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1 Introduction 

The concept of intuitionistic fuzzy sets was introduced by K. T. Atanossov [1, 2] as a 

generalization to the notion of fuzzy sets by L.A. Zedah [16]. R. Biswas was the first to 

introduce the intuitionistic fuzzification of algebraic structure and developed the concept of 

intuitionistic fuzzy subgroup of a group in [4]. Later on many mathematicians worked on it and 

introduced the notion of intuitionistic fuzzy subring, intuitionistic fuzzy submodule etc. 

(see [6–10]). The notion of intuitionistic fuzzy G-modules was introduced by the author et al. 

in [11]. Many properties like representation, reducibility, complete reducibility and injectivity 

of intuitionistic fuzzy G-modules have been discussed in [11–13]. The idea, for proving these 

results came from Meena and Thomas [8], Sinha and Dewangan [15], which was originally 

proved for intuitionistic fuzzy L-rings and fuzzy submodules of G-modules respectively. 

Throughout this article, concepts related with G-modules are mainly taken from [5] and 

concepts related with intuitionistic fuzzy set theory are taken from [1–3, 7–11].      
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2 Preliminaries 

For proving the isomorphism theorems for intuitionistic fuzzy submodules of G-modules, we 

use the following definitions and results. 

 

Definition (2.1)[5] Let G be a group and M be a vector space over a field K. Then M is called a 

G-module if for every g∈G and m∈M, there exists a product (called the action of G on M), 

gm∈M satisfies the following axioms 

i) 1G⋅m = m, ∀m∈M  (1G being the identity of G) 

ii) (g⋅h)⋅m = g⋅(h⋅m),  ∀m∈M, g, h∈G 

iii) g⋅(k1m1 + k2m2) = k1(g⋅m1) + k2(g⋅m2),  ∀k1, k2∈K; m1, m2∈M and g∈G. 

 

Since G acts on M on the left hand side, M may be called a left G-module. In a similar 

way, we can define a right G-module. But here we shall consider only leftmodules. A parallel 

study is possible using right G-modules also. 

Definition (2.2) [5] Let M be a G-module. A vector subspace N of M is a G-submodule if N is 

also a G-module under the same action of G.  

Proposition (2.3) [5] If M is a G-module and N is a G-submodule of M, then M/N is a 

G-module which is called Quotient G-modules. 

Definition (2.4) [5] Let M and M* be G-modules. A mapping f : M →M* is aG-module 

homomorphism if 

(i) f (k1m1 + k2m2) =  k1f (m1) + k2f (m2)  

(ii) f (gm) = gf (m), ∀k1, k2 ∈K; m, m1, m2 ∈ M and g ∈ G. 

Definition (2.5) [5] Let f : M → M* is a G-module homomorphism. Then ker f = 

{m∈M : f (m) = 0*}is a G-submodule of M and img f = { f(m) : m∈M} is a G-submodule of 

M*. 

Definition (2.6) [2] Let X be a non-empty set. An intuitionistic fuzzy set (IFS) A of X is an 

object of the form A = {〈x, µA(x), νA(x)〉 : x ∈X}, where µA: X→ [0,1]  and  νA : X→ [0,1] define 

the degree of membership and degree of non-membership of the element x ∈ X, respectively, 

and for any x ∈ X, we have  0 ≤µA(x) + νA(x) ≤ 1. 

Definition (2.7) [2] Let A = {〈x, µA(x), νA(x)〉 : x ∈ X} and B = {〈x, µB(x), νB(x)〉 : x ∈ X} be 

any two IFSs of X, then  

(i) A ⊆B if and only if µA(x) ≤µB(x)  and  νA(x) ≥νB(x) for all x∈X; 

(ii) A = B  if and only ifµA(x) = µB(x)  and  νA(x) = νB(x) for all x∈X; 

(iii) Ac= {〈x, (µA
c)(x) , (νA

c)(x)〉: x∈X}, where(µA
c)(x) = νA(x)  and (νA

c)(x) = µA(x)  for all 

x∈X; 

(iv) A∩B = {〈x, (µA∩B)(x) , (νA∩B)(x)〉 : x∈X}, where (µA∩B)(x) = µA(x) ∧µB(x)  and  

(νA∩B)(x)   = νA(x) ∨νB(x) 



82 

(v) A∪B = {〈x, (µA∪B)(x), (νA∪B)(x)〉 : x∈X}, where (µA∪B)(x) = µA(x) ∨µB(x) and 

(νA∪B)(x) =  νA(x) ∧νB(x). 

Definition (2.8) [2, 3, 7, 9] Let X and Y be two non-empty sets and  f: X → Y be a mapping.     

Let A and B be IFSs of X and Y respectively. Then the image of A under the map fis denoted by 

f(A) and is defined asf(A)(y) = (µf(A)(y), νf(A)(y)), where 

( )

1 1

A

{ ( ) :   (y)};  (y)  
( )

         0                       ;     otherwise 

A

f

x x f if f
y

µ
µ

− −∨ ∈ ≠ ∅
= 


 

and 

( )

1 1

A

{ ( ) :   (y)};  (y)
 ( ) ,   Y.

         1                         ;     otherwise 

A

f

x x f if f
y y

ν
ν

− −∧ ∈ ≠ ∅
= ∀ ∈


 

Also the pre-image of B under  f is denoted by  f–1(B) and is defined as     

( )( )
( ) ( )

( ) ( )

 1  1

 1  1

 1  ( ( ) ,  ( )),   where

( )  ( ( ))    and    ( ) = ( ( )) ;   .

f B f B

B Bf B f B

f B x x x

x f x x f x x X

µ ν

µ µ ν ν

− −

− −

− =

= ∀ ∈
 

Remark (2.9) In general, ( )A
( ( )) ( ) 

Af
f x xµ µ≥ and ( )A

( ( )) ( )
Af

f x xν ν≤ and equality holds iff 

is one-one. 

Definition (2.10) [10] Let (X, . ) be a groupoid and A, B be two IFSs of X. Then the 

intuitionistic fuzzy sum of A and B is denoted by A + B and is defined as:(A + B)(x) =  

(µA+B(x), νA+B(x)), where    

{ }A( ) ( )    ;       
( )   

0 ;  otherwise

B

A B

a b if x a b
x

µ µ
µ +

∨ ∧ = +
=


 

and 

{ }A( ) ( ) ;       
( ) ;  .   

1 ;  otherwise

B

A B

a b if x a b
x x X

ν ν
ν +

∧ ∨ = +
= ∀ ∈


 Definition (2.11) [3, 9, 11] For any IFS A = {〈x, µA(x), νA(x)〉 : x∈X} of set X. We denote the 

support of the IFS set A by A* and is defined as A*= { x∈X : µA(x) > 0 and νA(x) < 1 }. 

 
Proposition (2.12) [9] Let  f : X → Y be a mapping and A, B are IFSs of X and Y respectively.  

Then the following result holds 
* *

1 * 1 *

( )    ( ) ( ( ))  and equality hold when the map  is bijective  

( )   ( ) ( ( )) .

i f A f A f

ii f B f B
− −

⊆

=
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Definition (2.13) [11] Let A∈GM (where GM denotes the intuitionistic fuzzy power set of 

G-module M). Then A is called an intuitionistic fuzzy submodule of G-module M, if it satisfies 

the following:   

(i) µA(0) = 1  and  νA(0) = 0; 

(ii) µA(gm) ≥µA(m)   and  νA(gm) ≤νA(m), ∀g∈G, m∈M; 

(iii) µA(m1+m2) ≥µA(m1)∧µA(m2)  and  νA(m1+m2) ≤νA(m1)∨νA(m2), ∀m1, m2∈M.  

We denote the set of all intuitionistic fuzzy submodules of G-module M by G(M). 

Theorem (2.14) [11] Let A∈G(M). Then A* is a G-submodule of M.  

Theorem (2.15) [3, 11] For any A, B∈G(M), we have  

(A + B)*  = A* + B*  and   (A∩B)*  = A*∩B* . 

Definition (2.16) [8] Let A, B∈G(M). Then A is said to be normal in B if A ⊆ B and 

µA(yxy–1) ≥µA(x) ∧µB(y)  and  νA(yxy–1) ≤νA(x) ∨νB(y)  for all x, y∈M. 

Theorem (2.17) [11] Let A∈G(M) and let N be a G-submodule of M. Define  | N

NA G∈ (where 

G N  is the intuitionistic fuzzy power set of G-module N) as follows:                                 

|
( )  ( )

NA A
x xµ µ=

 
and |

( ) ( ),  
NA A

x x x Nν ν= ∀ ∈ . Then,A|N∈G(N). 

Theorem (2.18) [11] Let A∈G(M) and let N be a G-submodule of M. Define AN ∈
( / )M N

G  as 

follows: 

NA
µ (x + N) = ∨{µA(x + n) :n∈N}  

and 

NA
ν (x + N) = ∧{vA(x + n) :n∈N}, ∀x∈M, 

where M/N denote the quotient module of M with respect to N. Then AN ∈G(M/N). 
 

Let A, B∈G(M) be such that A ⊆ B. It is known that both A*and B*are G-submodules of 

M. Clearly, A*⊆B*. Thus A*is a G-submodule of B*. Moreover it is clear that *
B
|B ∈G(B*). 

Therefore, it follows from Theorem (2.18) that if we define C∈
( )** /B A

G as follows: 

( )* * * *( ) { ( ) :  },  { ( ) :  }  ,  .B BC x x y y x y yA A A x Bµ ν+ = ∨ + ∈ ∧ + ∈ ∀ ∈ Then ( )* *
/C G B A∈  is 

called the quotient of B w.r.t. A and is written as B/A, i.e., C = B/A. 
 

Definition (2.19) Let A, B∈G(M) be such that A ⊆B. Then B/A ∈ * *( / )G B A  is called the quotient 

of B with respect to A and is defined as ( ) ( ) ( )( )* * *,   ,
B B

A A

B x A x A x
A

Aµ ν+ = + +  where 

( )* *{ ( ) :  }
B B

A

x x Ay yAµ µ+ = ∨ + ∈  and ( )* *{ ( ) :  },
B B

A

x xA y Ayν ν+ = ∧ + ∈ where *.x B∈  

 

Theorem (2.20) Let A, B∈G(M) be such that A ⊆B. Then  ( )* *
| = .
B A

BB
A
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Proof. Since A and B are intuitionistic fuzzy submodules of G-module M such that A ⊆B. 

Therefore A* and B*  are G-submodules of M such that  A*⊆ B*.  Clearly, both ( )* *
|
B A

B and 

 B
A

are intuitionistic fuzzy submodules of G-module 
* */ .B A  

Let * * * /  x A B A+ ∈ be any element, where * . x B∈ Then we have 

( ) ( ) ( ) { } ( )
* **B B

* * * *

/| |
( ) :    = ( ) :   = .

A

B B AB B
x A x y y A x y y A x Aµ µ µ µ

 
+ = ∨ + ∈ ∨ + ∈ + 

 
 

Similarly, we can show that 
( ) ( ) ( )

* *B

* *

/|
.

A

B AB
x A x Aν ν+ = +  Hence, ( )* *

| / .
B A

B B A=  �

 

3 Isomorphism theorems for intuitionistic fuzzy submodules 

of G-modules 

In this section, we give three fundamental theorems of isomorphism for the intuitionistic fuzzy 

submodules of G-modules.  
 

Definition (3.1)[11]Let M and M* be G-modules and let A,B be two intuitionistic fuzzy 

G-submodules on M and M* respectively. Let f : M → M* be a G-module homomorphism. 

Then f is called a weak intuitionistic fuzzy G-homomorphism of A into B if f (A) ⊆B.  

The homomorphism f is an intuitionistic fuzzy G-homomorphism of A onto B if f (A) =B. 

We say that A is an intuitionistic fuzzy G-homomorphic onto B and we write it as A ≈B. 

 

Let f :M→M* be a G-module isomorphism. Then f is called a weak intuitionistic fuzzy G-

isomorphism if f (A) ⊆ B and f is an intuitionistic fuzzy G-isomorphism if  f (A) =B and we 

write it as A ≅B. 
 

Theorem (3.2)(First isomorphism theorem)Let A∈G(M) and B∈G(N) such that A ≈ B. Then 

there exists C∈G(M) such that C⊆ A  and  A / C≅B. 

Proof. Since A ≈ B there exists a G-epimorphismf: M → N such that  f (A) = B.  

Define C∈GM as follows: 

( )  ker ( )  ker
( )          and      ( )    .

0  ker 1  ker

A A

C C

x if x f x if x f
x x

if x f if x f

µ ν
µ ν

∈ ∈ 
= = 

∉ ∉ 
 

Then, it is easy to see that C∈G(M) and C⊆A. If x∈kerf , then yxy–1∈kerf ,  ∀y∈M.  

µC(yxy–1) = µA(yxy–1) ≥µA(x) ∧µA(y) = µC(x) ∧µA(y), 

i.e., 

µC(yxy–1) ≥µC(x) ∧µA(y). 

Similarly, we can show that νC(yxy–1) ≤νC(x) ∨νA(y).If  x∉kerf , then µC(x) = 0 and  νC(x) = 1 

and so µC(yxy–1) ≥µC(x) ∧µA(y)    and   νC(yxy–1) ≤νC(x) ∨νA(y) is obviously true. So, C is a 

normal G-submodule of A. Also,
f

A B≈ this implies that  f(A) = B and hence 
*( ( ))f A = *.B  
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It implies that *( )f A =
*.B Let G = * |

A
f , then g: A*→ *B is a G-homomorphism onto with  

ker G =
*.C Then there exists a G-isomorphism  h: A*/

*
C → *B such that h(

*
x C+ ) = g(x) = f (x), 

∀x∈A*. 

For such an h, we have ( ) ( )( / ) ( / )/ ( ) ( ),  ( ) ,
h A C h A C

h A C z z zµ ν= where 

* *

( / ) /

*

(

* * *

/ ) /( ) { ( ) : , ( ) } and ( ) { ( ) : , ( ) }.h A C A C h A C A Cz x C x h x C z z x C x h x CA zAµ µ ν ν= ∨ + ∈ + = = ∧ + ∈ + =  

* * *
( / ) /

* *

*

Now,    ( ) { ( ) :   ,  ( ) } 

                             { { ( ) : }: ,  ( ) }

                             { ( ) : ,  ( ) }

                             { (

h A C A C

A

A

A

z x C x A h x C z

y y x C x A g y z

y y A g y z

y

µ µ

µ

µ

µ

= ∨ + ∈ + =

= ∨ ∨ ∈ + ∈ =

= ∨ ∈ =

= ∨

( )

*

) : , ( ) }

                             ( )

                             ( ),    

f A

B

y M f y z

z

z z B

µ

µ

∈ =

=

= ∀ ∈

 
* * *

( / ) /

* *

*

and    ( ) { ( ) :  ,  ( ) } 

                           { { ( ) : } : ,  ( ) }

                           { ( ) : ,  ( ) }

                           { ( ) : ,

h A C A C

A

A

A

z x C x A h x C z

y y x C x A g y z

y y A g y z

y y M f

ν ν

ν

ν

ν

= ∧ + ∈ + =

= ∧ ∧ ∈ + ∈ =

= ∧ ∈ =

= ∧ ∈

( )

*

( ) }

                           ( )

                           ( ),   .  

f A

B

y z

z

z z B

ν

ν

=

=

= ∀ ∈

 

Thus, h(A/C) = B. Hence,  / .
h

A C B≅  � 

Theorem (3.3) (Second isomorphism theorem) Let A, B be intuitionistic fuzzy submodules 

of   G-module M, then  / ( ) ( ) /B A B A B A∩ ≅ + .  

Proof. We know that *A and *B are G-submodules of M. By the second isomorphism theorem 

for modules, we have ( ) ( ) ( ) ( )
** * * * * * * * * *

/ /  i.e., / / .B A B A B A B A B A B A∩ ≅ + ∩ ≅ + Let

* * * */ ( ) ( ) / ,
f

B A B A B A∩ ≅ + where f is given by ( )* * *
( )  ,  .f x A B x A x B+ ∩ = + ∀ ∈  Now, 

( ) ( )( )

( ){ }
( ){ }

{ }

**

*

*

*

    [Since   is one-one ]

                           = ( ) :  

                           = ( ) :    

                          ( ) :    

   

B B
f

A B A B

B

A B

A B

x A x A B f

z z x A B

z z x A B

z z x A

µ µ

µ

µ

µ

   
   
   ∩ ∩

+

+

+ = + ∩

∨ ∈ + ∩

∨ ∈ + ∩

≤ ∨ ∈ +

( )* *                        = ,           
A B

A

x A x Bµ
 
 
 

+
+ ∀ ∈

 

and
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( ) ( )( )

( ){ }
( ){ }

{ }

**

*

*

*

    [Since  is one-one]

                          = ( ) :  

                          = ( ) :    

                         ( ) :    

        

B B
f

A B A B

B

A B

A B

x A x A B f

z z x A B

z z x A B

z z x A

ν ν

ν

ν

ν

   
   

∩ ∩   

+

+

+ = + ∩

∧ ∈ + ∩

∧ ∈ + ∩

≥ ∧ ∈ +

( )* *                  = ,  .         
A B

A

x A x Bν
+ 

 
 

+ ∀ ∈

 

Thus, .
B A B

f
A B A

+   
⊆   

∩   
 

Hence, 
B A B

A B A

+   
≅   

∩   
 (weak intuitionistic fuzzy G-isomorphism). � 

 

Theorem (3.4)(Third isomorphism theorem) Let A, B, C be intuitionistic fuzzy G-

submodules of M with A ⊆ B ⊆ C, then   
( / )

.
( / )

C A C

B A B
≅  

Proof. Since A ⊆B⊆C, then A* is a G-submodule of B* and both A*and B* are G-submodules of 

C*. Then by third isomorphism theorem for modules  

* * *

* * *

( / )
  ,

( / )

fC A C

B A B
≅ where f is defined as 

f( x +A* + (B*/A*)) = x + B*,  ∀x∈C*. 

( )* * * *

/ /

/ /

* * * * * *

Now,  ( ) ( / )      [  Since  is one-one ]

                                   = (  + ) :  ,    ( / )

                             

C A C A
f

B A B A

C

A

x B x A B A f

y A y C y A x A B A

µ µ

µ

   
   
   

 
 
 

+ = + +

  
∨ ∈ + ∈ + + 
  

{ }

{ }

* * * * * *

* * * * *

*

      = { ( ) :   + }:  ,    ( / )                              

                                 ( ) :  ,  ( / )

                                  = ( ) :  

C

C

C

z z y A y C y A x A B A

z z C z A x A B A

z z x A

µ

µ

µ

∨ ∨ ∈ ∈ + ∈ + +

= ∨ ∈ + ∈ + +

∨ ∈ + +{ }

{ }

* *

* *

* *

( / )

                                  = ( ) :  , ( )

                                  = ( ),   

C

C

B

B A

z z C f z x B

x B x C

µ

µ
 
 
 

∨ ∈ ∈ +

+ ∀ ∈

 

( )* * * *

/ /

/ /

* * * * * *

and   ( ) ( / )      [  Since  is one-one ]

                                  = (  + ) :  ,    ( / )

                             

C A C A
f

B A B A

C

A

x B x A B A f

y A y C y A x A B A

ν ν

ν

   
   
   

 
 
 

+ = + +

  
∧ ∈ + ∈ + + 
  

{ }

{ }

* * * * * *

* * * * *

*

     = { ( ) :   + }:  ,    ( / )                              

                                 ( ) :  ,  ( / )

                                  = ( ) :  (

C

C

C

z z y A y C y A x A B A

z z C z A x A B A

z z x A

ν

ν

ν

∧ ∧ ∈ ∈ + ∈ + +

= ∧ ∈ + ∈ + +

∧ ∈ + +{ }

{ }

* *

* *

* *

/ )

                                  = ( ) :  , ( )

                                  = ( ),  

C

C

B

B A

z z C f z x B

x B x C

ν

ν
 
 
 

∧ ∈ ∈ +

+ ∀ ∈
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Thus,
/

/

C A C
f

B A B

   
=   

   
Hence,

/
.

/

C A C

B A B

   
≅   

   
 �
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