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1 Introduction

Intuitionistic fuzzy sets (IFSs) have been introduced by K. Atanassov in 1983 [2]. For each point
in the universe X a degree of membership and a degree of non-membership are assigned. More
formally, Atanassov defined an intuitionistic fuzzy set (IF-set) as follows:

A = {⟨x, µA(x), νA(x)⟩ | x ∈ X} ,

where µA and νA are membership (non-membership) functions µA, νA : X → [0, 1], such that
0 ≤ µA(x) + νA(x) ≤ 1 for all x ∈ X and µA(x), νA(x) are membership and non-membership
degrees, respectively, of the element x ∈ X to the set A. The family of all intuitionistic fuzzy
sets defined on the universe X will be denoted by symbol IFS(X).

The function πA(x) = 1−µA(x)−νA(x) is called the hesitation index. The lack of knowledge
on the membership of an element x ∈ X to the intuitionistic fuzzy set A is expressed by
function π.

Clearly, IF-sets are one possible generalizations of the fuzzy sets. Each fuzzy set can be
considered as a special case of an IF-set, such that νA(x) = 1−µA(x) and πA(x) = 0. Moreover,
each IF-set can be presented as an interval-valued fuzzy set since for each element x ∈ X the
following interval [µA(x), 1− νA(x)] can be associated.

Triangular norms have been introduced into the mathematical literature by Karl Menger
in 1942. Triangular norms and conorms are operations which generalize the conjunction and
disjunction in fuzzy logic. They were originally used to generalize the triangle inequality from
classical metric spaces to probabilistic metric spaces. In the original axioms for triangular norms
no associativity was required. Theory of continuous t-norms has two rather independent roots,
namely, the field of functional equations and the theory of topological semigroups. The full
characterization of continuous Archimedean t-norms by means of additive generators has been
done after 1960 by Ling and Schweizer and Sklar.

Triangular norms will be mentioned in this section. These functions are useful for modeling
a conjunction in fuzzy logic and intersection of fuzzy sets.

The triangular norm (t-norm) is a function T : [0, 1]× [0, 1] → [0, 1] satisfying the following
conditions:

(T1) T (a, b) = T (b, a), for all a, b ∈ [0, 1] (commutativity),

(T2) T (T (a, b), c) = T (a, T (b, c)), for all a, b, c ∈ [0, 1] (associativity),

(T3) b ≤ c ⇒ T (a, b) ≤ T (a, c), for all a, b, c ∈ [0, 1] (monotonicity),

(T4) T (a, 1) = a, for all a ∈ [0, 1] (boundary condition).

Therefore, the function T is a monotone, associative and commutative operation defined
on [0, 1] × [0, 1] with neutral element 1. Some important examples of t-norms, so-called basic
t-norms, are the following:

• Minimum t-norm: TM(a, b) = min(a, b), for all a, b ∈ [0, 1],

• Product t-norm: TP (a, b) = a · b, for all a, b ∈ [0, 1],
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• Łukasiewicz t-norm: TL(a, b) = max(a+ b− 1, 0), for all a, b ∈ [0, 1],

• Drastic t-norm:

TD(a, b) =

{
min {a, b} , if max {a, b} = 1,

0, otherwise .

For these basic t-norms, it holds that TD ≤ TL ≤ TP ≤ TM . In fact, for any t-norm T , it is
fulfilled that TD ≤ T ≤ TM .

Changing the neutral element from 1 to 0, we obtain the triangular conorm (t-conorm), a
function used for modeling a disjunction in fuzzy logic and union of fuzzy sets.

The t-norm T and t-conorm S are dual if and only if for each a, b ∈ [0, 1] the equation
T (a, b) = 1− S(1− a, 1− b) is fulfilled.

For each previous example of basic t-norm we can consider its dual basic t-conorm as follows:
Let A,B ∈ F(X). Given a t-norm T and a t-conorm S,

• the intersection of A and B with respect to T is defined as the fuzzy set whose membership
function is A ∩T B(x) = T (A(x), B(x)), for all x ∈ X;

• the union of A and B with respect to S is defined as the fuzzy set whose membership
function is A ∪S B(x) = S(A(x), B(x)), for all x ∈ X .

Thus, we can denote by (X,T, S) the triple formed by the universe with the t-norm and the
t-conorm defining the intersection and the union, respectively.

Usually we write shortly ∪,∩ instead of ∪S,∩T if it is clear what triple (X,T, S) is considered.
Let A,B be IF-sets and T (S) be the triangular norm (conorm). Then their union, intersection

and complement will be defined in the following way:

(i) union of A and B:

A ∪B = {⟨x, µA∪B(x), νA∩B(x)⟩ | x ∈ X} ,

where µA∪B(x) = S(µA(x), µB(x)) and νA∩B(x) = T (νA(x), νB(x)).

(ii) intersection of A and B:

A ∩B = {⟨x, µA∩B(x), νA∪B(x)⟩ | x ∈ X} ,

where µA∩B(x) = T (µA(x), µB(x)) and νA∪B(x) = S(νA(x), νB(x)).

(iii) complement of A:
Ac = {⟨x, µAc(x), νAc(x)⟩ | x ∈ X} ,

where µAc(x) = νA(x) and νAc(x) = µA(x).

The possible orderings of two IF-sets A and B can be introduced in the following way:

A ≤ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈ X ,

A ⪯ B if and only if µA(x) ≤ µB(x) and νA(x) ≤ νB(x) for all x ∈ X ,

A = B if and only if A ≤ B and B ≤ A.
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2 Divergence measures

In the framework of fuzzy set theory, we can find in the literature several measures of comparison
between fuzzy sets. In 1996, Bouchon-Meunier ( [3]) tried to define a general measure of
comparison for fuzzy sets. Since more measures for comparing fuzzy sets have been introduced
(see, among many others, [1, 14, 15]). A nice study about that can be found in [4]. Among all
them, the most usual measures of comparison are dissimilarities [7].

There are several examples of dissimilarities. The restriction associated to this definition is
only given for sets such that A ⊆ B ⊆ C, but there are a lot of sets which are not comparable
with respect to ⊆ and therefore, nothing is required for them.

Thus, we need a concept where the restriction about “proximity” are given for any set. In
order to overcome this problem, another measure of comparison between fuzzy sets was proposed
in [8], the divergence measure, which satisfies the following natural properties: it becomes zero
when the two sets coincide, it is a non-negative and symmetric function and it decreases when the
two subsets become “more similar” in some sense, i.e. if we add (in the sense of union) a subset
C to both fuzzy subsets A,B, we obtain two subsets which are closer to each other; the same for
the intersection. So we propose the following (see [6, 9]):

Definition 1. Let (X,T, S) be a triple with X a universe and T and S any t-norm and t-conorm,
respectively. A map D : F(X)× F(X) → R is a divergence measure with respect to (X,T, S)

if and only if for all A,B ∈ F(X), D satisfies the following conditions:

(D1) D(A,A) = 0;

(D2) D(A,B) = D(B,A);

(D3) max{D(A ∪ C,B ∪ C), D(A ∩ C,B ∩ C)} ≤ D(A,B), for all C ∈ F(X), where the
union and intersection are defined by means of S and T , respectively.

The basic study related to the topic can be found in [10, 11].
Distance is a measure of the difference between two objects. For the case of IFSs the axiomatic

definitions of a distance (metric) are described as follows:

Definition 2. A distance (metric) d in an intuitionistic fuzzy set A in a universe of discourse X is
a real function d : A× A → R, which satisfies the following conditions for x, y, z ∈ A:

(d1) d(x, y) ≥ 0 (non-negativity),

(d2) d(x, y) = 0 ⇔ x = y (coincidence),

(d3) d(x, y) = d(y, x) (symmetry),

(d4) d(x, z) + d(z, y) ≥ d(x, y) (triangle inequality).

In the literature (see [10]) different measures can be found, namely the Type 1-Distance
measures (based on the Hamming distance, normalized Hamming distance, Euclidean distance,
normalized Euclidean distance) and Type 2-Distance measures (based on fuzzy implications).
These approaches have been deeply developed by K. Atanassov (see [2]).
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Analogously, for the similarity measure we have another approach:

Definition 3. A similarity measure S in an intuitionistic fuzzy set A in a universe of discourse X
is a real function S : A× A → R, which satisfies the following conditions for x, y, z ∈ A:

(S1) 0 ≤ S(x, y) ≤ 1,

(S2) S(x, y) = 1 if and only if x = y,

(S3) S(x, y) = S(y, x),

(S4) if x ⊆ y ⊆ z, then S(x, z) ≤ S(x, y) and S(x, z) ≤ S(y, z).

Also in this case many formulas in order to compute the similarity between IFSs have been
appeared. For our purposes, we do not follow it, but we present the another concept of divergence
measure originally based for fuzzy sets. Some generalizations of divergence measure between
two intuitionistic fuzzy sets was presented in a similar way (see more in [5]).

Suppose that X = {x1, x2, . . . , xn} is the finite universe and (X,TM , SM) is the triple. We
present some examples of IF-divergence measures based on Hamming (DHM ) and Hausdorff
distance (DHD), respectively:

DHM(A,B) =
1

2n

n∑
i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|) ,

DHD(A,B) =
1

n

n∑
i=1

max {|µA(xi)− µB(xi)| , |νA(xi)− νB(xi)|} .

Additional theoretical approach was described in [5]. In the next text, we give some computational
study for two applications (namely to pattern recognition and to decision making) in order to see
how our result can differ depending on the triple (X,T, S) and the weighted vector α be used.
The results are presented in the next two sections.

3 Applications to pattern recognition

Let X be a finite universe, let assume that the patterns A1, A2, . . . , Am are represented by intuitionistic
fuzzy sets and let B be a sample represented also by an intuitionistic fuzzy set.

As we can measure the difference between B and Ai for i ∈ {1, . . . ,m}, we obtain the finite
set of divergences: D(A1, B), . . . , D(Am, B).

Finally, the sample B will be associated to the pattern Aj whenever

D(Aj, B) = min
i=1,...,m

D(Ai, B).

That means, the sample B is classified into the pattern from which it differs least.

The following example is based on the one proposed in [12].
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Example 1. Let us consider five kinds of mineral fields, each of them featured by the content of
six minerals and containing one kind of typical hybrid mineral. Those five kinds of typical hybrid
mineral are represented by intuitionistic fuzzy sets A1, A2, A3, A4 and A5 in X = {x1, . . . , x6},
respectively. Let us assume that there is another kind of hybrid mineral B, and we want to
classify it into one of the aforementioned mineral fields. The minerals are described by means
of the intuitionistic fuzzy sets defined in Table 1, where the pair Ai(xj) = ⟨µA(x), νA(x)⟩ ;
i ∈ {1, . . . , 5} , j ∈ {1, . . . , 6} represents values of the membership and the non-membership
degrees, respectively.

X x1 x2 x3 x4 x5 x6

A1 ⟨0.74, 0.19⟩ ⟨0.03, 0.68⟩ ⟨0.19, 0.73⟩ ⟨0.49, 0.32⟩ ⟨0.02, 0.88⟩ ⟨0.74, 0.17⟩
A2 ⟨0.12, 0.71⟩ ⟨0.03, 0.94⟩ ⟨0.05, 0.52⟩ ⟨0.14, 0.62⟩ ⟨0.02, 0.91⟩ ⟨0.39, 0.52⟩
A3 ⟨0.45, 0.49⟩ ⟨0.66, 0.28⟩ ⟨1.00, 0.00⟩ ⟨1.00, 0.00⟩ ⟨1.00, 0.00⟩ ⟨1.00, 0.00⟩
A4 ⟨0.28, 0.61⟩ ⟨0.52, 0.44⟩ ⟨0.47, 0.50⟩ ⟨0.30, 0.39⟩ ⟨0.19, 0.64⟩ ⟨0.74, 0.22⟩
A5 ⟨0.33, 0.57⟩ ⟨1.00, 0.00⟩ ⟨0.18, 0.62⟩ ⟨0.16, 0.84⟩ ⟨0.05, 0.72⟩ ⟨0.68, 0.23⟩
B ⟨0.63, 0.29⟩ ⟨0.52, 0.41⟩ ⟨0.21, 0.73⟩ ⟨0.22, 0.48⟩ ⟨0.07, 0.92⟩ ⟨0.66, 0.30⟩

Table 1. The kinds of hybrid minerals represented by intuitionistic fuzzy sets.

We consider the weighted vector assigned to the experts and established as follows:

α = {0.2, 0.3, 0.125, 0.125, 0.125, 0.125} .

The values for the differences between membership degrees, i.e.,

αj |µAi
(xj)− µB(xj)|

where i ∈ {1, . . . , 5} , j ∈ {1, . . . , 6} are scheduled in the following Table 2.

x1 x2 x3 x4 x5 x6

αj |µA1(xj)− µB(xj)| 0.022 0.147 0.003 0.034 0.006 0.010

αj |µA2(xj)− µB(xj)| 0.102 0.147 0.020 0.010 0.006 0.034

αj |µA3(xj)− µB(xj)| 0.036 0.042 0.099 0.098 0.116 0.043

αj |µA4(xj)− µB(xj)| 0.070 0 0.033 0.010 0.015 0.010

αj |µA5(xj)− µB(xj)| 0.060 0.144 0.004 0.008 0.003 0.003

Table 2. Calculation for membership degrees

Analogously, we present the values for the differences between non-membership degrees, i.e.

αj |νAi
(xj)− νB(xj)| ,

where i ∈ {1, . . . , 5} , j ∈ {1, . . . , 6}, see Table 3.
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x1 x2 x3 x4 x5 x6

αj |νA1(xj)− νB(xj)| 0.020 0.081 0 0.020 0.005 0.016

αj |νA2(xj)− νB(xj)| 0.084 0.159 0.026 0.018 0.001 0.028

αj |νA3(xj)− νB(xj)| 0.040 0.039 0.091 0.060 0.115 0.038

αj |νA4(xj)− νB(xj)| 0.064 0.009 0.029 0.011 0.035 0.010

αj |νA5(xj)− νB(xj)| 0.056 0.123 0.014 0.045 0.025 0.009

Table 3. Calculation for non-membership degrees

We use the Hamming distance (denoted by dHM ) to compute the differences between Ai(x)

and B(x) for i ∈ {1, . . . , 5} and some element x ∈ {x1, . . . , x6} as follows:

dHM (Ai(x), B(x)) =
1

2
[|µAi

(x)− µB(x)|+ |νAi
(x)− νB(x)|] .

x1 x2 x3 x4 x5 x6

dHM(A1, B) 0.021 0.114 0.001 0.027 0.006 0.013

dHM(A2, B) 0.093 0.153 0.023 0.014 0.004 0.031

dHM(A3, B) 0.038 0.041 0.095 0.079 0.116 0.040

dHM(A4, B) 0.067 0.005 0.031 0.011 0.025 0.010

dHM(A5, B) 0.058 0.134 0.009 0.026 0.014 0.006

Table 4. Calculation for Hamming distance

In similar way, the Hausdorff distance (denoted by dHD) to compute the differences between
Ai(x) and B(x) for i ∈ {1, . . . , 5} and some element x ∈ {x1, . . . , x6} can be used:

dHD (Ai(x), B(x)) = max [|µAi
(x)− µB(x)| , |νAi

(x)− νB(x)|] .

x1 x2 x3 x4 x5 x6

dHD(A1, B) 0.022 0.147 0.003 0.034 0.006 0.016

dHD(A2, B) 0.102 0.159 0.026 0.018 0.006 0.034

dHD(A3, B) 0.040 0.042 0.099 0.098 0.116 0.043

dHD(A4, B) 0.070 0.009 0.033 0.011 0.035 0.010

dHD(A5, B) 0.060 0.144 0.014 0.045 0.025 0.009

Table 5. Calculation for Hausdorff distance

We will use our method to classify B. We consider the divergence measure proposed as
we have mentioned previously. Let us suppose that X = {x1, . . . , x6} and for weighted vector
αx ≥ 0 for any x ∈ X and

∑
x∈X αx = 1.
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The divergence measure based on the Hamming distance

D(Ai, B) = S
x∈X

dHM (Ai(x), B(x)) ,

where i∈{1, . . . , 5} and S∈{SM , SP , SL, SD} represents the set of all basic triangular conorms.
We recall that:

(SM ) the maximum t-conorm:

D(Ai, B) = max {dHM (Ai(x1), B(x1)) , . . . , dHM (Ai(x6), B(x6))} ,

(SP ) the probabilistic sum:

D(Ai, B) = 1−
6∏

j=1

(1− dHM (Ai(xj), B(xj))) ,

(SL) the Łukasiewicz t-conorm:

D(Ai, B) = min

{
1,

6∑
j=1

dHM (Ai(xj), B(xj))

}
,

(SD) drastic t-conorm:
D(Ai, B) = 1 since there exists j ∈ {1, . . . , 6} such that dHM (Ai(xj), B(xj)) > 0.

The results for divergences are scheduled in the following Table 6.

SM SP SL SD

D(A1, B) 0.114 0.173 0.182 1

D(A2, B) 0.153 0.285 0.317 1

D(A3, B) 0.116 0.347 0.408 1

D(A4, B) 0.067 0.140 0.148 1

D(A5, B) 0.134 0.227 0.246 1

Table 6. The S-local divergences based on the Hamming distance obtained for
S ∈ {SM , SP , SL, SD}.

We can conclude that for the Hamming distance:

• for SM : D(A4, B) < D(A1, B) < D(A3, B) < D(A5, B) < D(A2, B),

• for SP : D(A4, B) < D(A1, B) < D(A5, B) < D(A2, B) < D(A3, B),

• for SL: D(A4, B) < D(A1, B) < D(A5, B) < D(A2, B) < D(A3, B),

• for SD: D(A4, B) = D(A1, B) = D(A3, B) = D(A5, B) = D(A2, B).
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The divergence measure based on the Hausdorff distance

D(Ai, B) = S
x∈X

dHD (Ai(x), B(x)) ,

where i ∈ {1, . . . , 5} and S ∈ {SM , SP , SL, SD}. The results for divergences are scheduled in
the following Table 7.

SM SP SL SD

D(A1, B) 0.147 0.214 0.228 1

D(A2, B) 0.159 0.306 0.345 1

D(A3, B) 0.116 0.367 0.437 1

D(A4, B) 0.070 0.158 0.168 1

D(A5, B) 0.144 0.268 0.230 1

Table 7. The S-local divergences based on the Hausdorff distance obtained
for S ∈ {SM , SP , SL, SD}.

We can conclude that for the Hausdorff distance:

• for SM : D(A4, B) < D(A3, B) < D(A5, B) < D(A1, B) < D(A2, B),

• for SP : D(A4, B) < D(A1, B) < D(A5, B) < D(A2, B) < D(A3, B),

• for SL: D(A4, B) < D(A1, B) < D(A5, B) < D(A2, B) < D(A3, B),

• for SD: D(A4, B) = D(A1, B) = D(A3, B) = D(A5, B) = D(A2, B).

We can see that in all the cases we should classify B into the hybrid mineral A4 (in the
case of the drastic t-conorm it is just an option). However, the behaviour of any divergence
is different. Thus, for instance, for the maximum t-conorm, a different rank for divergences
between A1, A3, A5 occured. In other case, for SP and SL the same results have been obtained, in
both cases since the Hamming and the Hausdorff distance, respectively, has been considered. In
general, all the points in the referential X are essential to obtain the value of the divergence. Of
course, in the case of SD, the information given by the divergence is insignificant.

Apart from the t-conorm used to define the S-divergence measure, the weights can also play
an interesting role. For further work we could consider the weight vector

α = {k, 0.5− k, 0.125, 0.125, 0.125, 0.125}

for k ∈ {0, 0.1, . . . , 0.5}.

4 Applications to decision making

Now, we will apply previous theoretical results in the multiple attribute decision making.
First we present the following notation: let A = {A1, . . . , Am} denote a set of m alternatives;

let X = {x1, . . . , xn} be a set of n attributes; and α = (α1, . . . , αn) be its associated weight
vector, where αi ≥ 0 and

∑
i αi = 1.

341



Each alternative Ai will be expressed by an intuitionistic fuzzy set with the elements xj , where
Ai(xj) represents the degree in which alternative Ai agrees with attribute xj . We create the new
alternatives A+ and A− defined by

A+ =
m⋃
i=1

Ai, and A− =
m⋂
i=1

Ai.

The alternatives A+ and A− can be interpreted as the “optimal” and the “least optimal”, respectively.
In this sense, the preferred alternative A would be more similar to A+ and more different from
A−, simultaneously.

Finally, we consider the quotient ki defined as:

ki =
D(Ai, A

+)

D(Ai, A+) +D(Ai, A−)
.

It means that if some alternative Aj has a quotient kj for which kj < ki for all i ̸= j, then the
alternative Aj is better as Ai in the sense previous described. Thus, the optimal is the alternative
Ai whose ki is the minimum.

The previous procedure will now be explained by the means of an example based on the one
proposed in [13].

Example 2. The government has to decide among five different energy strategies: A1−A5. Each
of them is assessing four attributes: economic (xEC), technological (xT ), environmental (xEN )
and socio-political (xP ). The following weight vector of these attributes (αEC , αT , αEN , αP ) =

(0.4, 0.2, 0.3, 0.1) will be considered.
Let us assume that alternatives Ai are defined by the intuitionistic fuzzy sets given in Table 8.

X xEC xT xEN xP

A1 ⟨0.2, 0.4⟩ ⟨0.7, 0.1⟩ ⟨0.6, 0.3⟩ ⟨0.5, 0.4⟩
A2 ⟨0.4, 0.5⟩ ⟨0.5, 0.3⟩ ⟨0.8, 0.2⟩ ⟨0.6, 0.3⟩
A3 ⟨0.5, 0.5⟩ ⟨0.6, 0.3⟩ ⟨0.9, 0.1⟩ ⟨0.7, 0.2⟩
A4 ⟨0.3, 0.4⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.3⟩
A5 ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩ ⟨0.1, 0.7⟩ ⟨0.3, 0.6⟩

Table 8. Definition of five energy strategies.

We will consider the triple (X,T, S), where S is used to define the union and T to define
the intersection five alternatives represented by intuitionistic fuzzy sets. The corresponding
intuitionistic fuzzy sets A+ and A− defined in Table 9 will be computed. For all basic t-norms
and t-conorms, the obtained results will be compared. The results are illustrated in the following
four cases:

(1) for the triple (X,TM , SM) and SM -local divergence

A+ =
m⋃
i=1

Ai = ⟨SM (µA1 , . . . , µA5) , TM (νA1 , . . . , νA5)⟩ ,

A− =
m⋂
i=1

Ai = ⟨TM (µA1 , . . . , µA5) , SM (νA1 , . . . , νA5)⟩ .
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X xEC xT xEN xP

A+ ⟨0.8, 0.1⟩ ⟨0.8, 0.1⟩ ⟨0.9, 0.1⟩ ⟨0.7, 0.2⟩
A− ⟨0.2, 0.5⟩ ⟨0.5, 0.3⟩ ⟨0.1, 0.7⟩ ⟨0.3, 0.6⟩

Table 9. Definition of the most optimal and the least optimal alternatives for (X,TM , SM).

In the next step for any element x ∈ {xEC , xT , xEN , xP} and each i ∈ {1, . . . , 5} we have
computed the differences

αx |µAi
(x)− µA+(x)| , αx |νAi

(x)− νA+(x)| ,

αx |µAi
(x)− µA−(x)| , αx |νAi

(x)− νA−(x)| ,

since alpha vector α = (αEC , αT , αEN , αP ) = (0.4, 0.2, 0.3, 0.1) is considered.

For the Hamming distance dHM for i ∈ {1, . . . , 5} we obtain:

dHM

(
Ai(x), A

+(x)
)
=

1

2
[αx |µAi

(x)− µA+(x)|+ αx |νAi
(x)− νA+(x)|]

and similarly:

dHM

(
Ai(x), A

−(x)
)
=

1

2
[αx |µAi

(x)− µA−(x)|+ αx |νAi
(x)− νA−(x)|]

Analogously, for the Hausdorff distance dHD for i ∈ {1, . . . , 5} we obtain:

dHD

(
Ai(x), A

+(x)
)
= max [αx |µAi

(x)− µA+(x)| , αx |νAi
(x)− νA+(x)|]

and similarly:

dHD

(
Ai(x), A

−(x)
)
= max [αx |µAi

(x)− µA−(x)| , αx |νAi
(x)− νA−(x)|]

For i ∈ {1, . . . , 5} we consider the SM -local divergence measure proposed in the previous
example with the maximum t-conorm, that is,

DHM(Ai, A
+) = SM

x∈X

(
dHM

(
Ai(x), A

+(x)
))

,

DHM(Ai, A
−) = SM

x∈X

(
dHM

(
Ai(x), A

−(x)
))

,

DHD(Ai, A
+) = SM

x∈X

(
dHD

(
Ai(x), A

+(x)
))

,

DHD(Ai, A
−) = SM

x∈X

(
dHD

(
Ai(x), A

−(x)
))

,

then the following divergences will be obtained.

Finally, we have computed the coefficients for each i ∈ {1, . . . , 5}:

ki =
DHM(Ai, A

+)

DHM(Ai, A+) +DHM(Ai, A−)
and ki =

DHD(Ai, A
+)

DHD(Ai, A+) +DHD(Ai, A−)
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The results obtained for divergences based on the Hamming distance:

i D(Ai, A
+) D(Ai, A

−) ki

1 0.18 0.14 0.57

2 0.16 0.18 0.47

3 0.14 0.21 0.40

4 0.16 0.17 0.49

5 0.21 0.20 0.51

Table 10. Comparison of five alternatives optimality for SM -local divergence.

The results obtained for divergences based on the Hausdorff distance:

i D(Ai, A
+) D(Ai, A

−) ki

1 0.24 0.15 0.62

2 0.16 0.21 0.43

3 0.16 0.24 0.40

4 0.20 0.18 0.53

5 0.24 0.24 0.50

Table 11. Comparison of five alternatives optimality for SM -local divergence.

We see that:

• k3 < k2 < k4 < k5 < k1 for Hamming distance,

• k3 < k2 < k5 < k4 < k1 for Hausdorff distance,

and conclude that in accordance with the considered criteria the most optimal alternative is
A3 in both cases, but for alternatives A4 and A5 different results can be obtained.

(2) for the triple (X,TP , SP ) and SP -local divergence

X xEC xT xEN xP

A+ ⟨0.966, 0.004⟩ ⟨0.996, 0⟩ ⟨0.998, 0.001⟩ ⟨0.979, 0.004⟩
A− ⟨0.010, 0.919⟩ ⟨0.118, 0.682⟩ ⟨0.030, 0.879⟩ ⟨0.032, 0.906⟩

Table 12. Definition of the most optimal and the least optimal alternatives for (X,TP , SP )

Now, we consider the SP -local divergence measure with the probabilistic sum, that is,

D(A,B) = SP
x∈X

αx · |A(x)−B(x)|,

then the following results will be obtained.
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The results obtained for divergences based on the Hamming distance:

i D(Ai, A
+) D(Ai, A

−) ki

1 0.369 0.403 0.478

2 0.342 0.430 0.443

3 0.289 0.477 0.377

4 0.321 0.448 0.417

5 0.359 0.434 0.453

Table 13. Comparison of five alternatives optimality for SP -local divergence.

The results obtained for divergences based on the Hausdorff distance:

i D(Ai, A
+) D(Ai, A

−) ki

1 0.452 0.451 0.501

2 0.369 0.445 0.453

3 0.304 0.501 0.378

4 0.388 0.489 0.442

5 0.401 0.455 0.468

Table 14. Comparison of five alternatives optimality for SP -local divergence.

We conclude that k3 < k4 < k2 < k5 < k1 for Hamming distance as well as for Hausdorff
distance, i.e. the most optimal alternative is A3, too.

(3) for the triple (X,TL, SL) and SL-local divergence

X xEC xT xEN xP

A+ ⟨1, 0⟩ ⟨1, 0⟩ ⟨1, 0⟩ ⟨1, 0⟩
A− ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩

Table 15. Definition of the most optimal and the least optimal alternatives for (X,TL, SL).

The results obtained for divergences based on the Hamming distance:

i D(Ai, A
+) D(Ai, A

−) ki

1 0.44 0.58 0.431

2 0.40 0.61 0.396

3 0.33 0.68 0.323

4 0.37 0.64 0.366

5 0.42 0.59 0.416

Table 16. Comparison of five alternatives optimality for SL-local divergence.
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The results obtained for divergences based on the Hausdorff distance:

i D(Ai, A
+) D(Ai, A

−) ki

1 0.55 0.69 0.444

2 0.44 0.65 0.404

3 0.34 0.69 0.330

4 0.46 0.73 0.387

5 0.48 0.65 0.425

Table 17. Comparison of five alternatives optimality for SL-local divergence.

For the Łukasiewicz t-conorm the same result can be concluded, i.e.,

k3 < k4 < k2 < k5 < k1

for the Hamming and also the Hausdorff distance, i.e., the most optimal alternative is again
A3.

(4) for the triple (X,TD, SD) and SD-local divergence

X xEC xT xEN xP

A+ ⟨1, 0⟩ ⟨1, 0⟩ ⟨1, 0⟩ ⟨1, 0⟩
A− ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩

Table 18. Definition of the most optimal and the least optimal alternatives for (X,TD, SD).

i D(Ai, A
+) D(Ai, A

−) ki

1 1 1 0.5

2 1 1 0.5

3 1 1 0.5

4 1 1 0.5

5 1 1 0.5

Table 19. Comparison of five alternatives optimality for SD-local divergence.

Since ki = 0.5 for all i ∈ {1, . . . , 5}, one can not make decision based on the obtained
information.

We could consider not only different t-conorms, but also different weights for any particular
problem and again different results could be obtained.
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5 Conclusions

We have extended the results for divergence measures into the more general objects as intuitionistic
fuzzy sets. Some examples of possible applications of this approach to pattern recognitions and
to decision making are presented in this work. In fact, the results depend on the triple (X,T, S),
weighted vector α as well as on the kind of metric used to define the divergence measure based
on the distance (in our case only the Hamming or Hausdorff distance). In the future work, we
intend to continue with deeper study in field of possible applications.
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