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1 Introduction

The concept of intuitionistic fuzzy sets was introduced by Atanassov [5—7] as a generalization
of fuzzy sets previously introduced by Zadeh [24]. Atanassov and Stoeva [8] generalised this
concept by taking the evaluation set as a lattice. After a few years, Thomas and Nair [21]
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studied intuitionistic fuzzy sublattice, intuitionistic fuzzy ideals, and intuitionistic fuzzy filters
on a lattice. For more details, we refer to [1-3, 13, 14, 16, 18]. Milles, Zedam and Rak in [18]
introduced the notion of prime intuitionistic fuzzy ideal and filter and studied many
characterizations of these notions.

The notion of a 2-absorbing ideal of a commutative ring was introduced by Badawi [9].
A proper ideal / of a commutative ring R is said to be a 2-absorbing, if whenever a,b,c € R
such that abc € I, then either ab € [ or ac € I or bc € I. This concept was generalised by
Anderson and Badawi [4], Badawi and Darani [10], Wasadikar and Gaikwad [22, 23] in other
mathematical structures such as semirings, semigroups, submodules and lattices.

In this paper, we introduce the concepts of an intuitionistic fuzzy 2-absorbing ideal and a
2-absorbing intuitionistic fuzzy ideal of a lattice L. This is a generalization of the concepts of
an intuitionistic fuzzy prime ideal and a prime intuitionistic fuzzy ideal of L introduced by Hur
et al. [16] and Milles et al. [18] respectively. Also, we define a primary intuitionistic fuzzy ideal
and the radical of an intuitionistic fuzzy ideal of L. Some properties of these intuitionistic fuzzy
ideals are proven. We also introduce and study these concepts in the context of product of lattices.

2 Preliminaries

Throughout in this paper, L = (L, A, V) denotes a bounded lattice with least element 0; and
greatest element 1. We recall some concepts and results.

Definition 2.1. ([5-7]) An intuitionistic fuzzy set (IFS) A in L can be represented as an object of
the form A = {(z, pa(z),va(z)):x € L}, where the functions p14: L — [0,1]and v4: L — [0, 1]
denote the degree of membership (namely 114(z)) and the degree of non-membership (namely
va(x)) of each element x € L to A respectively and 0 < pia(x) + va(z) < 1foreach z € L.

Remark 2.2. ([7,13,19])

(i) When pa(z) +va(z) = 1,Va € L. Then A is called a fuzzy set in L.

(ii)) AnIFS A = {(z,pa(z),va(z)) : © € X} is briefly written as A(z) = (ua(z),va(x)),
Vx € L. We denote by [ F'S(L) the set of all IFSs of L.

(iii) Ifp,q € [0, 1] suchthat p+¢ < 1. Then A € I F'S(L) defined by pua(z) = pand vs(z) = ¢,
for all z € L, is called a constant intuitionistic fuzzy set of L. Any IFS of L defined other
than this is referred to as a non-constant intuitionistic fuzzy set.

If A,B € IFS(L),then A C B if and only if pua(z) < pup(x) and va(z) > vp(x),Voe € L
and A= B< A C Band B C A. For any subset S of L, the intuitionistic fuzzy characteristic
function x5 is an intuitionistic fuzzy set of L, defined as ys(x) = (1,0),Vx € S and xgs(x) =
(0,1),Va € L\S. Leta, B € [0, 1] with e+ < 1. Then the crisp set A3 = {x € L : pa(x) >
aand va(x) < B} is called the (o, 3)-level cut subset of A [19]. Further, if A, B € IFI(L).
Then AN B and A U B represent the intersection and union of intuitionistic fuzzy sets A and B,
respectively. These are defined as pianp () = pa(z) A pp(2) ; vans(z) = va(x) V vg(x), for all
x € Land paup(z) = pa(x) V up(z) s vaus(x) = va(z) Avg(x), forall z € L [13].
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Definition 2.3. ([16, 18]) Let L. = L; x Ly be the direct product of lattices L; and L. Let
Ay € IFS(Ly) and Ay € IFS(Ly). Then their direct product is denoted by A; x A, and is an
intuitionistic fuzzy set of L defined by

NJA1><A2(:E7y) = H’Ai('r) A ﬂAz(y) and VA1XA2(:E73/) = VAi(I) \% VAz(y)vv(Ia y) € L.

Definition 2.4. ([21]) Let A € IF'S(L). Then A is called an intuitionistic fuzzy lattice (IFL) of
L, if for all x,y € L, the followings are satisfied

(i) palz Vy) > min{pa(r), pa(y)};
(i) pea(x A y) > min{pa(z), pa(y)};
(iii) va(z Vy) < max{va(z), va(y)};
(iv)va(z A y) < max{va(z),va(y)}-

Definition 2.5. ([21]) Let A € IF'S(L). Then A is called an intuitionistic fuzzy ideal (/ F'I) of
L, if for all z,y € L, the followings are satisfied

(i) pa(z Vy) = min{pa(z), pa(y)};
(i) pa(z Ay) = max{pa(z), pa(y)};
(i) va(z V y) < max{va(z),va(y)};
(iV)va(z Ay) < min{va(z),va(y)}.

Note that p14(0) > pa(x) > pa(1ln), #a(0r) < pa(z) < pa(lp),Ve € L. The set of all
intuitionistic fuzzy ideals of L is denoted by I F'I(L).

Theorem 2.6. ([1,18]) Let L be a lattice and A € IFS(L). Then it holds that A is an IFI on L

if and only if the following two conditions are satisfied:
(i) pa(e Vy) = min{pa(z), pa(y)};
(ii) va(x V y) = max{va(z),va(y)}, for any z,y € L.

Theorem 2.7. ([1,18]) Let L be a lattice and A € I FI(L). Then it holds that A is an intuitionistic
fuzzy prime ideal (IFPI) on L if and only if the following two conditions are satisfied:

(i) pa(z A y) = max{pa(x), pa(y)};

(ii) va(z A y) = min{va(z),va(y)}, for any x,y € L.

Theorem 2.8. ([16]) Let L = L X Lo X - - - X Ly, be the direct product of lattices L1, Lo, . .., L.
lfAl E[FS(LZ), (’l: 1,2,...,k>. ThenAl XAQX"‘XAk GIF[(Ll ><L2><‘~><Lk)andis
defined as MAlezxmxAk(xbxz; e 7$k) = ,UAl(xl) A MAQ(xz) ANERRERA MAk(JCk) and

VA, x Agscoxc Ay (T15 T2y ooy Tg) = Va, (1) V va,(x2) V -+ - V va, (xk), for all (x1,2q,...,25) €
Ly X Ly X -+ X L.
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3 Intuitionistic fuzzy prime ideals

and prime intuitionistic fuzzy ideal of a lattice
Definition 3.1. ([17]) A non-empty subset / of a lattice L is called an ideal if for a,b € L, the
following conditions holds

1. Ifa,be I,aVbeland

2. Ifa<bandbe I,thena € [

A proper ideal I (i.e., I # L) is called a prime ideal, if a A b € I implies that either a € [ or
bel

On the line of Koguep et al. [17], we will define prime intuitionistic fuzzy ideal (PIFI) of a
lattice as follow:

Definition 3.2. A proper IFI P of a lattice L is called a prime intuitionistic fuzzy ideal (PIFI) of
L if for any two IFIs A and B of L

AN B C P implies that either A C Por BC P

From the definition of PIFI, following results are easy to derive.
Theorem 3.3. Let I be an ideal of L and x denote the IF characteristic function of I. Then
(i) I is a prime ideal of L if and only if x1 is an IFPI of L;
(ii) I is a prime ideal of L if and only if x1 is a PIFI of L.
Proof. Clearly, x; is an IFI of L.
(i) Suppose that [ is a prime ideal of L. Let a,b € L, we need to show that

s (@ A B) = iy, (@) V iy, () and v, (a A B) = 1, (@) A vy, (D).

Ifa,b e I,thena A b€ I and we have

P, (@AND) =1=1V1=p,,(a)Vpu,,(b)andv,, (aNb) =0=0A0=r,,(a)Av,, (D).
If a,b ¢ I, then as I is a prime ideal a A b ¢ I and we have

Lo (@A) =0=0V0=p,,(a)Vp,(b)and v, (aNb) =1=1A1=uv,,(a) Av,, (D).
If only one of aorbisin I,saya € [ and b ¢ I, then a A b € I, we have

py, (@) = 1,1y, (a) =0, py, (b) = 0,v,,(b) = L and u,,(a Ab) =1,v,,(a ANb) =0.

Thus piy,(a AD) =1=1V 0 = p,,(a)V i, (b) and v,,(a AD) =0=0A1=v,,(a) Av,, (D).
Therefore, y; is an IFPI of L.

Conversely, suppose that x is an IFPI of L. Leta A b € I. Then
Hox 1 ((l/\b) =1= oy (a’) V iy (b) and Vxt (a/\b) =0= VUx1 (a)/\VXI (b> (*)

If both a,b ¢ I, then 1, (a) = gy, (b) = 0 and vy, (a) = v,,(b) = 1 implies that 4, (a) V
fir; (b) = 0 and vy, (a) A vy, (b) = 1, which contradict (x). Hence / must be a prime ideal of L.
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(ii) Suppose that [ is a prime ideal of L. Let A, B € [ FI(L). Suppose that AN B C x7.

If A ¢ x5, B € xi, then there exists a,b € L such that p1,,(a) < pa(a),vy,(a) > va(a) and
L (B) < pa(b), vy, (b) > v4(b). Then by definition, we conclude that a, b ¢ I. For, if say a € 1,
then 1, (a) = 1,7y, (a) = 0leads to p14(a) > 1,v4(a) < 0, which is not possible.

Since [ is a prime ideal of L, we geta A b ¢ I. Hence pu,,(a A b) = 0,v,,(a A b) = 1. Since
A, BareIFIs of L, we have pia(a) < pa(andb),va(a) > va(anb) and pup(b) < pp(anb),vp(b) >
vp(a A b). As the image of any element under an IFS is a non-zero number. From the above, we
get

0

fi (@) A i, (b)
fra(a) A pp(b)

pala Ab) A pg(a AD)
tans(a A D)

/’LXI (CL A b)
= 0.

Hx 1 (a A'Db)

IN

A A

IN

Thus we get 0 < 0. Similarly, we can show 1 > 1, which is not possible. Hence either A C y; or
B C xr.

Conversely, suppose that y; is a PIFI of L. Suppose that for some a,b € L,a Ab € I, but
a,b ¢ I. Define IFSs A and B of L as follows

1, ifz € (d] 0, ifz € (q
pa(x) = _5ovalr) = -
0, otherwise 1, otherwise .
and
1, ifze () 0, ifz e (0]
pp(z) = s ove(r) = )
0, otherwise 1, otherwise .
Then AN B C yxy, a contradiction. Hence [ is a prime ideal of L. ]

The following example shows that the condition of “primeness” in Theorem 3.3 is necessary.
Example 3.4. Consider the lattice as shown in the Figure 1:

1

0

Figure 1

We note that the ideal I = (0] is not a prime ideal of L,asa Ab=0¢€ I,buta ¢ I and b ¢ I.
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(i) We know that ,uXI(a Ab) =1, py,(a) = py, (b)) = 1; v, (@ AN b) = 0, vy, (a) = vy, (b) = 0.

Thus p,(a A D) i oy, (@) V iy, (b) and vy, (a A D) 2 vy, (a) Ay, (D).
Hence 7 is not an IFPI of L.

(ii) Define IFIs A and B of L as follows:

( (

1, ifz=0 0, ifr=0
pa() =105, ifr=a ; valr)=1404, ifz=a
\0, ifxr=0,1. \1, ifx =0b,1.
and ) )
1, ifz=0 0, ifz=0
pp(x) =403, ifr=>b ; wvp(x)=406, ifz=>0
0, ifr=a,l. (1, ifr=a,l.

\

Then AN B C x; but neither A C x; nor B C x;. Thus x; is not a PIFI of L.

Theorem 3.5. Let L = L, X Ly be a direct product of lattices Ly, Lo. If P is an IFI of L, then
there exist IFIs Py, Py of Ly, Lo, respectively, such that P = P, X P,. Moreover, if P is an IFPI,
then so are P, and Ps.

Proof. Define P, € IFS(L;),i = 1,2.by Pi(x) = P(z,0) and P»(y) = P(0,y).
Let 1,29 € L1, we have

ppl(r1,0) A (22,0)] = pp(zy A 22,0) = pp, (11 A 22) 3
]/p[(l‘l, 0) A (1'2, 0)] == VP(ZL‘l N 9, 0) == I/pl(l‘l N 132)

and

pp((21,0) V (22,0)] = pp(w1 V 22,0) = pp, (21 V 22) 5

vp[(z1,0) V (22,0)] = vp(xq V 29, vp (21 V 23).

0) =
0) =
Hence pp, (z1 A 22) A ppy (21 V 22) = ppl(@1,0) A (22,0)] A pp[(21,0) V (22,0)] and
vp, (x1 A xa) V vp (21 V 22) = vp[(x1,0) V (22,0)] V vp[(21, ) (x9,0)].

As P is an IFI of L, we have

pp (21 A w2) A pp (1 V 22) = pp[(21,0) A (22,0)] A pp[(21,0) V (22,0)]
pp(x1,0) A pp(z2,0)
= pp(%1) A pp (22).

A%

Thus,

popy (T AT2) Apipy (T1VT2) = pupy (1) App, (22) ()

Similarly, we can show that vp (z1 A z2) V pp(x1 V 22) < wvp(x1) V vp(22).

Also, pp (z1 V x2) = pp[(21,0) V (22,0))] = pp(21,0) A pp(22,0) = pp (1) A pp (22).

Similarly, we can have vp (x; V 23) = vp (x1) V vp (x2). Therefore, from (**) we get

pp (1 Axe) > pp (1) A pp, (x2). Similarly, we can show that vp, (21 Az2) < vp, (21) Vp, (22).
Thus P is an IFI of L;. Similarly, we can show that P, is an IFI of L.
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Next, let z; € L1,y; € Lo, we have

pe(r,y1) = pel(z1,0) vV (0,41)]
= pp(r1,0) A pp(0,y1)
= pp (21) A pp, (1)

= MPle2($1ay1)-

Similarly, we can show that vp(x1,y1) = vpxp,(21,y1). This implies that P = P, X P,.
Further, suppose that P is an IFPI of L. Let 1, x5 € L. Then

pp (21) V pp (22) = pp(21,0) V pp(zs,0)
= pp[(z1,0) A (22,0)]
= pup(zy A 2,0)
= pup, (z1 A x9).

Similarly, we can show that vp, (z1) A vp,(z2) = vp (21 A 23).
This implies that P, is an IFPI of L;. In a same way, we can show that P, is an IFPI of L. [l

The following examples shows that the converse of Theorem 3.5 may not be true.

Example 3.6. Let L. = L, x Ly be a direct product of lattices L,, Ly. Let P, P, be IFPIs of
Ly, Lo, respectively. Then P = P; X P, need not be an IFPI of L.

Proof. Consider the lattices Ly, L, as shown below:

0 X =

Figure 2. Product lattice

Define IFSs P, € IFS(Ly) and P, € IFS(Ls) as follows:

(1,0), ifz=0,b
Pi(z) =4 (05,04), ifr=a ; Pz)=
(0,1), ifz=1.

(1,0), ifz=0
0,1), ifz=1.

We note that P, is an IFPI of L, and P, is an IFPI of L,. We consider P € I F'S(L; x Ls) defined
by

pp(z,y) = pp (¥) A pp,(y) and vp(z,y) = pp () V vp,(y).
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ie., P =P x P,. We have

(1,0), if (z,y) = (0,0), (b,0)
P(z,y) = < (0.5,04), if (z,y) = (a,0)
(0,1), otherwise .

Now, 1p[(0,1) A (1,0)] = up(0,0) = 1 and vp[(0,1) A (1,0)] = vp(0,0) = 0.
Also, pup(0,1) =0, up(1,0) = 0,vp(0,1) = 1,vp(1,0) = 1 implies that

pp[(0,1) A (1,0)] £ pup(0,1) V pp(1,0) and vp[(0, 1) A (1,0)] £ vp(0,1) A vp(1,0).
Hence P is not an IFPI of L. []

In Example (3.6), we have shown that a product of two IFPIs need not be an IFPI. However,
we have the following theorem.

Theorem 3.7. Let L = Ly X Ly be a direct product of lattices L, Ly. Let Py be an IFI of L.
Then the product P, X X1, is an IFPI of L if and only if P, is an IFPI of L.

Proof. Suppose that P; is an IFPI of L. We have

1Py xx, [(T1591) A (T2,92)] = B, (01 A 22,91 A )]
= e (@1 A T2) A iy, (1 A y2)
= pp(r1 Axg) A1
= pp (1 A 22)
= pp(21) V pp (22)
= [pp (1) A1V [pp (22) A ]
= e (@) A gy, ()] V (e (22) A iy, (92)]
= WPyxxe, (21, Y1) V 1P, (T2, 92).-

Similarly, we can show that vp,x, [(Z1,1) A (T2, Y2)] = Vpixxy, (T1,41) A VPisyy, (T2, Y2).
Hence P, x xr, 1s an IFPI of L.
The converse part can be similarly proved. O]

Theorem 3.8. Let L = L, X Ly be a direct product of lattices L, Ly. Let Py be an IFI of Ls.
Then the product x1,, X Py is an IFPI of L if and only if P is an IFPI of L.

Proof. Straightforward. ]

Theorem 3.9. Let L = L x Ly be a direct product of lattices L, L. Let P;, Q; be IFIs of L,
and Lo, respectively. Let R;; = P; X ();. Then NR;; = (NP;) x (NQ;).
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Proof. Let (x,y) € L, we have

tor, (T, y) = Nglerxg, (2, y)]

= Nijlur (@) A pg, (y)]
[Nig{rr (@)} A [Ni{g, (v) 1]
= [N{pr(2)} A [A{re, (y)}]
[np (@)] A g, (Y)]
= MmPimej(%y)-

Similarly, we can show that v, (2,y) = vnp,xng, (T, V).
Hence NR;; = (NF;) x (NQ;). O

4 Intuitionistic fuzzy primary ideals

and primary intuitionistic fuzzy ideal of a lattice

Definition 4.1. [23] Let L be a lattice with 0. An ideal I of L is called a primary ideal, if for
a,b € Lya ANb € I implies that eithera € [ or b € V1, where v/T denotes the radical of [ (.e.,
the intersection of all prime ideals of L containing I).

If there does not exist a prime ideal containing an ideal [ in a lattice L, then we have VI =L.

We define the radical of an IFI. Since there are two concepts of primeness (namely an IFPI
and a PIFI), we can introduce two concepts, of the radical and primeness. For the radical of an
IFS, we use the notation \/A. The content will decide the radical (i.e., whether IF prime radical
or prime IF radical).

Definition 4.2. Let () be an IFI of a lattice L. We define the IF prime radical (respectively, prime
IF radical) of () as the intersection of all IFPIs (respectively, PIFIs) containing () and we denote

it by Q.

We note that for an IFI Q of L always Q C 1/Q. It can be shown that for an I of L we have
VXI = XJT*

Definition 4.3. A proper IFI () of a lattice L is called an IF primary ideal of L, if for a,b € L the
following holds:

Hola nb) < ola) V yg(B) and vgla Ab) > vola) Avg(b).

Lemma 4.4. Let I be a proper ideal of L. Then I is a primary ideal of L if and only if x; is an
IF primary ideal of L.

Proof. Suppose that [ is a primary ideal of L. Leta,b € L
(i) If a Ab € I, then as [ is a primary ideal of L, eithera € [ or b € V/I. Thus, we have

luXI(a N b) < IuXI(a) N ILLX\ﬁ<b> and VXI(CL N b) > VXI<a) A VXﬁ(b)'
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(i) IfaAb ¢ I, thenclearly a ¢ [ and b ¢ I. In this case also, we have

b (G AB) < iy (@) V iy (B) and v, (a A B) = 1, (a) A (D).
Hence x; is an IF primary ideal of L.
Conversely, suppose that ; is an IF primary ideal of L. Let a A b € I. Then
Hoxr (CL A b) S Hoxr (CL) v ILLXﬁ(b) and Vx1 (CL N b) Z Ux1 (a> A VXﬁ(b)

implies that either 41, (a) = 1,vy,(a) = 0 or py - (b) = 1, v .(b) = 0.
This further implies that either & € I or b € /1. Hence I is a primary ideal of L. O]

Now we give a relationship between an IFPI and an IF primary ideal.
Lemma 4.5. If () is an IFPI of L, then () is an IF primary ideal.
Proof. Let Q be an IFPI of L. For all a,b € L, we have
pola A b) = pgla) V po(b) and vg(a A b) = vo(a) A vg(b).
Since @ € /Q, we get 1o (D) < p/5(b) and vg(b) > v, /5(b). Thus we have
pHolaAb) < pgla) V i g(b) and vo(a Ab) = vo(a) A v q(b)
Hence () is an IF Primary ideal. [

The following example shows that the converse of the Lemma (4.5) does not hold.

Example 4.6. Consider the ideal I = (a] of the following lattice as shown in Figure 3.

Figure 3

We note that J = (d] is the only prime ideal of L containing /. Hence VI = J. We know
that for any ideal K of L, \/xx = x - Hence \/xX; = X7 = Xxs. Since J is a prime ideal, x,
is an IFPI and so x; is an IF primary ideal of L. Also, because b, c ¢ I, we have p,, (b A c) = 1,
but iy, (b) V gy, (c) = 0. Similarly, v, (b A ¢) = 0, but v,,(b) A vy, (c) = 1. Thus x; is not an
IFPI of L.

Theorem 4.7. Let () be an IFI of L. Then Q) is an IF primary ideal if and only if the level cut set
Q(t,s), where t,s € [0,1] such that t + s < 1 is a primary ideal of L.

Proof. Suppose that () is an IF primary ideal of L. Let a,b € L be such thata A b € @) and
a & Qus),b ¢ \/Q,)- Then we have

polanb) >t vglanb) < sandt < pg(a),s > vg(a),t < pug(b),s > v q(b).
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Since () is an IF primary ideal, we have

pHolaAb) < pgla) V i g(b) and vo(a A b) = vo(a) A v g(b).
Thus, we gett < t and s > s, which is not possible. Hence () ) is a primary ideal of L.

Conversely, suppose that ()(; 5 is a primary ideal of L. Let a,b € L be such that

pala Ab) £ ngla) V pyg(b) and vo(a Ab) 2 vo(a) Avyg(b).
Let pg(a AD) =t,vg(a Ab) = s. Then pg(a) < t,u g(b) <tandvg(a) > s,v,g(b) > s.
Since ;) is a primary ideal of L, a A b € ()(; 5 implies that either a € Q) 0r b € /Q 1)
i.e., either jg(a) > tor pu 5(b) > tand vg(a) < sorv q(b) < s, acontradiction.
Hence @) is an IF primary ideal of L. [

From this onwards, L will be a complemented lattice.

Definition 4.8. A proper IFI () of a lattice L is called a primary IFI of L if for A, B € IFI(L)
such that

AN B C Q implies that either A C Q or B C 1/Q.
Now we give a relationship between a PIFI and a primary IFI.
Lemma 4.9. If Q) is a PIFI of L, then Q) is a primary IFI of L.

Proof. Let Q isaPIFL of L. Let AN B C @ for some A, B € [FI(L). Since @ is a prime IFI,
either A C Q or B C Q. Since Q C 1/Q always, we get the result. O

The following result gives the existence of primary IFIs which are not PIFI.

Theorem 4.10. Let [ be a primary ideal of L, I # L. The IFS Q) of L defined by

1, ifxel 0, ifxel
vo(z) =

po(z) = , ; o
a, ifrel—1 a, ifrel -1

where o is the complement of o in L (i.e., o Ao = 0,a V o = 1) is an IF primary ideal of L.

Proof. Clearly, Q is an IFI of L. Since Q C /@, we have () < i g(2) and vg(z) > v ()
for all x € L. Therefore, if x € I, then i1 5(z) = 1 and v (z) = 0 and

if ¢ I, thenpu 5(z) =t > aand v g(z) =s <o

Let A and B be IFIs of L such that AN B C Q. Suppose that A ¢ Q and B € /Q. let
x € L be such that pi4(x) > pg(x),va(zr) < vg(z). This implies that x € I, for otherwise
pa(x) > 1,v4(z) < 0 which is not possible.

Let pua(x) > k1 > a = pg(z), va(z) < Iy < o' = vo(w).
Lety € L such that up(y) > 11,q(y), ve(y) < v q(y).

Clearly, y ¢ /I, otherwise yu5(y) > tyo(y) > pe(y) = Land vp(y) < vg(y) < ue(y) =0,
which is not possible.

Let 14(y) = ko and v4(y) = ly. Then ky > avand Iy < . Since [ is primary, z Ay ¢ [
Hence jig(z A y) = o, vg(z Ay) = o, we get
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pans(z Ay) = min{pa(z), pp(y)t = min{k;, ko} > a = po(z Ay) and
vans(r Ay) < max{va(r),vp(y)} = max{l, b} < o' =vo(z Ay)

which is not possible. Thus () is a primary IFI of L. [

Theorem 4.11. If Q) is a primary IFI of L, then the level cut set Q ), where t,s € [0,1] such
that t + s < 1 is a primary ideal of L.

Proof. Leta,b € Lbesuchthata Ab e Qu and a ¢ Q. Define IFIs A, B of L as follows:

Alr) = (t,s), ?fxga; Blx) = (t,s), ?fxgb
0,1), ifzxLa (0,1), ifz £Lb.

Then AN B C Q. Also, A € Q as a ¢ Q. implies pg(a) < t = pala),vgla) > s = va(a).
Since @ is a primary IFI, we have B C /Q. Hence t = pup(b) < pi /5(b),s = vg(b) > v q5(b)
and so b € /Q(,s). Thus Q) is a primary ideal of L.

The following example shows that the converse of Theorem (4.11) does not hold.

Example 4.12. Consider the set N of natural numbers. Then (N, divisibility) form a partially
ordered set and thus a lattice under the join (V) and meet (A) operations defined as

aVb=Ilem{a,b} and a A b = gcd{a,b}; forall a,b € N.

Let p be any prime number. Consider ¢;,s; € (0,1),0 < i < mbe such thatt; >ty > --- > t,,
and s; < s9 < --- < 8,, with the condition ¢; + s; < 1.

Consider the IFI () of N defined as

(to,S()), ifx e (pm]
Qz) = _ _ i
(tiys:), ifxe(p™]—@Em " ],i=1,2,...,m.

Then we have

) (to,%0), ifz € (p]
\/é( )= (ti,s:), ifxeN—(pl.

Define IFIs A and B of N by

(o, ), ifz e (p]
(0,1),  otherwise .
and B(x) = (to, so) for all z € N. Then

to,s0), ifz € (pm
(0,1), otherwise .
Thus ANB C Q C v/Qand A € Q. We note that if z € N — (p], then
po(z) =t, < to=pp(r)and vg(x) = s, > so = vp(x).
Thus B ¢ +/Q. Hence @ is not primary IFI. However, each level cut ideal Q4 ,,) of @ is
primary,z =1,2,... m.
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Theorem 4.13. Let () be a non-constant IFI of a lattice L. Then \/Q is a PIFI of L if and only if
VQ is a primary IFI of L.

Proof. Let\/Qbe aPIFlof L. Let A, B € IFI(L) be suchthat AN B C 1/Q. As v/Q is a prime

IFI of L, either A C /Q or B C +/Q). Since \/+/@Q) = v/Q. We conclude that /() is a primary
IFI of L.

Conversely, suppose that /@ is a primary IFI of L. Let A,B € IFI(L) be such that

AN B C +/Q. As /Q is primary IFI, either A C /Q or B C /\/Q = +/Q. Hence \/Q
is a PIFI of L. O

Remark 4.14. From Example (3.6), we conclude that in general /P x Q # v/ P x /Q.

Theorem 4.15. Let L. = Ly X Ly be a direct product of lattices Ly, L.

(i) Let Py be an IFI of Ly. Then /P, X X1, = VP1 X XL,-
(ii) Let P; be an IFI of Lo. Then \/x1, X Py = X1, X / Ps.

Proof. (i) Let P be an IFI of L such that P, x x, € P . By Theorem (3.5), P = Q; x ), for
some IFIs @); of Ly and Q)5 of Ly. Then Py C @y and x 1, C ). It follows that Q)> = x1,. Thus

P C (1 X x1,. This shows that /P, X x1, = VP X XL,

(ii) The statement can be similarly proved. ]

5 Intuitionistic fuzzy 2-absorbing ideals
and 2-absorbing intuitionistic fuzzy ideals

Definition 5.1. ([9]) Let L be a lattice with 0. An ideal [ of L is called a 2-absorbing ideal, if for
a,b,ce L,

a ANbAc € I implies thateithera Abe lorbAce TorcNa€ .

We extend the concept of a 2-absorbing ideals, in the context of an IFI of a lattice and prove
some properties of intuitionistic fuzzy 2-absorbing ideals of a lattice.

Definition 5.2. A proper IFI A of a lattice L is called an intuitionistic fuzzy 2-absorbing ideal
(IF2AI) of L, if for a, b, c € L,

palaNbAc) <max{ua(aAb),ua(bAc),pa(cAa)}and
vala NbAc) > min{va(aAb),va(bAc),valcNa)}.

Since pa(a A D), pa(b A c),palc Aa),vala Ab),va(b A c),va(c A a) are all non-negative
real numbers, the definition of an IF2AI is equivalent to : A is an IF2AI if and only if for all
a,b,ce L,

< pala Ab)V pa(bAc)V pa(cNa)} and
val@NbAc)>valaNb) Ava(bAc) AvaleNa)}.
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In fact, A is an IF2AI if and only if for all a, b, ¢ € L,

pala NbAC) = pala Ab)V pua(bAc)V palcAa)and
valaNbAc)=valaNb) Ava(bAc) Ava(eAa).

Lemma 5.3. Let I be an ideal of L. Then [ is a 2-absorbing ideal of L if and only if x is an
IF2AI of L.

Proof. Suppose that [ is a 2-absorbing ideal of L. Let a,b,c € L.
Ifa ANbAc €I, then as [ is an 2-absorbing ideal, eithera Ab e TorbAc € lorcANa € 1.
Thus in this case,

fx (@ AbAC) < py, (aAD)V iy, (bAC)V py, (¢ Aa)} and
v, (anNbAe) >y, (aAND) Avy, (bAc) Avy, (e Aa)}.

IfaANbAc¢ I, thenclearly a Ab¢ I,bAc¢ I,cAa ¢ 1. Thus in this case,

fi (@ANbAC) < iy, (aAND)V piy, (bAC)V piy, (¢ Aa)} and
v, (aNbAc) >y, (aND) Avy, (DA C) ANy, (e Na)}.

Hence 7 is an IF2AI of L.

Conversely, suppose that x; is an IF2AI of L. Let a,b,c € L suchthata Ab A c € I, but
aNb@& I,bANc ¢ I, cNa € I Thisimplies that us(a AbAc) = 1,va(aANbAc)=0and
L (@A D) = iy, (DA C) = py,(cNa) =0; vy, (aANb) =1y, (bAc) =1,,(c ANa) = 1. Then

:uXI(a/\b/\c)zl%0:NXI(aAb)VNXI(bAC>\//’LXI<C/\0’)} and
Vxl(a/\b/\c):021:VXI(CL/\b)/\l/XI(b/\c)/\Vxl(c/\a)},

a contradiction, as x; is an IF2AI of L. Therefore, eithera Ab € TorbAc e lTorcANa € 1.
Hence [ is a 2-absorbing ideal of L. [

Lemma 5.4. An IFI A of L is an IF2AI if and only if each level cut set Ay ) is a 2-absorbing
ideal of L, where t,s € [0,1] such thatt + s < 1.

Proof. (i) Let A be an IF2AI of L. Let a,b,c € L be such that a AbAc € Ay,. Then
palaNbAc)>tandva(a AbAc)<s. Since A is an IF2AI of L,

t <palaNbAc) <palaAND)V pa(bAc)V palcAa)} and
s>valanNbAc) >valaNb) Ava(bAc) Ava(eNa)}.

Since t, s, pa(aAb), pa(bAc), palcNa),valaNb),va(bAc),va(cAa) are all non-negative real
numbers. Therefore, s(aAb) < t,ua(bAc) < t,ua(cAa) <tandvs(aAb) > s,va(bAc) > s,
va(cAa) > s, then

pala NbAc) < pa(aNb)Vpua(bAc)V palcNa)} and
valaNbAc) > va(anb) Ava(bAc) Ava(e A a).

This leads to ¢t < ¢ and s > s, which is not possible. Hence ¢ < pa(a Ab) ort < pa(b A c) or
t <palcAa)ands > va(aAb)ors>wva(bAc)ors>vy(cAa). Thuseithera Ab € Ag or
bAc€ ApgsorcAa € Ays). ie., Ay is a 2-absorbing ideal of L.
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(i1) Let A 5) be a 2-absorbing ideal of L. Leta,b,c € L and pa(aAbAc) =t,va(aANbAc) = s.
ThenaAbAc € A ). Since A ) is a 2-absorbing ideal of L, either aAb € Ay s orbAc € A
orc/Aa € Agyys. This implies that

t <palaNbAc) <palaAND)V pa(bAc)V palcAa)} and
s>valaNbAc) > va(aANb) Ava(bAc) Ava(cAa).

Thus A is an IF2AI of L. [
Now we show that every IFPI of L is an IF2AI.
Lemma 5.5. Let P be an IFPI of L. Then P is an IF2AI of L.

Proof. Let P be an IFPI of L. Then for all a,b € L, we have
pp(aAb) < pp(a)V pp(b) and vp(a Ab) > vp(a) A vp(b).
Hence for all a, b, c € L, we have

pp(aNbAc) < pup(aANb)V up(c)andvp(a AbAc) > vp(a Ab) Avp(c)
pp(aNbAc) < pup(bAc)Vup(a)andvp(a AbAc) > vp(bAc) Avp(a)
pp(a ANbAc) <pup(ecNa)Vup(b)and vp(a AbAc) > vp(cAa) Avp(b).

Hence

ppla NbAC) < up(aAND)V up(bAc)V up(cNa)V up(a) V pup(b) V up(c) and
vp(aNbAc)>vp(aAb) Avp(bAc)Avp(cAa) Avp(a) Avp(b) Avp(c).

By the definition of IFIL, it follows that for any xz,y € L, up(x) < pup(x Ay) and vp(z) >
vp(x A y). Thus we have

up(aNbAc) < pplaNb)V up(bAc)V up(cAa)} and
vp(a NbAc) > vp(aANb) Avp(bAc) Avp(cAa)}.

Thus P is an IF2AI of L. O
The following example shows that the converse of Lemma (5.5) does not hold.

Example 5.6. Consider the lattice L as shown in figure 1. Let P be an IFS on L defined by

1, ifz=0 0, ifz=0
pp(r) =105, ifr=0b ; ve(r)=404, ifz=>
0, ifx=a,l. 1, ifr=a,l.

Then P is an IF2AI of L. However, P is not an IFPT of L as 1 = up(0) = pp(a Ab) # 0.5 =
0V 0.5=pup(a)V up(b)and 0 =vp(0) =vp(a Ab) # 0.4 =1A0.4=vp(a) Avp(b).

Lemma 5.7. The intersection of any two distinct IFPIs of L is an IF2AI of L.
Proof. Let P, and P, be two distinct IFPIs of L. We know that for any a € L,

KPinP, (a) = HUp <a> N pp, (a> and Vpinp, (a) =Vp (a) vV vp, (a>
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Leta,b,c € L, we have

e, (aANbAC) = pup (aNbA )N pp,(a ANbA c)and
vpnp,(aNbAc) =vp(aNbAc)Vup(aNbAc).

Since every IFPI is an [F2AI, so we have

pupiap,(aNOAC) < [up (aAND)V pup (bAC)V pp (e ANa)| Apup,(aAD)V p,(bAC)V up,(c Aa)l
and
vpnp,(aNDAC) > [vp (aND) Avp (bAc) Avp (cAa)|V [vp,(a Ab) Avp, (DA c) Avp,(cAa)l.
Since P;, 7 = 1,2 are IFPIs, so we can write
pp,(aANb)V up (bAc)V pp(cNa) < pup(a)V up(b)V up(c) and
vp,(a Nb) Avp(bAc) Avp(cAa) > vp(a) Avp(b) Avp(c)

We note that all the terms in the R.H.S. of the above inequalities belong to the distributive lattice
[0, 1]. Hence we can write

tpnp (@ ANb A ) < [pp(a) Ve (0) V e (€)] A ey (@) V e, (D) V i, ()]
= [pp, (@) A pp, ()] V e (@) A pp, (D)) V (e (a) A pe,(c)]
V [1p, (0) A ppy (@)] V [, (0) A pp, (B)] V [1ap, (D) A pup, (€)]
V [up () A ppy (@)l V [1p () A pp, (D)) V [1p (€) A ppy (a)].

1.e.,

tpnp, (@ ANbAc) < [pp (@) A ppy ()] V (e (@) A pp, (0)] V [p (@) A pp,(c)]
Ve, (b) A pp,(@)] V (e, (b) A pp, (D)) V [pp, (D) A pup,(c)]
\4 [/’Lpl( ) A P, (CL)] [:upl (C) A :uP2(b)] [/’Lpl( ) A P, (CL)]

Similarly, we can have

[VP1( )\/VPZ(C)]
A vp, (0) V vpy(c)]
A [vp (€) V vp,(a)]

Now, for any IFI A of L, we have pa(y) < pa(z Ay) and va(y) > va(z Ay) forall z,y € L.
This implies that

VP10P2(a/\b/\C) > [Vpl( )\/VPQ( )]/\[VPI( )\/VP2( )] A
A [vp, (0) V vy (a)] A [vp, (b) V vp, ()]
A [vp () Vvp(a)] Afve (¢) V vp,(b)]

pp () A pup,(y) < pp (2 Ay) A pp, (1 Ay) = ppnp, (T Ay) and
vp (x) Vvp,(y) > vp (x Ay) Vup(z Ay) =vpap (T AY).

Using these, we get

HpPnp; (a AbA C) < HPinP; (a A b) V 1pnp, (b A C) V 1pnp, (C A a) and
vpiapy, (@ ANbAc) > vpap,(a ANb) Avpap,(bA ) Avpap(cAa).

Since P, N P, is an IFI, for all z,y € L, we have

Hprinp, (I) < mpinp, (ZL‘ A y) and Vpinp; (ZL’) > Vpinp, (l‘ A y)
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Using these, we get

ppnp, (@ ANbAC) < ppiap, (@ Ab) V ppiap, (bAC)V ppiap,(c Aa)} and
vpnp, (@ NbAc) > vpap,(a AND) Avpap, (DA c) Avpap,(cANa)}.

Thus P, N P; is an IF2AI of L. [l

The following example shows that the condition of “primeness” in Lemma (5.7) is necessary.
This example also shows that in general the intersection of two IF2Als need not be an IF2AI.

Example 5.8. Consider the lattice as shown in the following Figure 4:

Figure 4
Define IFS A; and A, as follows
(1, ifz=0 (0, ifz=0
0.5, ifx=a,cd 04, ifxr=a,cd
o (1) = 06, ifr—b = " (@)= 0.2, ifz=0b
\ 0, otherwise \ 1, otherwise
and )
1, ifz=0 0, ifz=0
pa, () =403, ifzv=abce; va(x)=<06, ifx=abce
0, otherwise L1, otherwise .
We note that A; and A, are IF2AIs of L.
For

,uAl(d/\e/\ f) = :uA1<C) and:u/h(d/\e) = MA1<€A f) = :uA1<f/\d) = /JJA1(6>

va,(dANeN f)=va(c)andvg, (dNe) =va (e N f)=va,(f ANd) =va(c).

fa, (g A Nd) = pa(c) = 0.5and pia, (g A h) = pia, (d) = 0.5, pay (R A i) = pa, (f) =0,
KAy (Z A g) = KA, (6) =0.

va, (g AR Ni)=va,(c)=04and va, (g A h) =va(d) =05, va,(hANi)=va (f) =1,
va, (i AN g) =va(e) =1
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Similarly for other elements. Note that

1, ifr=20 0, ifr=0
pana, () =203, ifz=abc; Vana(r)=106, ifz=a,b,c
0, otherwise 1, otherwise .

Thus pia,na,(g AR A D) = pia,na,(c) = 0.3. But

ma’X{ILLAlmAQ(-f A h)’ :uA1ﬂA2(h A Z)? HAINA, (Z A g)} = max{:uAlﬂAz (d)7 :uAlﬂAz(f)a HAINAy (6)}
= max{0,0,0}
= 0.

Thus

HAINA, (g NRA Z) =03 % 0= max{:uA1ﬁA2 (f N h), :uA1ﬂA2(h A i)? HAINA, (Z A g)}

Similarly, we can show that

Va,na, (g ANh ANi) =0.6 1 1 =min{va,na,(f AR), vayna, (R ANG),v4,0a,(0 A )}
Hence A; N Ay is not an IF2AI of L.

Now we introduce the concept of a 2-absorbing intuitionistic fuzzy ideal (2-AIFI) on the lines
of a prime intuitionistic fuzzy ideal (PIFI).

Definition 5.9. A proper IFI P of L is called 2-absorbing intuitionistic fuzzy ideal (2-AIFI) of L
if whenever for some A, B, C' € I FI(L) we have

AN BNC C Pimplies that either AN B C PorBNC CPorCNACP.
The following example shows that the concept of a “IF2AI” is different from that of a “2-AIFI”.

Example 5.10. Consider the following IFIs of the Lattice L as shown in figure 1.

(0.80,0.10), ifz =0 (1,0), ifr=0
A(x) = € (.35,0.50), ifr=a,1; B(x)=¢(0.80,0.15), ifr=a,l
(0.75,0.20), ifz = b. (0.25,0.55), ifz = b.
and
(1,0), ifr =0 (0.80,0.10), ifz =0
C(r) = 1 (0.66,0.25), ifz=a,1; P(x)=<(0.750.20), ifr=a,l
(0.75,0.20), ifz = b. (0.80,0.15), ifz = b.

We note that (i) P is an I[F2Al and (i) ANBNC C P. BuANB ¢ P, BNC ¢ P and
CNA¢ P. Thus P is not a 2-AIFI of L.
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Lemma 5.11. Let I be an ideal of L. If x; is a 2-AIFI of L, then I is a 2-Al of L.

Proof. Suppose that x; is a 2-AIFl of L. Let a A D A ¢ € I for some a,b,c € L. Suppose that
anNb¢ I,bANc¢ IamdcAa¢ I Define IFIs

1,0), ifz e 1,0), ifze (b 1,0), ifze
PP (CRUNE O I (SO FECRNN (CONEFENE
(0.1), otherwise (0,1), otherwise (0,1), otherwise .

We note that
(1,0), ifzxe(anbAd]
(0.1), otherwise .

Thus ANBNC C x;but ANB € x;, BNC € xyand C N A ¢ x;. This contradict the
assumption that x; is a 2-AIFI of L. [

(ANBNC)(z) =

Remark 5.12. However, we are unable to prove or disprove that if [ is 2-Al of L, then y; is
2-AlFI of L.

Lemma 5.13. Every PIFI of a lattice L is a 2-AIFI of L.
Proof. Let P be a PIFI of L. Suppose that A, B,C € IFI(L)and ANBNC C P. AsPisa

prime IFI of /, we have either
(1) AnNBC PorC C P,or
2) BNCCPorACP,or
B3) CNACPorBCP.

Without loss of generality, suppose that AN B C PorC C P.If AN B C P, then the proof
is obvious and if C' C P,then ANC C Pand C N B C P. Thus P is a2-AlFI of L. ]

We are unable to give an example to show that the converse of Lemma (5.13) does not hold.
Proposition 5.14. The intersection of two PIFIs of L is a 2-AIFI of L.

Proof. Let P; and P, be two distinct PIFIs of L. Assume that A, B, C are IFIs of L such that
ANBNCCPNPbut ANBE PPNP,,BNCEZ P NP,and CNAYZ PN Ps.

Clearly, ANBNC C PLand ANBNC C P,. Since P, and P, are prime IFIs of L, we have
(1)) ANBC Pror BNC C PLorCNAC Pyand (i1) ANB C Poor BNC C PyorCNAC Ps.
We have the following cases:

Case (1)).If ANBNC C P,and AN B C P,, then we have AN B C P, N P,, a contradiction.

Case 2). f CNAC P andCNAC P,wegetC C PPN Pyandhence CNAC P NP,
a contradiction.

Case (3).Let ANBNC C PrandCNAC P,. As P is a prime IFI, we get either A C P, or
B C P,. Hence either ANC C PN Pyor BNC C P, N P, acontradiction in either case.

Case (4). Let CNAC Prand AN B C P,. As P, is a PIFI, we get either A C P, or B C P.
Hence either ANC C PLNP,or BNC C P, N P,, acontradiction in either case.

Hence at least one of the A N B or BN C or C' N A must be a subset of P, N P,. Therefore
P, N Pyisa?2-AlFI of L. O
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Definition 5.15. A proper IFI A of a lattice L is called an intuitionistic fuzzy 2-absorbing primary
ideal (IF2API) of L, if for a,b,c € L

palaNbAc) < palaNb)V pz(0AC)V p4(cAa)and
valaNbAc)>valaANb) ANvz(bAc) ANvz(cAa).

Lemma 5.16. A proper ideal I of L is a 2-absorbing primary ideal(2-API), if and only if x1 is an
IF2API of L.

Proof. Suppose that [ is a 2-absorbing prime ideal of L. Let a, b, c € L.
IfanbAce I, thenp,, (aANbAc)=1v,,(aNbAc)=D0.
As I is 2-API, we have eithera Ab e TorbAc e VIorcAa € VI.
Hence either p,,(a Ab) = 1,1, (a AD) = 0or pus7(bAc) = py (DA Cc) = 1v 570 Ac) =
Uy (bAc)=00rpsz(cha)=py (cha)=1v,(cNa)=vy (cAha)=0.
Thus
i (anNbAC)=1<1=p,(aNb)Vpy (bAC)V py . (cAa)and
Uy (aANbAe)=02>0=ry(aNb) Avy (bAc) Ay L(cAa).
IfaNbAcé¢ I, thenpu,,(aNbACc)=0,v,,(aNbACc)=1.
Clearly, a Ab ¢ I and so p,(a Ab) = 0,v,,(a Ab) = 1. Hence
i (@ANDAC) =0 <y, (@Ab)V py (DAC)V py (¢ Aa)and
vy (anbAc)=12>v(anb) Avy (bAc) Avy  (cAa).

Thus x; is an IF2API of L.

Conversely, suppose that x is an IF2API of L. Leta AbAc € I. Then p,,(a ANbAc) =
Ly, (aNbAc)=0.
Suppose thata Ab ¢ I,bAc ¢ I and cAa ¢ I. Since x; is an IF2API of L, we have

1=y, (aNDAC) < piy, (@A) V piy (DA C)V py . (cAa)and
0=vy(aNbAc) = vy, (anb) Nvy (bAc) Ay (e Aa)

Since each of yi,, (a A D), iy (DA ), py (¢ Aa)and vy, (a AD), vy L(bAC), vy .(cAa)belongs
to [0, 1], so atleast one of py,(a Ab), puy (b A c), py . (c Aa)is 1 and atleast one of vy, (a A
b), vy ;(b A ¢) vy ,(c A a) must be 0. This implies that either a Ab € TorbAc € VT or
cAa € /1. Thus I is a 2-APL O

Lemma 5.17. Let Q) is an intuitionistic fuzzy primary ideal of L, then () is an IF2API of L

Proof. Let () be an IF primary ideal of L. Let a,b,c € L. Then

pola NbAC) = pg((anb)A(bAc))

< pglanb)V uglbAc)
< pglaNb) Vi gbAc) Vi glea).

Thus pg(a AbAc) < pgla Ab)V i gbAc)V puglcAa). Similarly, we can show that
volaANbAc) > vglaNb) ANv g(bAc) Av g(cAa). Hence Q is an IF2API of L. O
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The following example shows that an IF2API of L need not be an IF primary ideal of L.

Example 5.18. Consider the ideal I = (0] of the lattice as shown in Figure 5.

Figure 5

We note that the ideal (h] = {x € L : « < h} = {0,a,b,c,d,e, f,g,h} and (i] =
{0,b,¢,d, g,i} and the only prime ideal of L. Hence v/T = (h] N (i] = (g].

We note that [ is a 2-absorbing primary ideal as for any z,y, z € L, x Ay A z € I implies that
eithert Ay € Tory Az € IorzAz eI Hence by Lemma (5.16), x; is an IF2API of L.

We note that p,, (h A i) = 1, vy, (h Ai) = 0but yiy, (h) = 0,0y, (h) = 1as well as p1, (i) =
0,vy (i) = 1. Thus

H'Xl(h‘ A1) =1 % 0= sz(h) v MXﬁ(i) and VXI(h A1) =0 % 0= VXI(h‘) N VXﬁ(i)'
Hence x; is not an IF primary ideal of L.
Lemma 5.19. If A is an IF2AI of L, then A is an IF2API of L.

Proof. Let A be an IF2Al of L. Leta, b, c € L, we have
pala ANbAc) < pa(aANbD)V pa(bAc)V pa(eAa)and
valaNbAc)>valaNb) Ava(bAc) Avalc A a).

Since A C VA, we get the result. O
The following example shows that an IF2API of L need not be an IF2AI.

Example 5.20. Consider the ideal / = (0] of the lattice as shown in Figure 6.
Consider the ideal / = (0]. The only prime ideals of L are (j], (k], [{].

We have VT = (4] N (k] N [I] = (d]. Also, /X7 = X7 = X, Where J = (d].

We note that / is a 2-API of L. Hence by Lemma (5.16), x; is an IF2API of L.

We note that [ isnot a 2-Alof L,asd ANe AN f=0€ [,butdNe¢ l,eNf¢ landdA f ¢ 1.
Thus we have

o (dAen f)=1% py(dAe)V py,(e A f)V g (dA f)and
vy, (dNeNf)=0 % vy, (dNe) ANy, (e f)ANvy, (dA f).
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Thus x; is not an IF2AI of L.

Figure 6

Lemma 5.21. Let A be an IFI of L. If\/z is an IFPI then A is an IF2API.

Proof. Let A be an IFI of L. Suppose that /A is an IFPL
If A is not an IF2API, then there exist a, b, ¢ € L such that

pala ANbA c) i,uA(a/\b)\/pJ\/g(b/\c)\/um(c/\a)and
VA(a/\b/\c)%VA(a/\b)/\V\/;(b/\c)/\V\/Z(c/\a).

This implies that

pala Ab)V pz(bAC)V p (e Na) < palaNbAc)and
va(aNb) ANv z(bAc) Avg(cNa) >valaNbAc).

Since v/ A is an IFPI, we have

pyala NN c) = pyz(0N )V z(a) = pya(anc)V i z(0)
vyalanbAc)=v z(bAc)ANv 4(a) =v z(aNc) Av4(b)

Hence

pyabAC)V g zlanc) =p0Nc)V pm(a)Vpz(c) =pz(@ANbAc)Vp4(c)and
vyalbne) ANvglane) =v (0N c) ANvz(a) ANvyz(c) =v z(aNbAce) A z(c).

Therefore, we get

pala ND)V pz(a NbAC)V pz(c) < palaANbAc)and
valaNb) ANv zaNbAe) AN z(c) >valaANbAc).

This implies that y1 z(a AbAc) < pa(a ANbAc)and v z(a AbAc)>wvalaAbAc), which is
not possible. Hence A os an IF2API. ]

The following example shows that the converse of Lemma (5.21) does not hold.
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Example 5.22. Consider the lattice as shown in Figure 7.

Figure 7

The only prime ideals of L containing the ideal I = (] are (h] and (i]. Hence /I = (h]N(i] =

(f]-
Forany z,y,z € I,z Ay A z € I implies that either z Ay € Tory Az € VIorz Az € V1.

Hence I is 2-API and so by Lemma (5.16), x; is an IF2APL. We note that d A e = a € /T but
d ¢ \/Tand e ¢ v/I. Thus v/T is not a prime ideal of L. Hence by Theorem (3.3). \/x7 = X718
not an [FPI of L.

We omit the easy proof of the following Lemma.
Lemma 5.23. Let A be an IFI of L. Then VA = /v A.

Theorem 5.24. Let A be an IFI of L. Then \/A is an IFPI if and only if /A is an IF primary
ideal.

Proof. Tt follows from Lemma (4.5), that if /A is an IFPL, then v/A is an IF primary ideal. The
converse follows from the definition of an IF primary ideal and by Lemma (5.23). ]

The proof of the following Theorem follows from the definition of an IF2AI, an IF2API and
Lemma (5.23).

Theorem 5.25. Let A be an IFI of L. Then \/A is an IF2AI if and only if v/ A is an IF2PI.

Definition 5.26. A proper IFI () of a lattice L is called a 2-absorbing primary intuitionistic fuzzy
ideal (2-APIFI) of L, if for any A, B,C' € I FI(L) such that

ANBNC C Q implies that either ANB C QorBNC C /QorCNACVQ.
Lemma 5.27. Let I be a ideal of L. If x1 is an 2-APIFI of L, then I is a 2-Al of L.

Proof. Suppose that x;is a 2-APIFI of L. Leta A b A ¢ € I for some a, b, c € L.
Suppose that a Ab ¢ I,bAc¢ TandcAa ¢ I. Thenclearly, a ¢ I and b,c ¢ /1.
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Define IFIs A, B, C of L as

Ay = 4O, ifzel g J(L0), iz e @) (1,0), ifze(d

(0.1), otherwise (0,1), otherwise (0,1), otherwise .

‘We note that
(1,0), ifze(anbA]

(ANBNC)(z) =
(0.1), otherwise .

Thus ANBNC C x;but ANB & x;, BNC ¢ xy7and C N A ¢ x 7. This contradicts the
assumption that x; is a 2-APIFI of L. ]

Remark 5.28. However, we are unable to prove or disprove that if [ is a 2-Al of L, then x; is a
2-APIFI of L.

Lemma 5.29. If Q) is a primary IFI of L, then Q) is a 2-APIFI of L.

Proof. Let () be a primary IFI of L. Let forany A, B,C € IFI(L)suchthat AN BNC C Q.
Then we have either

1. ANBCQorC C+/Q;or
2. ACQorBNC C+/Q;or
3. AC/QorBNC CQ;or
4. BCQorANC C+/Q.

These possibilities imply that either (i) AN B C Q or (ii)) BNC C +/Q, or (iii)) C N A C 1/Q.
Hence () is 2-APIFI of L. O]

Lemma 5.30. Let Q) is a 2-AIF1 of L, then Q) is a 2-APIFI of L.

Proof. Let Qis a2-AlFlof L. Let A, B,C € IFI(L) suchthat AN BN C C Q. Then we have
either ANBC QorBNC CQorCNACQ. Since Q C /Q, we get the required result. []

Definition 5.31. Let () be an IFI of L. If P is the only PIFI containing (), then we say that () is
P-primary IFI of L.

Theorem 5.32. Let ()1, ()2 be IFls and Py, P, be PIFIs of L. Suppose that Q1 is a P,-primary
IFI and Q)5 is a Py-primary IFI. Then Q1 N Qs is a 2-APIFI of L.

Proof. Since, Q; is a P;-primary IFI, for i = 1,2. We get \/Q; = P;.

Let Q = Q; N Q. Then /Q = P, N P,. Now suppose that AN BN C C Q for some
A,B,C € IFI(L). Assume that ANB € 1/Q and BNC' € +/Q. Then A, B,C' € \/Q = PiNP;.
By Proposition (5.14), /Q = P, N Pyis a 2-AlFl of L. Since AN B € /Q and BN C € /Q,
we have AN C C Q.

We show that AN C C Q.
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Since ANC' C /Q C Py, weassume that A C P. As A4 /Qand ANC C /Q C P, we
conclude that A € P, and C' C P,. Since C' C Py and C' € /Q we have C € P;.
IfACQand C C @, then AN C C ( and we are done.

We may assume that A g Q1. Since C C P, and BN C C /@) which is a contradiction. Thus,
AC Q.

Since (s is a P»-primary IFI, and C' g Qa,weget ANB C P,

Since A C P, and AN B C P, we have AN B C /@ which is a contradiction. Thus, C' C Q,.
Hence AN C C Q. Therefore, @ is a 2-APIFI of L. ]

Theorem 5.33. Suppose that Q) is a non-constant IFI of L such that v/Q is a PIFI. Then Q) is a
2-APIFI of L.

Proof. Suppose that for some A, B,C € IFI(L), ANBNC CQand ANB g Q.
(i): We note that AN BNC C @Q C +/Q. Hence, if AN B g Q, then as /@ is PIFIL, we get
C C+vQandso BNC C+/Q.

(ii : If AN B C /Q, then as /@ is PIFI, either A C /Q or B C \/Q.
Hence either ANC C /Q or C N B C +/Q. Thus, Q IS A 2-APIFI of L. O

Now we give a characterization for /(@) to be a PIFL

Theorem 5.34. Let Q be a non-constant IFI of a lattice L. Then \/Q is a PIFI of L if and only if
VQ is a primary IFI of L.

Proof. Let /Q be aPIFl of L. Let A, B,C € IFI(L) be such that AN B C /Q. As /Q is a
PIFI of L, either A C +/Q) or B C /Q = 1/+/@Q. We conclude that \/(Q is a primary IFI of L.

Conversely, suppose that /@ is a primary IFI of L. Let A, B,C € IFI(L) be such that

AN B C+/Q. As \/Q is primary IFI of L, either A C \/Q or B C \/1/Q = +/Q. Hence /Q is
a prime IFI of L. O

Now we prove the following characterization.

Theorem 5.35. Let () be a non-constant IFI of a lattice L. Then /Q is a 2-AIFI of L if and only
if \/Q is a 2-APIFI of L.

Proof. Let /Q be a2-AlIFlL of L. Let A, B,C € IFI(L) be such that AN B C /Q. As v/Q is
a2-AlFl of L, either AN B C /QorBNC C+/QorCNAC Q. Using /Q = \//Q, we
conclude that 1/Q is a 2-APIFI of L.

Conversely, suppose that 1/Q is a 2-APIFI of L. Let A,B,C € IFI(L) be such that

ANBNC C+/Q. As /Q is 2-APIFI of L, either AN B C /Qor BNC C /\/Q = +/Q or
CNACH\VQ=+Q.Hence /Q is a2-AlFI of L. O

Theorem 5.36. Let . = L, X Ly be a direct product of lattices L, Lo. Let Ay, Ay be an IFI of
Ly and Ly, respectively. Suppose that j14,(01) = pa,(02) = 1, v4,(01) = v4,(02) = 0, where
01, O is the least element of L, Lo, respectively. If A = Ay x As is an IF2AI of L, then A, is an
IF2AI of Ly and A, is an IF2AI of L.
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Proof. Leta,b,c € L. Since A is an IF2AI of L, we have

ILLA(a ANbDN ¢, 02) S MA(a A b7 02) \% MA(b A ¢, 02) \ ILLA(C A a, 02) and
vala AN A e,09) > valaANb,02) Ava(bAc,02) Ava(c A a,0q)

By using the definition for A; x Ay, we can write

Hay (a/\b/\c)/\:uA2 (02) < [MAl(@Ab)AMAQ (02>]v[/~LA1 (bAC)AﬂAz (02>]V[MA1 (C/\a)/\qu(O?)]
va, (@NDAC)Va,(02) > [Va, (aAD)Va,(02)] Alva, (DA C)Vva,(02)] Alva, (cAa)Via,(09)]

By using 114,(02) = 1,v4,(02) = 0, we get

pa (@ AbAc) < pa (@A) V pa, (bAc)V pa, (cAa)
va,(aNbAc) >va (aNb) Ava, (bAc) Ava(cAa).

Thus A, is an IF2AI of L;. In a same way we can show that A is an IF2AI of L. [l

By using the similar steps, we can prove the following theorem.

Theorem 5.37. Let L = Ly X Ly X --- X Ly, be a direct product of lattices Ly, Lo, . .., L. Let
A;(1 <i < k) be an IFIs of L;, respectively. Suppose that for eachi = 1,2, ...k, s, (02) = 1,
va,(02) = 0, where 0; is the least element of L;. If A = Ay X Ay X -+- X Ay is an IF2AI of L,
then each A;, is an IF2Al of L;.

The following example shows that the converse of the Theorem 5.36 need not hold.

Example 5.38. Consider the lattices L, L, and L = L; X Ly as in Example 3.6.
Define IFSs A; € IFS(Ly) and Ay € IFS(Ls) as follows:
(1,0), iftr=0
Ai(z) =1 (0.16,0.7), ifz=a ; As(z)=
(0.25,0.5), ifz=0b,1.

(1,0), ifz =0
(0,1), ifz=1.

We note that A; is an IF2AI of L; and A, is an IF2AI of L,. We consider A € TFS(L; X Lo)
defined by

pa(@,y) = pa, () A pa, (y) and va(z, y) = pa, (x) V va, (y).
ie., A= A; x Ay. Itis easy to check that

((1,0), if (x,y) = (0,0)
Ale.y) = (0.25,0.5), %f (z,y) = (b,0),(1,0)
(0.16,0.7), if (z,y) = (a,0)
L (0,1), otherwise .
We have
palla, 1) A (1,0) A (b, 1)] = 1(0,0) = 15 wal(a, 1) A (1,0) A (b, 1)] = va(0,0) = 0
pal(a, 1) A (1,0)] = pa(a, 0) = 0.16; va[(a, 1) A (1,0)] = va(a, 0) = 0.70.
pal(1,0) A (b, 1)] = pua(b, 0) = 0.25; va[(1,0) A (b, 1)] = va(b, 0) = 0.50.
(0 DAG D] = (oAb, 1) = a0, 1) = 0 mal(a, DA, D] = v(anb, 1) = a0, 1) = 1.
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Thus
pal(a, DAL O)A(D,1)] =120
val(a, 1) A (1,0)A(b,1)] =0 % 0.5 =wval(a, 1)V (1,0)] Ava[(1,0) V (b, 1)] Aval(a,1) V (b, 1)]
Hence A is not an IF2AI of L.

Theorem 5.39. Let L = Ly X Ly be a direct product of lattices L and L. Let Py, Py be IFI of
Ly and Lo, respectively. Suppose that

(i) pp,(01) = pp,(02) = 1,vp (01) = vp,(02) = 0, where 0y, 04 is the least element of Ly, Lo,
respectively.

(ii) pp,(11) = pp,(la) = 0,vp (01) = vp,(02) = 1, where 11, 15 is the greatest element of
Ly, Lo, respectively.

If P= P, X Pyisan IF2Al of L, then P, and P; are IFPI of L, and Lo, respectively.

Proof. Suppose that P, is not an IFPI of L, then there exists a, b, c € L; such that

pp (@ Ab) £ pp(a) V e, (b) and vp, (a A b) 2 vp,(a) Avp, ()
Consider the element x = (a, 13),y = (11,02) and z = (b, 15) from L. We note the following

pp(@ Ay Az)=pp(anb,02) = pp(aAb)V pp (02) = pp (a Ab) and
vp(x Ay A z) =vp(aAb,02) =vp (aAb) Avp (02) =vp (aAD).

Now

pp(z Ay) = pp(a,02) = pp (a) A pp,(02) = pp (a);
vp(x ANy) = vp(a,03) = vp (a) V vp,(02) = vp, (a) and
pp(y A z) = pp(b,02) = pp () A pp,(02) = pp, (b);
vp(y A z) = vp(b,03) = vp, (b) V vp,(02) = vp, (b) and
up(z Ax) = pup(aAb,1s) = up (a Ab) A up,(12) = 0;
vp(z Az) =vp(laAb 1y) =vp (aAb)Vp(ly) =1.
Since P is an IF2AI, we have

up(x ANy)V up(y A z) V up(z A z) and
vp(x ANyNz) >vp(x Ay) Avp(y A z) Avp(z Ax),ie
pp (@ Ab) < pp(a) Ve (b) VO = pp (a) V pp (b) and
vp,(aAND) > vp (a) ANvp (b) N1 =wvp (a) Avp(b),

pp(z Ay Az) <
>

a contradiction. Hence P, is an IFPI of L;. Similarly, we can show that P, is an IFPI of L,. [

Theorem 5.40. Let L = L, X Ly be a direct product of lattices L, Lo. Let Py, P, be an IFPI of
Ly and Ly, respectively. If P = Py X P, then P is an IF2AI of L.

Proof. Let (a,x),(b,y), (c,z) € L. To show that P is an IF2AI, we need to show that

(b;y) A (e, 2)] < prl(a, ) A (b, y)] V ipl(b,y) A (e, 2)] V ppl(c, 2) A (a, 2)];
(b;y) A (e, 2)] = vel(a, ) A (b, y)l Avpl(by) A (e, 2)] Avel(c, 2) A (a, ).
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i.e., to show that

pplaNbAc,x ANyAz) <puplaNbyz ANy)V pup(bAc,y ANz)V pup(cAa,z Ax);
vp(aNOANc, e ANyAz) >vplaANbye Ay) Avp(bAce,y A z) Avp(eANa,z A x).

Also, by using definition of P; X P, we have

pp(aNbANc,x ANy Az)=pup(aNbAC)Apup,(x ANy A z);
vp(aNbAc,x AyAz)=vp(aNbAc)Vup(xAyAz).

As P, and P, are IFPIs of L; and L respectively, we have
pup,(aNbAc)=pup(a)V up (b)V up (c);vp (aNbAc)=wvp(a) Avp (b) Avpc).
and
e, (T AN Y A 2) = pp, () V e, (Y) V e, (2); vy (T Ay A 2) = vp, (2) Avp,(y) A ve,(2).

Thus, we have

[up(a Ab,z Ay)IV [pp(bA ey A2)]V [pp(cAa,z A )]
= [up (@A D) A pp( AV (e (b A C) A pp,(y A2)]V [ (e Aa) A pp, (2 A ).

Similarly, we have

[vp(anNbyx Ay Avp(bAc,y A2)] Alvp(cAa,z A )]
= [vp (aND) Vp(x Ay)| Avp (DA C)Vp(yAz)]Alve(cAa)Vup(zAx).

Since P, and P, are IFPIs of L, and L, respectively, we can write

up(aANb,x ANy)V up(bAc,y Nz)V up(cANa,z Ax)

= {lup (@) V up, (O] A [pp (2) V pp, ()]} V A{lp, (0) V pipy ()]
A [/’l’Pl (y) v /Lpz(z)]} N {[/’LPI( ) \ MP2< )] [:uP1 (Z) v IUPQ(x)]}

By using distributivity law, the R.H.S. of it can be written as

[MP1 (a) Ve (b) Vpp (C)] A [/“LPQ ($) V p, (y) V p, (2)]

Thus, [pip (@) V pp (b) V pp (O)] A lpup,(2) V e, (y) V e, (2)] 2 ppla N Az Ay A z) =
e (aNOAC) N ppy(x Ny A z) = (e (@) V e (0) V e ()] A ey (€) V ipy (y) V op, (2)]. Which
is true. Similarly, we can show that

[vp, (a) Avp (b) Avp (c)] V [vp,(x) Avp,(y) Avp,(2)] <vp(aANDAc,z ANy A z)

=vp (aNbAC)V up,(x ANy z) = [vp (a) Avp, (b) Avp ()] V [ve,(z) Avp,(y) Avp,(2)]. Which
is also true.

Hence P is an IF2Al of L. [

Theorem 5.41. Let L. = L; X Lo be a direct product of lattices Ly, Ly. Let () be an IFI of L.
Then () X X1, is a 2-AIFPI of L, if and only if ) is a 2-AIFPI of L;.
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Proof. Suppose that ) x xr, is a 2-AIFPT of L. Let Ay, Ay, A3 € IFI(L;) be such that A; N
Ay N A3 CQ.
Consider (A1 N Ay N Az) X xz, € @ X x1,. This implies that

(A1 X x1,) N (Aa X x1,) N (A3 X xL,) € Q X XL,-

Since @) X X1, is a 2-AIFPI of L, we get either (A1 X xz1,) N (As X x1,) € @ X X, or
(A2 X X1y) N (A X X1,) C /Q X X1, = V@ X X1y 0 (A3 X X1,) NV (A1 X X1,) € /Q X X1y =
\/Q X XLy -

Thus (A; N Ay) € Qor (Ay N Az) C /Q or (A3N Ay) C /Q. Hence Q is a 2-AIFPI of L;.

The converse follows by retracing similar steps. ]
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