$.
$\mathcal{P}(A)$ is a compact interval on R, denote it by

$$
\mathcal{P}(A)=\left[P^{b}(A), P^{\sharp}(A)\right] .
$$

It is to see that the main results can be described by the mappings $P^{b}(A), P^{\sharp}(A): \mathcal{F} \rightarrow[0,1]$.
Definition $2 A$ state on \mathcal{F} is any function $m: \mathcal{F} \rightarrow[0,1]$ satisfying the following properties:
(i) $m((1,0))=1, m((0,1))=0$,
(ii) if $A \odot B=(0,1)$, then $m(A \oplus B)=m(A)+m(B)$,
(iii) if $A_{n} \nearrow A$, then $m\left(A_{n}\right) \nearrow m(A)$.

Theorem 2.1 Let mapping $\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}$ be given, $P^{b}, P^{\sharp}: \mathcal{F} \rightarrow[0,1]$ be defined by the formula

$$
\mathcal{P}\left(\mu_{A}, \nu_{A}\right)=\left[P^{b}\left(\left(\mu_{A}, \nu_{A}\right)\right), P^{\sharp}\left(\left(\mu_{A}, \nu_{A}\right)\right)\right] .
$$

Then \mathcal{P} is a probability if and only if P^{b}, P^{\sharp} are states.
Proof.See [3]
In calculations of probabilities of IF-events we apply interval arithmetic;

$$
\begin{gathered}
\mathcal{P}(A)+\mathcal{P}(B)=\left[P^{b}(A), P^{\sharp}(A)\right]+\left[P^{b}(B), P^{\sharp}(B)\right]= \\
=\left[P^{b}(A)+P^{b}(B), P^{\sharp}(A)+P^{\sharp}(B)\right] .
\end{gathered}
$$

Theorem 2.2 Let $\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}$ be a probability measure. Then there exist the Kolmogorov probability measures $P, Q, R, S: \mathcal{S} \rightarrow[0,1]$ and constants $\alpha, \beta \in[0,1]$ such that

$$
\mathcal{P}\left(\mu_{A}, \nu_{A}\right)=\left[\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right), \int_{\Omega} \mu_{A} d R+\beta\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d S\right)\right] .
$$

Proof.See [2, 3].

3 The inclusion-exclusion principle for IF-events.

3.1. Gödel connectives In this section we use the operations

$$
\begin{aligned}
& A \vee B=\left(\max \left(\mu_{A}, \mu_{B}\right), \min \left(\nu_{A}, \nu_{B}\right)\right) \\
& A \wedge B=\left(\min \left(\mu_{A}, B\right), \max \left(\nu_{A}, \nu_{B}\right)\right) .
\end{aligned}
$$

Theorem 3.1.

For any $A_{1}, \ldots, A_{n} \in F, n \in N$ there holds

$$
\mathcal{P}\left(\bigvee_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \mathcal{P}\left(\bigwedge_{i=1}^{k} A_{j_{i}}\right) .
$$

Proof.It follows by Theorem 2.2. and equality

$$
\bigvee_{i=1}^{n}\left(\mu_{A_{i}}, \nu_{A_{i}}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \bigwedge_{i=1}^{k}\left(\mu_{A_{j_{i}}}, \nu_{A_{j_{i}}}\right)
$$

3.2. Lukasziewicz connectives In this section we use the operations

$$
\begin{aligned}
& A \oplus B=\left(\min \left(\mu_{A}+\mu_{B}, 1\right), \max \left(\nu_{A}+\nu_{B}-1\right), 0\right) \\
& A \odot B=\left(\max \left(\mu_{A}+\mu_{B}-1,0\right), \min \left(\nu_{A}+\nu_{B}, 1\right)\right)
\end{aligned}
$$

Theorem 3.2.
For any $A_{1}, \ldots, A_{n} \in F, n \in N$ there holds

$$
\mathcal{P}\left(\bigoplus_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \mathcal{P}\left(\bigodot_{i=1}^{k} A_{j_{i}}\right)
$$

Proof.It follows by Theorem 2.2. and equality

$$
\bigoplus_{i=1}^{n}\left(\mu_{A_{i}}, \nu_{A_{i}}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \bigodot_{i=1}^{k}\left(\mu_{A_{j_{i}}}, \nu_{A_{j_{i}}}\right) .
$$

3.3. Product connectives

In this section we use the operations

$$
\begin{aligned}
& A \nabla B=\left(\mu_{A}+\mu_{B}-\mu_{A} \cdot \mu_{B}, \nu_{A} \cdot \nu_{B}\right) \\
& A \triangle B=\left(\mu_{A} \cdot \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \cdot \nu_{B}\right)
\end{aligned}
$$

Theorem 3.3.
For any $A_{1}, \ldots, A_{n} \in F, n \in N$ there holds

$$
\mathcal{P}\left(\nabla_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \mathcal{P}\left(\triangle_{i=1}^{k} A_{j_{i}}\right) .
$$

Proof.It follows by Theorem 2.2. and equality

$$
\nabla_{i=1}^{n}\left(\mu_{A_{i}}, \nu_{A_{i}}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \triangle_{i=1}^{k}\left(\mu_{A_{j_{i}}}, \nu_{A_{j_{i}}}\right) .
$$

References

[1] Atanassov,K.: Intuistionistic Fuzzy Sets. Theory and Application. Physice Verlag, Heidelberg, 1999.
[2] Ciungu,L.- Riečan,B.: General form of probability on IF-sets. In:Fuzzy Logic and Applications,Proc.8th Int.Workshop WILF, Lecture Notes in Artificial Intelligence,101-107.
[3] Petrovičov ,J. - Riečan,B.: On the Lukasiewicz probability theory on IF-sets. IN:Tatra Mt. Math. Publ. (to appear)
[4] Grzegorzewski , P: The Inclusion-Exclusion Principle for IF-events. IN: Information Sciences (to appear)

