Generalizations of prime intuitionistic fuzzy ideals of a lattice

Poonam Kumar Sharma
Post-Graduate Department of Mathematics, D.A.V. College Jalandhar, Punjab, India
e-mail: pksharma@davjalandhar.com

Dedicated to Prof. Krassimir Atanassov

Revised: 20 April 2024
Accepted: 2 May 2024
Online First: 1 July 2024

Abstract

As a generalization of the concepts of an intuitionistic fuzzy prime ideal and a prime intuitionistic fuzzy ideal, the concepts of an intuitionistic fuzzy 2 -absorbing ideal and a 2 -absorbing intuitionistic fuzzy ideal of a lattice are introduced. Some results on such intuitionistic fuzzy ideals are proved. It is shown that the radical of an intuitionistic fuzzy ideal of L is a 2 -absorbing intuitionistic fuzzy ideal if and only if it is a 2 -absorbing primary intuitionistic fuzzy ideal of L. We also introduce and study these concepts in the product of lattices.

Keywords: Lattice, Intuitionistic fuzzy lattice, Intuitionistic fuzzy ideal, Intuitionistic fuzzy prime ideal, Intuitionistic fuzzy 2 -absorbing ideal, Intuitionistic fuzzy primary ideal.
2020 Mathematics Subject Classification: 03F55, 06D72, 03B10.

1 Introduction

The concept of intuitionistic fuzzy sets was introduced by Atanassov [5-7] as a generalization of fuzzy sets previously introduced by Zadeh [24]. Atanassov and Stoeva [8] generalised this concept by taking the evaluation set as a lattice. After a few years, Thomas and Nair [21]

	Copyright © 2024 by the Author. This is an Open Access paper distributed under the
(c) ©	
(terms and conditions of the Creative Commons Attribution 4.0 International License	
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/	

studied intuitionistic fuzzy sublattice, intuitionistic fuzzy ideals, and intuitionistic fuzzy filters on a lattice. For more details, we refer to [1-3, 13, 14, 16, 18]. Milles, Zedam and Rak in [18] introduced the notion of prime intuitionistic fuzzy ideal and filter and studied many characterizations of these notions.

The notion of a 2 -absorbing ideal of a commutative ring was introduced by Badawi [9]. A proper ideal I of a commutative ring R is said to be a 2 -absorbing, if whenever $a, b, c \in R$ such that $a b c \in I$, then either $a b \in I$ or $a c \in I$ or $b c \in I$. This concept was generalised by Anderson and Badawi [4], Badawi and Darani [10], Wasadikar and Gaikwad [22,23] in other mathematical structures such as semirings, semigroups, submodules and lattices.

In this paper, we introduce the concepts of an intuitionistic fuzzy 2 -absorbing ideal and a 2 -absorbing intuitionistic fuzzy ideal of a lattice L. This is a generalization of the concepts of an intuitionistic fuzzy prime ideal and a prime intuitionistic fuzzy ideal of L introduced by Hur et al. [16] and Milles et al. [18] respectively. Also, we define a primary intuitionistic fuzzy ideal and the radical of an intuitionistic fuzzy ideal of L. Some properties of these intuitionistic fuzzy ideals are proven. We also introduce and study these concepts in the context of product of lattices.

2 Preliminaries

Throughout in this paper, $L=(L, \wedge, \vee)$ denotes a bounded lattice with least element 0_{L} and greatest element 1_{L}. We recall some concepts and results.

Definition 2.1. ([5-7]) An intuitionistic fuzzy set (IFS) A in L can be represented as an object of the form $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x \in L\right\}$, where the functions $\mu_{A}: L \rightarrow[0,1]$ and $\nu_{A}: L \rightarrow[0,1]$ denote the degree of membership (namely $\mu_{A}(x)$) and the degree of non-membership (namely $\nu_{A}(x)$) of each element $x \in L$ to A respectively and $0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1$ for each $x \in L$.

Remark 2.2. ([7, 13, 19])
(i) When $\mu_{A}(x)+\nu_{A}(x)=1, \forall x \in L$. Then A is called a fuzzy set in L.
(ii) An IFS $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x \in X\right\}$ is briefly written as $A(x)=\left(\mu_{A}(x), \nu_{A}(x)\right)$, $\forall x \in L$. We denote by $\operatorname{IFS}(L)$ the set of all IFSs of L.
(iii) If $p, q \in[0,1]$ such that $p+q \leq 1$. Then $A \in \operatorname{IFS}(L)$ defined by $\mu_{A}(x)=p$ and $\nu_{A}(x)=q$, for all $x \in L$, is called a constant intuitionistic fuzzy set of L. Any IFS of L defined other than this is referred to as a non-constant intuitionistic fuzzy set.

If $A, B \in I F S(L)$, then $A \subseteq B$ if and only if $\mu_{A}(x) \leq \mu_{B}(x)$ and $\nu_{A}(x) \geq \nu_{B}(x), \forall x \in L$ and $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$. For any subset S of L, the intuitionistic fuzzy characteristic function χ_{S} is an intuitionistic fuzzy set of L, defined as $\chi_{S}(x)=(1,0), \forall x \in S$ and $\chi_{S}(x)=$ $(0,1), \forall x \in L \backslash S$. Let $\alpha, \beta \in[0,1]$ with $\alpha+\beta \leq 1$. Then the crisp set $A_{(\alpha, \beta)}=\left\{x \in L: \mu_{A}(x) \geq\right.$ α and $\left.\nu_{A}(x) \leq \beta\right\}$ is called the (α, β)-level cut subset of A [19]. Further, if $A, B \in \operatorname{IFI}(L)$. Then $A \cap B$ and $A \cup B$ represent the intersection and union of intuitionistic fuzzy sets A and B, respectively. These are defined as $\mu_{A \cap B}(x)=\mu_{A}(x) \wedge \mu_{B}(x) ; \nu_{A \cap B}(x)=\nu_{A}(x) \vee \nu_{B}(x)$, for all $x \in L$ and $\mu_{A \cup B}(x)=\mu_{A}(x) \vee \mu_{B}(x) ; \nu_{A \cup B}(x)=\nu_{A}(x) \wedge \nu_{B}(x)$, for all $x \in L$ [13].

Definition 2.3. ($[16,18])$ Let $L=L_{1} \times L_{2}$ be the direct product of lattices L_{1} and L_{2}. Let $A_{1} \in \operatorname{IFS}\left(L_{1}\right)$ and $A_{2} \in \operatorname{IFS}\left(L_{2}\right)$. Then their direct product is denoted by $A_{1} \times A_{2}$ and is an intuitionistic fuzzy set of L defined by

$$
\mu_{A_{1} \times A_{2}}(x, y)=\mu_{A_{i}}(x) \wedge \mu_{A_{2}}(y) \text { and } \nu_{A_{1} \times A_{2}}(x, y)=\nu_{A_{i}}(x) \vee \nu_{A_{2}}(y), \forall(x, y) \in L .
$$

Definition 2.4. ([21]) Let $A \in I F S(L)$. Then A is called an intuitionistic fuzzy lattice (IFL) of L, if for all $x, y \in L$, the followings are satisfied
(i) $\mu_{A}(x \vee y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$;
(ii) $\mu_{A}(x \wedge y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$;
(iii) $\nu_{A}(x \vee y) \leq \max \left\{\nu_{A}(x), \nu_{A}(y)\right\}$;
(iv) $\nu_{A}(x \wedge y) \leq \max \left\{\nu_{A}(x), \nu_{A}(y)\right\}$.

Definition 2.5. ([21]) Let $A \in I F S(L)$. Then A is called an intuitionistic fuzzy ideal (IFI) of L, if for all $x, y \in L$, the followings are satisfied
(i) $\mu_{A}(x \vee y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$;
(ii) $\mu_{A}(x \wedge y) \geq \max \left\{\mu_{A}(x), \mu_{A}(y)\right\}$;
(iii) $\nu_{A}(x \vee y) \leq \max \left\{\nu_{A}(x), \nu_{A}(y)\right\}$;
(iv) $\nu_{A}(x \wedge y) \leq \min \left\{\nu_{A}(x), \nu_{A}(y)\right\}$.

Note that $\mu_{A}\left(0_{L}\right) \geq \mu_{A}(x) \geq \mu_{A}\left(1_{L}\right), \mu_{A}\left(0_{L}\right) \leq \mu_{A}(x) \leq \mu_{A}\left(1_{L}\right), \forall x \in L$. The set of all intuitionistic fuzzy ideals of L is denoted by $\operatorname{IFI}(L)$.

Theorem 2.6. ([1,18]) Let L be a lattice and $A \in I F S(L)$. Then it holds that A is an IFI on L if and only if the following two conditions are satisfied:
(i) $\mu_{A}(x \vee y)=\min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$;
(ii) $\nu_{A}(x \vee y)=\max \left\{\nu_{A}(x), \nu_{A}(y)\right\}$, for any $x, y \in L$.

Theorem 2.7. $([1,18])$ Let L be a lattice and $A \in I F I(L)$. Then it holds that A is an intuitionistic fuzzy prime ideal (IFPI) on L if and only if the following two conditions are satisfied:
(i) $\mu_{A}(x \wedge y)=\max \left\{\mu_{A}(x), \mu_{A}(y)\right\}$;
(ii) $\nu_{A}(x \wedge y)=\min \left\{\nu_{A}(x), \nu_{A}(y)\right\}$, for any $x, y \in L$.

Theorem 2.8. ([16]) Let $L=L_{1} \times L_{2} \times \cdots \times L_{k}$ be the direct product of lattices $L_{1}, L_{2}, \ldots, L_{k}$. If $A_{i} \in \operatorname{IFS}\left(L_{i}\right),(i=1,2, \ldots, k)$. Then $A_{1} \times A_{2} \times \cdots \times A_{k} \in \operatorname{IFI}\left(L_{1} \times L_{2} \times \cdots \times L_{k}\right)$ and is defined as $\mu_{A_{1} \times A_{2} \times \cdots \times A_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mu_{A_{1}}\left(x_{1}\right) \wedge \mu_{A_{2}}\left(x_{2}\right) \wedge \cdots \wedge \mu_{A_{k}}\left(x_{k}\right)$ and $\nu_{A_{1} \times A_{2} \times \cdots \times A_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\nu_{A_{1}}\left(x_{1}\right) \vee \nu_{A_{2}}\left(x_{2}\right) \vee \cdots \vee \nu_{A_{k}}\left(x_{k}\right)$, for all $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in$ $L_{1} \times L_{2} \times \cdots \times L_{k}$.

3 Intuitionistic fuzzy prime ideals and prime intuitionistic fuzzy ideal of a lattice

Definition 3.1. ([17]) A non-empty subset I of a lattice L is called an ideal if for $a, b \in L$, the following conditions holds

1. If $a, b \in I, a \vee b \in I$ and
2. If $a \leq b$ and $b \in I$, then $a \in I$

A proper ideal I (i.e., $I \neq L$) is called a prime ideal, if $a \wedge b \in I$ implies that either $a \in I$ or $b \in I$.

On the line of Koguep et al. [17], we will define prime intuitionistic fuzzy ideal (PIFI) of a lattice as follow:

Definition 3.2. A proper IFI P of a lattice L is called a prime intuitionistic fuzzy ideal (PIFI) of L if for any two IFIs A and B of L

$$
A \cap B \subseteq P \text { implies that either } A \subseteq P \text { or } B \subseteq P
$$

From the definition of PIFI, following results are easy to derive.
Theorem 3.3. Let I be an ideal of L and χ_{I} denote the IF characteristic function of I. Then
(i) I is a prime ideal of L if and only if χ_{I} is an IFPI of L;
(ii) I is a prime ideal of L if and only if χ_{I} is a PIFI of L.

Proof. Clearly, χ_{I} is an IFI of L.
(i) Suppose that I is a prime ideal of L. Let $a, b \in L$, we need to show that

$$
\mu_{\chi_{I}}(a \wedge b)=\mu_{\chi_{I}}(a) \vee \mu_{\chi_{I}}(b) \text { and } \nu_{\chi_{I}}(a \wedge b)=\nu_{\chi_{I}}(a) \wedge \nu_{\chi_{I}}(b) .
$$

If $a, b \in I$, then $a \wedge b \in I$ and we have

$$
\mu_{\chi_{I}}(a \wedge b)=1=1 \vee 1=\mu_{\chi_{I}}(a) \vee \mu_{\chi_{I}}(b) \text { and } \nu_{\chi_{I}}(a \wedge b)=0=0 \wedge 0=\nu_{\chi_{I}}(a) \wedge \nu_{\chi_{I}}(b) .
$$

If $a, b \notin I$, then as I is a prime ideal $a \wedge b \notin I$ and we have

$$
\mu_{\chi_{I}}(a \wedge b)=0=0 \vee 0=\mu_{\chi_{I}}(a) \vee \mu_{\chi_{I}}(b) \text { and } \nu_{\chi_{I}}(a \wedge b)=1=1 \wedge 1=\nu_{\chi_{I}}(a) \wedge \nu_{\chi_{I}}(b) .
$$

If only one of a or b is in I, say $a \in I$ and $b \notin I$, then $a \wedge b \in I$, we have

$$
\mu_{\chi_{I}}(a)=1, \nu_{\chi_{I}}(a)=0, \mu_{\chi_{I}}(b)=0, \nu_{\chi_{I}}(b)=1 \text { and } \mu_{\chi_{I}}(a \wedge b)=1, \nu_{\chi_{I}}(a \wedge b)=0 .
$$

Thus $\mu_{\chi_{I}}(a \wedge b)=1=1 \vee 0=\mu_{\chi_{I}}(a) \vee \mu_{\chi_{I}}(b)$ and $\nu_{\chi_{I}}(a \wedge b)=0=0 \wedge 1=\nu_{\chi_{I}}(a) \wedge \nu_{\chi_{I}}(b)$. Therefore, χ_{I} is an IFPI of L.

Conversely, suppose that χ_{I} is an IFPI of L. Let $a \wedge b \in I$. Then

$$
\begin{equation*}
\mu_{\chi_{I}}(a \wedge b)=1=\mu_{\chi_{I}}(a) \vee \mu_{\chi_{I}}(b) \text { and } \nu_{\chi_{I}}(a \wedge b)=0=\nu_{\chi_{I}}(a) \wedge \nu_{\chi_{I}}(b) \tag{*}
\end{equation*}
$$

If both $a, b \notin I$, then $\mu_{\chi_{I}}(a)=\mu_{\chi_{I}}(b)=0$ and $\nu_{\chi_{I}}(a)=\nu_{\chi_{I}}(b)=1$ implies that $\mu_{\chi_{I}}(a) \vee$ $\mu_{\chi_{I}}(b)=0$ and $\nu_{\chi_{I}}(a) \wedge \nu_{\chi_{I}}(b)=1$, which contradict $(*)$. Hence I must be a prime ideal of L.
(ii) Suppose that I is a prime ideal of L. Let $A, B \in I F I(L)$. Suppose that $A \cap B \subseteq \chi_{I}$. If $A \nsubseteq \chi_{I}, B \nsubseteq \chi_{I}$, then there exists $a, b \in L$ such that $\mu_{\chi_{I}}(a)<\mu_{A}(a), \nu_{\chi_{I}}(a)>\nu_{A}(a)$ and $\mu_{\chi_{I}}(b)<\mu_{A}(b), \nu_{\chi_{I}}(b)>\nu_{A}(b)$. Then by definition, we conclude that $a, b \notin I$. For, if say $a \in I$, then $\mu_{\chi_{I}}(a)=1, \nu_{\chi_{I}}(a)=0$ leads to $\mu_{A}(a)>1, \nu_{A}(a)<0$, which is not possible.

Since I is a prime ideal of L, we get $a \wedge b \notin I$. Hence $\mu_{\chi_{I}}(a \wedge b)=0, \nu_{\chi_{I}}(a \wedge b)=1$. Since A, B are IFIs of L, we have $\mu_{A}(a) \leq \mu_{A}(a \wedge b), \nu_{A}(a) \geq \nu_{A}(a \wedge b)$ and $\mu_{B}(b) \leq \mu_{B}(a \wedge b), \nu_{B}(b) \geq$ $\nu_{B}(a \wedge b)$. As the image of any element under an IFS is a non-zero number. From the above, we get

$$
\begin{aligned}
\mu_{\chi_{I}}(a \wedge b) & =0 \\
& \leq \mu_{\chi_{I}}(a) \wedge \mu_{\chi_{I}}(b) \\
& <\mu_{A}(a) \wedge \mu_{B}(b) \\
& \leq \mu_{A}(a \wedge b) \wedge \mu_{B}(a \wedge b) \\
& =\mu_{A \cap B}(a \wedge b) \\
& \leq \mu_{\chi_{I}}(a \wedge b) \\
& =0 .
\end{aligned}
$$

Thus we get $0<0$. Similarly, we can show $1>1$, which is not possible. Hence either $A \subseteq \chi_{I}$ or $B \subseteq \chi_{I}$.

Conversely, suppose that χ_{I} is a PIFI of L. Suppose that for some $a, b \in L, a \wedge b \in I$, but $a, b \notin I$. Define IFSs A and B of L as follows

$$
\mu_{A}(x)=\left\{\begin{array}{lc}
1, & \text { if } x \in(a] \\
0, & \text { otherwise }
\end{array} ; \quad \nu_{A}(x)=\left\{\begin{array}{lc}
0, & \text { if } x \in(a] \\
1, & \text { otherwise }
\end{array}\right.\right.
$$

and

$$
\mu_{B}(x)=\left\{\begin{array}{lc}
1, & \text { if } x \in(b] \\
0, & \text { otherwise }
\end{array} ; \quad \nu_{B}(x)=\left\{\begin{array}{lc}
0, & \text { if } x \in(b] \\
1, & \text { otherwise } .
\end{array}\right.\right.
$$

Then $A \cap B \subseteq \chi_{I}$, a contradiction. Hence I is a prime ideal of L.
The following example shows that the condition of "primeness" in Theorem 3.3 is necessary.
Example 3.4. Consider the lattice as shown in the Figure 1:

Figure 1

We note that the ideal $I=(0]$ is not a prime ideal of L, as $a \wedge b=0 \in I$, but $a \notin I$ and $b \notin I$.
(i) We know that $\mu_{\chi_{I}}(a \wedge b)=1$, $\mu_{\chi_{I}}(a)=\mu_{\chi_{I}}(b)=1$; $\nu_{\chi_{I}}(a \wedge b)=0, \nu_{\chi_{I}}(a)=\nu_{\chi_{I}}(b)=0$. Thus $\mu_{\chi_{I}}(a \wedge b) \not \equiv \mu_{\chi_{I}}(a) \vee \mu_{\chi_{I}}(b)$ and $\nu_{\chi_{I}}(a \wedge b) \not \equiv \nu_{\chi_{I}}(a) \wedge \nu_{\chi_{I}}(b)$.
Hence χ_{I} is not an IFPI of L.
(ii) Define IFIs A and B of L as follows:

$$
\mu_{A}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=0 \\
0.5, & \text { if } x=a \\
0, & \text { if } x=b, 1 .
\end{array} ; \quad \nu_{A}(x)= \begin{cases}0, & \text { if } x=0 \\
0.4, & \text { if } x=a \\
1, & \text { if } x=b, 1\end{cases}\right.
$$

and

$$
\mu_{B}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=0 \\
0.3, & \text { if } x=b \\
0, & \text { if } x=a, 1 .
\end{array} ; \quad \nu_{B}(x)= \begin{cases}0, & \text { if } x=0 \\
0.6, & \text { if } x=b \\
1, & \text { if } x=a, 1\end{cases}\right.
$$

Then $A \cap B \subseteq \chi_{I}$ but neither $A \subseteq \chi_{I}$ nor $B \subseteq \chi_{I}$. Thus χ_{I} is not a PIFI of L.
Theorem 3.5. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. If P is an IFI of L, then there exist IFIs P_{1}, P_{2} of L_{1}, L_{2}, respectively, such that $P=P_{1} \times P_{2}$. Moreover, if P is an IFPI, then so are P_{1} and P_{2}.

Proof. Define $P_{i} \in \operatorname{IFS}\left(L_{i}\right), i=1,2$. by $P_{1}(x)=P(x, 0)$ and $P_{2}(y)=P(0, y)$.
Let $x_{1}, x_{2} \in L_{1}$, we have

$$
\begin{gathered}
\mu_{P}\left[\left(x_{1}, 0\right) \wedge\left(x_{2}, 0\right)\right]=\mu_{P}\left(x_{1} \wedge x_{2}, 0\right)=\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \\
\nu_{P}\left[\left(x_{1}, 0\right) \wedge\left(x_{2}, 0\right)\right]=\nu_{P}\left(x_{1} \wedge x_{2}, 0\right)=\nu_{P_{1}}\left(x_{1} \wedge x_{2}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
\mu_{P}\left[\left(x_{1}, 0\right) \vee\left(x_{2}, 0\right)\right]=\mu_{P}\left(x_{1} \vee x_{2}, 0\right) & =\mu_{P_{1}}\left(x_{1} \vee x_{2}\right) ; \\
\nu_{P}\left[\left(x_{1}, 0\right) \vee\left(x_{2}, 0\right)\right]=\nu_{P}\left(x_{1} \vee x_{2}, 0\right) & =\nu_{P_{1}}\left(x_{1} \vee x_{2}\right) .
\end{aligned}
$$

Hence $\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \wedge \mu_{P_{1}}\left(x_{1} \vee x_{2}\right)=\mu_{P}\left[\left(x_{1}, 0\right) \wedge\left(x_{2}, 0\right)\right] \wedge \mu_{P}\left[\left(x_{1}, 0\right) \vee\left(x_{2}, 0\right)\right]$ and $\nu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \vee \nu_{P_{1}}\left(x_{1} \vee x_{2}\right)=\nu_{P}\left[\left(x_{1}, 0\right) \vee\left(x_{2}, 0\right)\right] \vee \nu_{P}\left[\left(x_{1}, 0\right) \vee\left(x_{2}, 0\right)\right]$.
As P is an IFI of L, we have

$$
\begin{aligned}
\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \wedge \mu_{P_{1}}\left(x_{1} \vee x_{2}\right) & =\mu_{P}\left[\left(x_{1}, 0\right) \wedge\left(x_{2}, 0\right)\right] \wedge \mu_{P}\left[\left(x_{1}, 0\right) \vee\left(x_{2}, 0\right)\right] \\
& \geq \mu_{P}\left(x_{1}, 0\right) \wedge \mu_{P}\left(x_{2}, 0\right) \\
& =\mu_{P_{1}}\left(x_{1}\right) \wedge \mu_{P_{1}}\left(x_{2}\right) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \wedge \mu_{P_{1}}\left(x_{1} \vee x_{2}\right) \geq \mu_{P_{1}}\left(x_{1}\right) \wedge \mu_{P_{1}}\left(x_{2}\right) \tag{**}
\end{equation*}
$$

Similarly, we can show that $\nu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \vee \mu_{P_{1}}\left(x_{1} \vee x_{2}\right) \leq \nu_{P_{1}}\left(x_{1}\right) \vee \nu_{P_{1}}\left(x_{2}\right)$. Also, $\left.\mu_{P_{1}}\left(x_{1} \vee x_{2}\right)=\mu_{P}\left[\left(x_{1}, 0\right) \vee\left(x_{2}, 0\right)\right)\right]=\mu_{P}\left(x_{1}, 0\right) \wedge \mu_{P}\left(x_{2}, 0\right)=\mu_{P_{1}}\left(x_{1}\right) \wedge \mu_{P_{1}}\left(x_{2}\right)$. Similarly, we can have $\nu_{P_{1}}\left(x_{1} \vee x_{2}\right)=\nu_{P_{1}}\left(x_{1}\right) \vee \nu_{P_{1}}\left(x_{2}\right)$. Therefore, from (**) we get $\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \geq \mu_{P_{1}}\left(x_{1}\right) \wedge \mu_{P_{1}}\left(x_{2}\right)$. Similarly, we can show that $\nu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \leq \nu_{P_{1}}\left(x_{1}\right) \vee \nu_{P_{1}}\left(x_{2}\right)$. Thus P_{1} is an IFI of L_{1}. Similarly, we can show that P_{2} is an IFI of L_{2}.

Next, let $x_{1} \in L_{1}, y_{1} \in L_{2}$, we have

$$
\begin{aligned}
\mu_{P}\left(x_{1}, y_{1}\right) & =\mu_{P}\left[\left(x_{1}, 0\right) \vee\left(0, y_{1}\right)\right] \\
& =\mu_{P}\left(x_{1}, 0\right) \wedge \mu_{P}\left(0, y_{1}\right) \\
& =\mu_{P_{1}}\left(x_{1}\right) \wedge \mu_{P_{2}}\left(y_{1}\right) \\
& =\mu_{P_{1} \times P_{2}}\left(x_{1}, y_{1}\right) .
\end{aligned}
$$

Similarly, we can show that $\nu_{P}\left(x_{1}, y_{1}\right)=\nu_{P_{1} \times P_{2}}\left(x_{1}, y_{1}\right)$. This implies that $P=P_{1} \times P_{2}$. Further, suppose that P is an IFPI of L. Let $x_{1}, x_{2} \in L_{1}$. Then

$$
\begin{aligned}
\mu_{P_{1}}\left(x_{1}\right) \vee \mu_{P_{1}}\left(x_{2}\right) & =\mu_{P}\left(x_{1}, 0\right) \vee \mu_{P}\left(x_{2}, 0\right) \\
& =\mu_{P}\left[\left(x_{1}, 0\right) \wedge\left(x_{2}, 0\right)\right] \\
& =\mu_{P}\left(x_{1} \wedge x_{2}, 0\right) \\
& =\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) .
\end{aligned}
$$

Similarly, we can show that $\nu_{P_{1}}\left(x_{1}\right) \wedge \nu_{P_{1}}\left(x_{2}\right)=\nu_{P_{1}}\left(x_{1} \wedge x_{2}\right)$.
This implies that P_{1} is an IFPI of L_{1}. In a same way, we can show that P_{2} is an IFPI of L_{2}.
The following examples shows that the converse of Theorem 3.5 may not be true.
Example 3.6. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. Let P_{1}, P_{2} be IFPIs of L_{1}, L_{2}, respectively. Then $P=P_{1} \times P_{2}$ need not be an IFPI of L.

Proof. Consider the lattices L_{1}, L_{2} as shown below:

Figure 2. Product lattice

Define IFSs $P_{1} \in \operatorname{IFS}\left(L_{1}\right)$ and $P_{2} \in I F S\left(L_{2}\right)$ as follows:

$$
P_{1}(x)=\left\{\begin{array}{ll}
(1,0), & \text { if } x=0, b \\
(0.5,04), & \text { if } x=a \\
(0,1), & \text { if } x=1
\end{array} ; \quad P_{2}(x)= \begin{cases}(1,0), & \text { if } x=0 \\
(0,1), & \text { if } x=1\end{cases}\right.
$$

We note that P_{1} is an IFPI of L_{1} and P_{2} is an IFPI of L_{2}. We consider $P \in \operatorname{IFS}\left(L_{1} \times L_{2}\right)$ defined by

$$
\mu_{P}(x, y)=\mu_{P_{1}}(x) \wedge \mu_{P_{2}}(y) \text { and } \nu_{P}(x, y)=\mu_{P_{1}}(x) \vee \nu_{P_{2}}(y) .
$$

i.e., $P=P_{1} \times P_{2}$. We have

$$
P(x, y)= \begin{cases}(1,0), & \text { if }(x, y)=(0,0),(b, 0) \\ (0.5,04), & \text { if }(x, y)=(a, 0) \\ (0,1), & \text { otherwise }\end{cases}
$$

Now, $\mu_{P}[(0,1) \wedge(1,0)]=\mu_{P}(0,0)=1$ and $\nu_{P}[(0,1) \wedge(1,0)]=\nu_{P}(0,0)=0$.
Also, $\mu_{P}(0,1)=0, \mu_{P}(1,0)=0, \nu_{P}(0,1)=1, \nu_{P}(1,0)=1$ implies that

$$
\mu_{P}[(0,1) \wedge(1,0)] \not \equiv \mu_{P}(0,1) \vee \mu_{P}(1,0) \text { and } \nu_{P}[(0,1) \wedge(1,0)] \not \equiv \nu_{P}(0,1) \wedge \nu_{P}(1,0) .
$$

Hence P is not an IFPI of L.

In Example (3.6), we have shown that a product of two IFPIs need not be an IFPI. However, we have the following theorem.

Theorem 3.7. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. Let P_{1} be an IFI of L_{1}. Then the product $P_{1} \times \chi_{L_{2}}$ is an IFPI of L if and only if P_{1} is an IFPI of L_{1}.

Proof. Suppose that P_{1} is an IFPI of L_{1}. We have

$$
\begin{aligned}
\mu_{P_{1} \times \chi_{L_{2}}}\left[\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right] & =\mu_{P_{1} \times \chi_{L_{2}}}\left[\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right)\right] \\
& =\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \wedge \mu_{\chi_{L_{2}}}\left(y_{1} \wedge y_{2}\right) \\
& =\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \wedge 1 \\
& =\mu_{P_{1}}\left(x_{1} \wedge x_{2}\right) \\
& =\mu_{P_{1}}\left(x_{1}\right) \vee \mu_{P_{1}}\left(x_{2}\right) \\
& =\left[\mu_{P_{1}}\left(x_{1}\right) \wedge 1\right] \vee\left[\mu_{P_{1}}\left(x_{2}\right) \wedge 1\right] \\
& =\left[\mu_{P_{1}}\left(x_{1}\right) \wedge \mu_{\chi_{L_{2}}}\left(y_{1}\right)\right] \vee\left[\mu_{P_{1}}\left(x_{2}\right) \wedge \mu_{\chi_{L_{2}}}\left(y_{2}\right)\right] \\
& =\mu_{P_{1} \times \chi_{L_{2}}}\left(x_{1}, y_{1}\right) \vee \mu_{P_{1} \times \chi_{L_{2}}}\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Similarly, we can show that $\nu_{P_{1} \times \chi_{L_{2}}}\left[\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right]=\nu_{P_{1} \times \chi_{L_{2}}}\left(x_{1}, y_{1}\right) \wedge \nu_{P_{1} \times \chi_{L_{2}}}\left(x_{2}, y_{2}\right)$. Hence $P_{1} \times \chi_{L_{2}}$ is an IFPI of L.

The converse part can be similarly proved.

Theorem 3.8. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. Let P_{2} be an IFI of L_{2}. Then the product $\chi_{L_{1}} \times P_{2}$ is an IFPI of L if and only if P_{2} is an IFPI of L_{2}.

Proof. Straightforward.
Theorem 3.9. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. Let P_{i}, Q_{j} be IFIs of L_{1} and L_{2}, respectively. Let $R_{i j}=P_{i} \times Q_{j}$. Then $\cap R_{i j}=\left(\cap P_{i}\right) \times\left(\cap Q_{i}\right)$.

Proof. Let $(x, y) \in L$, we have

$$
\begin{aligned}
\mu_{\cap R_{i j}}(x, y) & =\wedge_{i j}\left[\mu_{P_{i} \times Q_{j}}(x, y)\right] \\
& =\wedge_{i j}\left[\mu_{P_{i}}(x) \wedge \mu_{Q_{j}}(y)\right] \\
& =\left[\wedge_{i j}\left\{\mu_{P_{i}}(x)\right\}\right] \wedge\left[\wedge_{i j}\left\{\mu_{Q_{j}}(y)\right\}\right] \\
& =\left[\wedge_{i}\left\{\mu_{P_{i}}(x)\right\}\right] \wedge\left[\wedge_{j}\left\{\mu_{Q_{j}}(y)\right\}\right] \\
& =\left[\mu_{\cap P_{i}}(x)\right] \wedge\left[\mu_{\cap Q_{j}}(y)\right] \\
& =\mu_{\cap P_{i} \times \cap Q_{j}}(x, y) .
\end{aligned}
$$

Similarly, we can show that $\nu_{\cap R_{i j}}(x, y)=\nu_{\cap P_{i} \times \cap Q_{j}}(x, y)$.
Hence $\cap R_{i j}=\left(\cap P_{i}\right) \times\left(\cap Q_{i}\right)$.

4 Intuitionistic fuzzy primary ideals and primary intuitionistic fuzzy ideal of a lattice

Definition 4.1. [23] Let L be a lattice with 0 . An ideal I of L is called a primary ideal, if for $a, b \in L, a \wedge b \in I$ implies that either $a \in I$ or $b \in \sqrt{I}$, where \sqrt{I} denotes the radical of I (i.e., the intersection of all prime ideals of L containing I).

If there does not exist a prime ideal containing an ideal I in a lattice L, then we have $\sqrt{I}=L$.
We define the radical of an IFI. Since there are two concepts of primeness (namely an IFPI and a PIFI), we can introduce two concepts, of the radical and primeness. For the radical of an IFS, we use the notation \sqrt{A}. The content will decide the radical (i.e., whether IF prime radical or prime IF radical).

Definition 4.2. Let Q be an IFI of a lattice L. We define the IF prime radical (respectively, prime IF radical) of Q as the intersection of all IFPIs (respectively, PIFIs) containing Q and we denote it by \sqrt{Q}.

We note that for an IFI Q of L always $Q \subseteq \sqrt{Q}$. It can be shown that for an I of L we have $\sqrt{\chi_{I}}=\chi_{\sqrt{I}}$.

Definition 4.3. A proper IFI Q of a lattice L is called an IF primary ideal of L, if for $a, b \in L$ the following holds:

$$
\mu_{Q}(a \wedge b) \leq \mu_{Q}(a) \vee \mu_{\sqrt{Q}}(B) \text { and } \nu_{Q}(a \wedge b) \geq \nu_{Q}(a) \wedge \nu_{\sqrt{Q}}(b)
$$

Lemma 4.4. Let I be a proper ideal of L. Then I is a primary ideal of L if and only if χ_{I} is an IF primary ideal of L.

Proof. Suppose that I is a primary ideal of L. Let $a, b \in L$
(i) If $a \wedge b \in I$, then as I is a primary ideal of L, either $a \in I$ or $b \in \sqrt{I}$. Thus, we have

$$
\mu_{\chi_{I}}(a \wedge b) \leq \mu_{\chi_{I}}(a) \vee \mu_{\chi_{\sqrt{I}}}(b) \text { and } \nu_{\chi_{I}}(a \wedge b) \geq \nu_{\chi_{I}}(a) \wedge \nu_{\chi_{\sqrt{I}}}(b)
$$

(ii) If $a \wedge b \notin I$, then clearly $a \notin I$ and $b \notin I$. In this case also, we have

$$
\mu_{\chi_{I}}(a \wedge b) \leq \mu_{\chi_{I}}(a) \vee \mu_{\chi_{\sqrt{I}}}(b) \text { and } \nu_{\chi_{I}}(a \wedge b) \geq \nu_{\chi_{I}}(a) \wedge \nu_{\chi_{\sqrt{I}}}(b) .
$$

Hence χ_{I} is an IF primary ideal of L.
Conversely, suppose that χ_{I} is an IF primary ideal of L. Let $a \wedge b \in I$. Then

$$
\mu_{\chi_{I}}(a \wedge b) \leq \mu_{\chi_{I}}(a) \vee \mu_{\chi_{\sqrt{I}}}(b) \text { and } \nu_{\chi_{I}}(a \wedge b) \geq \nu_{\chi_{I}}(a) \wedge \nu_{\chi_{\sqrt{I}}}(b)
$$

implies that either $\mu_{\chi_{I}}(a)=1, \nu_{\chi_{I}}(a)=0$ or $\mu_{\chi_{\sqrt{I}}}(b)=1, \nu_{\chi_{\sqrt{I}}}(b)=0$.
This further implies that either $a \in I$ or $b \in \sqrt{I}$. Hence I is a primary ideal of L.
Now we give a relationship between an IFPI and an IF primary ideal.
Lemma 4.5. If Q is an IFPI of L, then Q is an IF primary ideal.
Proof. Let Q be an IFPI of L. For all $a, b \in L$, we have

$$
\mu_{Q}(a \wedge b)=\mu_{Q}(a) \vee \mu_{Q}(b) \text { and } \nu_{Q}(a \wedge b)=\nu_{Q}(a) \wedge \nu_{Q}(b) .
$$

Since $Q \subseteq \sqrt{Q}$, we get $\mu_{Q}(b) \leq \mu_{\sqrt{Q}}(b)$ and $\nu_{Q}(b) \geq \nu_{\sqrt{Q}}(b)$. Thus we have

$$
\mu_{Q}(a \wedge b) \leq \mu_{Q}(a) \vee \mu_{\sqrt{Q}}(b) \text { and } \nu_{Q}(a \wedge b) \geq \nu_{Q}(a) \wedge \nu_{\sqrt{Q}}(b)
$$

Hence Q is an IF Primary ideal.
The following example shows that the converse of the Lemma (4.5) does not hold.
Example 4.6. Consider the ideal $I=(a]$ of the following lattice as shown in Figure 3.

Figure 3
We note that $J=(d]$ is the only prime ideal of L containing I. Hence $\sqrt{I}=J$. We know that for any ideal K of $L, \sqrt{\chi_{K}}=\chi_{\sqrt{K}}$. Hence $\sqrt{\chi_{I}}=\chi_{\sqrt{I}}=\chi_{J}$. Since J is a prime ideal, χ_{J} is an IFPI and so χ_{I} is an IF primary ideal of L. Also, because $b, c \notin I$, we have $\mu_{\chi_{I}}(b \wedge c)=1$, but $\mu_{\chi_{I}}(b) \vee \mu_{\chi_{I}}(c)=0$. Similarly, $\nu_{\chi_{I}}(b \wedge c)=0$, but $\nu_{\chi_{I}}(b) \wedge \nu_{\chi_{I}}(c)=1$. Thus χ_{I} is not an IFPI of L.

Theorem 4.7. Let Q be an IFI of L. Then Q is an IF primary ideal if and only if the level cut set $Q_{(t, s)}$, where $t, s \in[0,1]$ such that $t+s \leq 1$ is a primary ideal of L.

Proof. Suppose that Q is an IF primary ideal of L. Let $a, b \in L$ be such that $a \wedge b \in Q_{(t, s)}$ and $a \notin Q_{(t, s)}, b \notin \sqrt{Q_{(t, s)}}$. Then we have

$$
\mu_{Q}(a \wedge b)>t, \nu_{Q}(a \wedge b)<s \text { and } t<\mu_{Q}(a), s>\nu_{Q}(a), t<\mu_{\sqrt{Q}}(b), s>\nu_{\sqrt{Q}}(b)
$$

Since Q is an IF primary ideal, we have

$$
\mu_{Q}(a \wedge b) \leq \mu_{Q}(a) \vee \mu_{\sqrt{Q}}(b) \text { and } \nu_{Q}(a \wedge b) \geq \nu_{Q}(a) \wedge \nu_{\sqrt{Q}}(b)
$$

Thus, we get $t<t$ and $s>s$, which is not possible. Hence $Q_{(t, s)}$ is a primary ideal of L.
Conversely, suppose that $Q_{(t, s)}$ is a primary ideal of L. Let $a, b \in L$ be such that

$$
\mu_{Q}(a \wedge b) \not \equiv \mu_{Q}(a) \vee \mu_{\sqrt{Q}}(b) \text { and } \nu_{Q}(a \wedge b) \not \equiv \nu_{Q}(a) \wedge \nu_{\sqrt{Q}}(b) .
$$

Let $\mu_{Q}(a \wedge b)=t, \nu_{Q}(a \wedge b)=s$. Then $\mu_{Q}(a)<t, \mu_{\sqrt{Q}}(b)<t$ and $\nu_{Q}(a)>s, \nu_{\sqrt{Q}}(b)>s$. Since $Q_{(t, s)}$ is a primary ideal of $L, a \wedge b \in Q_{(t, s)}$ implies that either $a \in Q_{(t, s)}$ or $b \in \sqrt{Q_{(t, s)}}$, i.e., either $\mu_{Q}(a) \geq t$ or $\mu_{\sqrt{Q}}(b) \geq t$ and $\nu_{Q}(a) \leq s$ or $\nu_{\sqrt{Q}}(b) \leq s$, a contradiction.

Hence Q is an IF primary ideal of L.
From this onwards, L will be a complemented lattice.
Definition 4.8. A proper IFI Q of a lattice L is called a primary IFI of L if for $A, B \in I F I(L)$ such that
$A \cap B \subseteq Q$ implies that either $A \subseteq Q$ or $B \subseteq \sqrt{Q}$.
Now we give a relationship between a PIFI and a primary IFI.
Lemma 4.9. If Q is a PIFI of L, then Q is a primary IFI of L.
Proof. Let Q is a PIFI of L. Let $A \cap B \subseteq Q$ for some $A, B \in \operatorname{IFI}(L)$. Since Q is a prime IFI, either $A \subseteq Q$ or $B \subseteq Q$. Since $Q \subseteq \sqrt{Q}$ always, we get the result.

The following result gives the existence of primary IFIs which are not PIFI.
Theorem 4.10. Let I be a primary ideal of $L, I \neq L$. The IFS Q of L defined by

$$
\mu_{Q}(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in I \\
\alpha, & \text { if } x \in L-I
\end{array} ; \quad \nu_{Q}(x)= \begin{cases}0, & \text { if } x \in I \\
\alpha^{\prime}, & \text { if } x \in L-I .\end{cases}\right.
$$

where α^{\prime} is the complement of α in L (i.e., $\alpha \wedge \alpha^{\prime}=0, \alpha \vee \alpha^{\prime}=1$) is an IF primary ideal of L.
Proof. Clearly, Q is an IFI of L. Since $Q \subseteq \sqrt{Q}$, we have $\mu_{Q}(x) \leq \mu_{\sqrt{Q}}(x)$ and $\nu_{Q}(x) \geq \nu_{\sqrt{Q}}(x)$ for all $x \in L$. Therefore, if $x \in I$, then $\mu_{\sqrt{Q}}(x)=1$ and $\nu_{\sqrt{Q}}(x)=0$ and if $x \notin I$, then $\mu_{\sqrt{Q}}(x)=t \geq \alpha$ and $\nu_{\sqrt{Q}}(x)=s \leq \alpha^{\prime}$.
Let A and B be IFIs of L such that $A \cap B \subseteq Q$. Suppose that $A \nsubseteq Q$ and $B \nsubseteq \sqrt{Q}$. let $x \in L$ be such that $\mu_{A}(x)>\mu_{Q}(x), \nu_{A}(x)<\nu_{Q}(x)$. This implies that $x \in I$, for otherwise $\mu_{A}(x)>1, \nu_{A}(x)<0$ which is not possible.

Let $\mu_{A}(x)>k_{1} \geq \alpha=\mu_{Q}(x), \nu_{A}(x)<l_{1} \leq \alpha^{\prime}=\nu_{Q}(x)$.
Let $y \in L$ such that $\mu_{B}(y)>\mu_{\sqrt{Q}}(y), \nu_{B}(y)<\nu_{\sqrt{Q}}(y)$.
Clearly, $y \notin \sqrt{I}$, otherwise $\mu_{B}(y)>\mu_{\sqrt{Q}}(y) \geq \mu_{Q}(y)=1$ and $\nu_{B}(y)<\nu_{\sqrt{Q}}(y) \leq \mu_{Q}(y)=0$, which is not possible.

Let $\mu_{A}(y)=k_{2}$ and $\nu_{A}(y)=l_{2}$. Then $k_{2}>\alpha$ and $l_{2}<\alpha^{\prime}$. Since I is primary, $x \wedge y \notin I$ Hence $\mu_{Q}(x \wedge y)=\alpha, \nu_{Q}(x \wedge y)=\alpha^{\prime}$, we get

$$
\begin{aligned}
& \mu_{A \cap B}(x \wedge y) \geq \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}=\min \left\{k_{1}, k_{2}\right\}>\alpha=\mu_{Q}(x \wedge y) \text { and } \\
& \nu_{A \cap B}(x \wedge y) \leq \max \left\{\nu_{A}(x), \nu_{B}(y)\right\}=\max \left\{l_{1}, l_{2}\right\}<\alpha^{\prime}=\nu_{Q}(x \wedge y)
\end{aligned}
$$

which is not possible. Thus Q is a primary IFI of L.
Theorem 4.11. If Q is a primary IFI of L, then the level cut set $Q_{(t, s)}$, where $t, s \in[0,1]$ such that $t+s \leq 1$ is a primary ideal of L.

Proof. Let $a, b \in L$ be such that $a \wedge b \in Q_{(t, s)}$ and $a \notin Q_{(t, s)}$. Define IFIs A, B of L as follows:

$$
A(x)=\left\{\begin{array}{ll}
(t, s), & \text { if } x \leq a \\
(0,1), & \text { if } x \not \leq a
\end{array} ; \quad B(x)= \begin{cases}(t, s), & \text { if } x \leq b \\
(0,1), & \text { if } x \not \leq b .\end{cases}\right.
$$

Then $A \cap B \subseteq Q$. Also, $A \nsubseteq Q$ as $a \notin Q_{(t, s)}$ implies $\mu_{Q}(a)<t=\mu_{A}(a), \nu_{Q}(a)>s=\nu_{A}(a)$. Since Q is a primary IFI, we have $B \subseteq \sqrt{Q}$. Hence $t=\mu_{B}(b) \leq \mu_{\sqrt{Q}}(b), s=\nu_{B}(b) \geq \nu_{\sqrt{Q}}(b)$ and so $b \in \sqrt{Q_{(t, s)}}$. Thus $Q_{(t, s)}$ is a primary ideal of L.

The following example shows that the converse of Theorem (4.11) does not hold.
Example 4.12. Consider the set \mathbb{N} of natural numbers. Then (\mathbb{N}, divisibility) form a partially ordered set and thus a lattice under the join (\vee) and meet (\wedge) operations defined as

$$
a \vee b=\operatorname{lcm}\{a, b\} \text { and } a \wedge b=\operatorname{gcd}\{a, b\} ; \text { for all } a, b \in \mathbb{N} .
$$

Let p be any prime number. Consider $t_{i}, s_{i} \in(0,1), 0 \leq i \leq m$ be such that $t_{1}>t_{2}>\cdots>t_{m}$ and $s_{1}<s_{2}<\cdots<s_{m}$ with the condition $t_{i}+s_{i} \leq 1$.

Consider the IFI Q of \mathbb{N} defined as

$$
Q(x)= \begin{cases}\left(t_{0}, s_{0}\right), & \text { if } x \in\left(p^{m}\right] \\ \left(t_{i}, s_{i}\right), & \text { if } x \in\left(p^{m-i}\right]-\left(p^{m-i+1}\right], i=1,2, \ldots, m\end{cases}
$$

Then we have

$$
\sqrt{Q}(x)= \begin{cases}\left(t_{0}, s_{0}\right), & \text { if } x \in(p] \\ \left(t_{i}, s_{i}\right), & \text { if } x \in \mathbb{N}-(p] .\end{cases}
$$

Define IFIs A and B of \mathbb{N} by

$$
A(x)= \begin{cases}\left(\alpha, \alpha^{\prime}\right), & \text { if } x \in\left(p^{m}\right] \\ (0,1), & \text { otherwise }\end{cases}
$$

and $B(x)=\left(t_{0}, s_{0}\right)$ for all $x \in \mathbb{N}$. Then

$$
(A \cap B)(x)=\left\{\begin{array}{lc}
\left(t_{0}, s_{0}\right), & \text { if } x \in\left(p^{m}\right] \\
(0,1), & \text { otherwise }
\end{array}\right.
$$

Thus $A \cap B \subseteq Q \subseteq \sqrt{Q}$ and $A \nsubseteq Q$. We note that if $x \in \mathbb{N}-(p]$, then

$$
\mu_{Q}(x)=t_{m}<t_{0}=\mu_{B}(x) \text { and } \nu_{Q}(x)=s_{m}>s_{0}=\nu_{B}(x) .
$$

Thus $B \nsubseteq \sqrt{Q}$. Hence Q is not primary IFI. However, each level cut ideal $Q_{\left(t_{i}, s_{i}\right)}$ of Q is primary, $i=1,2, \ldots, m$.

Theorem 4.13. Let Q be a non-constant IFI of a lattice L. Then \sqrt{Q} is a PIFI of L if and only if \sqrt{Q} is a primary IFI of L.

Proof. Let \sqrt{Q} be a PIFI of L. Let $A, B \in I F I(L)$ be such that $A \cap B \subseteq \sqrt{Q}$. As \sqrt{Q} is a prime IFI of L, either $A \subseteq \sqrt{Q}$ or $B \subseteq \sqrt{Q}$. Since $\sqrt{\sqrt{Q}}=\sqrt{Q}$. We conclude that \sqrt{Q} is a primary IFI of L.

Conversely, suppose that \sqrt{Q} is a primary IFI of L. Let $A, B \in I F I(L)$ be such that $A \cap B \subseteq \sqrt{Q}$. As \sqrt{Q} is primary IFI, either $A \subseteq \sqrt{Q}$ or $B \subseteq \sqrt{\sqrt{Q}}=\sqrt{Q}$. Hence \sqrt{Q} is a PIFI of L.

Remark 4.14. From Example (3.6), we conclude that in general $\sqrt{P \times Q} \neq \sqrt{P} \times \sqrt{Q}$.
Theorem 4.15. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}.
(i) Let P_{1} be an IFI of L_{1}. Then $\sqrt{P_{1} \times \chi_{L_{2}}}=\sqrt{P_{1}} \times \chi_{L_{2}}$.
(ii) Let P_{2} be an IFI of L_{2}. Then $\sqrt{\chi_{L_{1}} \times P_{2}}=\chi_{L_{1}} \times \sqrt{P_{2}}$.

Proof. (i) Let P be an IFI of L such that $P_{1} \times \chi_{L_{2}} \subseteq P$. By Theorem (3.5), $P=Q_{1} \times Q_{2}$ for some IFIs Q_{1} of L_{1} and Q_{2} of L_{2}. Then $P_{1} \subseteq Q_{1}$ and $\chi_{L_{2}} \subseteq Q_{2}$. It follows that $Q_{2}=\chi_{L_{2}}$. Thus $P \subseteq Q_{1} \times \chi_{L_{2}}$. This shows that $\sqrt{P_{1} \times \chi_{L_{2}}}=\sqrt{P_{1}} \times \chi_{L_{2}}$.
(ii) The statement can be similarly proved.

5 Intuitionistic fuzzy 2-absorbing ideals and 2 -absorbing intuitionistic fuzzy ideals

Definition 5.1. ([9]) Let L be a lattice with 0 . An ideal I of L is called a 2 -absorbing ideal, if for $a, b, c \in L$,

$$
a \wedge b \wedge c \in I \text { implies that either } a \wedge b \in I \text { or } b \wedge c \in I \text { or } c \wedge a \in I
$$

We extend the concept of a 2-absorbing ideals, in the context of an IFI of a lattice and prove some properties of intuitionistic fuzzy 2 -absorbing ideals of a lattice.

Definition 5.2. A proper IFI A of a lattice L is called an intuitionistic fuzzy 2-absorbing ideal (IF2AI) of L, if for $a, b, c \in L$,

$$
\begin{aligned}
& \mu_{A}(a \wedge b \wedge c) \leq \max \left\{\mu_{A}(a \wedge b), \mu_{A}(b \wedge c), \mu_{A}(c \wedge a)\right\} \text { and } \\
& \nu_{A}(a \wedge b \wedge c) \geq \min \left\{\nu_{A}(a \wedge b), \nu_{A}(b \wedge c), \nu_{A}(c \wedge a)\right\} .
\end{aligned}
$$

Since $\mu_{A}(a \wedge b), \mu_{A}(b \wedge c), \mu_{A}(c \wedge a), \nu_{A}(a \wedge b), \nu_{A}(b \wedge c), \nu_{A}(c \wedge a)$ are all non-negative real numbers, the definition of an IF2AI is equivalent to : A is an IF2AI if and only if for all $a, b, c \in L$,

$$
\begin{aligned}
& \left.\mu_{A}(a \wedge b \wedge c) \leq \mu_{A}(a \wedge b) \vee \mu_{A}(b \wedge c) \vee \mu_{A}(c \wedge a)\right\} \text { and } \\
& \left.\nu_{A}(a \wedge b \wedge c) \geq \nu_{A}(a \wedge b) \wedge \nu_{A}(b \wedge c) \wedge \nu_{A}(c \wedge a)\right\}
\end{aligned}
$$

In fact, A is an IF2AI if and only if for all $a, b, c \in L$,

$$
\begin{aligned}
& \mu_{A}(a \wedge b \wedge c)=\mu_{A}(a \wedge b) \vee \mu_{A}(b \wedge c) \vee \mu_{A}(c \wedge a) \text { and } \\
& \nu_{A}(a \wedge b \wedge c)=\nu_{A}(a \wedge b) \wedge \nu_{A}(b \wedge c) \wedge \nu_{A}(c \wedge a)
\end{aligned}
$$

Lemma 5.3. Let I be an ideal of L. Then I is a 2-absorbing ideal of L if and only if χ_{I} is an IF2AI of L.

Proof. Suppose that I is a 2-absorbing ideal of L. Let $a, b, c \in L$.
If $a \wedge b \wedge c \in I$, then as I is an 2-absorbing ideal, either $a \wedge b \in I$ or $b \wedge c \in I$ or $c \wedge a \in I$.
Thus in this case,

$$
\begin{aligned}
& \left.\mu_{\chi_{I}}(a \wedge b \wedge c) \leq \mu_{\chi_{I}}(a \wedge b) \vee \mu_{\chi_{I}}(b \wedge c) \vee \mu_{\chi_{I}}(c \wedge a)\right\} \text { and } \\
& \left.\nu_{\chi_{I}}(a \wedge b \wedge c) \geq \nu_{\chi_{I}}(a \wedge b) \wedge \nu_{\chi_{I}}(b \wedge c) \wedge \nu_{\chi_{I}}(c \wedge a)\right\} .
\end{aligned}
$$

If $a \wedge b \wedge c \notin I$, then clearly $a \wedge b \notin I, b \wedge c \notin I, c \wedge a \notin I$. Thus in this case,

$$
\begin{aligned}
& \left.\mu_{\chi_{I}}(a \wedge b \wedge c) \leq \mu_{\chi_{I}}(a \wedge b) \vee \mu_{\chi_{I}}(b \wedge c) \vee \mu_{\chi_{I}}(c \wedge a)\right\} \text { and } \\
& \left.\nu_{\chi_{I}}(a \wedge b \wedge c) \geq \nu_{\chi_{I}}(a \wedge b) \wedge \nu_{\chi_{I}}(b \wedge c) \wedge \nu_{\chi_{I}}(c \wedge a)\right\} .
\end{aligned}
$$

Hence χ_{I} is an IF2AI of L.
Conversely, suppose that χ_{I} is an IF2AI of L. Let $a, b, c \in L$ such that $a \wedge b \wedge c \in I$, but $a \wedge b \notin I, b \wedge c \notin I, c \wedge a \in I$. This implies that $\mu_{A}(a \wedge b \wedge c)=1, \nu_{A}(a \wedge b \wedge c)=0$ and $\mu_{\chi_{I}}(a \wedge b)=\mu_{\chi_{I}}(b \wedge c)=\mu_{\chi_{I}}(c \wedge a)=0 ; \nu_{\chi_{I}}(a \wedge b)=\nu_{\chi_{I}}(b \wedge c)=\nu_{\chi_{I}}(c \wedge a)=1$. Then

$$
\left.\mu_{\chi_{I}}(a \wedge b \wedge c)=1 \not \equiv 0=\mu_{\chi_{I}}(a \wedge b) \vee \mu_{\chi_{I}}(b \wedge c) \vee \mu_{\chi_{I}}(c \wedge a)\right\} \text { and }
$$

$$
\left.\nu_{\chi_{I}}(a \wedge b \wedge c)=0 \not \equiv 1=\nu_{\chi_{I}}(a \wedge b) \wedge \nu_{\chi_{I}}(b \wedge c) \wedge \nu_{\chi_{I}}(c \wedge a)\right\},
$$

a contradiction, as χ_{I} is an IF2AI of L. Therefore, either $a \wedge b \in I$ or $b \wedge c \in I$ or $c \wedge a \in I$. Hence I is a 2 -absorbing ideal of L.

Lemma 5.4. An IFI A of L is an IF2AI if and only if each level cut set $A_{(t, s)}$ is a 2-absorbing ideal of L, where $t, s \in[0,1]$ such that $t+s \leq 1$.

Proof. (i) Let A be an IF2AI of L. Let $a, b, c \in L$ be such that $a \wedge b \wedge c \in A_{(t, s)}$. Then $\mu_{A}(a \wedge b \wedge c) \geq t$ and $\nu_{A}(a \wedge b \wedge c) \leq s$. Since A is an IF2AI of L,

$$
\begin{aligned}
& \left.t \leq \mu_{A}(a \wedge b \wedge c) \leq \mu_{A}(a \wedge b) \vee \mu_{A}(b \wedge c) \vee \mu_{A}(c \wedge a)\right\} \text { and } \\
& \left.s \geq \nu_{A}(a \wedge b \wedge c) \geq \nu_{A}(a \wedge b) \wedge \nu_{A}(b \wedge c) \wedge \nu_{A}(c \wedge a)\right\} .
\end{aligned}
$$

Since $t, s, \mu_{A}(a \wedge b), \mu_{A}(b \wedge c), \mu_{A}(c \wedge a), \nu_{A}(a \wedge b), \nu_{A}(b \wedge c), \nu_{A}(c \wedge a)$ are all non-negative real numbers. Therefore, $\mu_{A}(a \wedge b)<t, \mu_{A}(b \wedge c)<t, \mu_{A}(c \wedge a)<t$ and $\nu_{A}(a \wedge b)>s, \nu_{A}(b \wedge c)>s$, $\nu_{A}(c \wedge a)>s$, then

$$
\begin{aligned}
& \left.\mu_{A}(a \wedge b \wedge c) \leq \mu_{A}(a \wedge b) \vee \mu_{A}(b \wedge c) \vee \mu_{A}(c \wedge a)\right\} \text { and } \\
& \nu_{A}(a \wedge b \wedge c) \geq \nu_{A}(a \wedge b) \wedge \nu_{A}(b \wedge c) \wedge \nu_{A}(c \wedge a) .
\end{aligned}
$$

This leads to $t<t$ and $s>s$, which is not possible. Hence $t \leq \mu_{A}(a \wedge b)$ or $t \leq \mu_{A}(b \wedge c)$ or $t \leq \mu_{A}(c \wedge a)$ and $s \geq \nu_{A}(a \wedge b)$ or $s \geq \nu_{A}(b \wedge c)$ or $s \geq \nu_{A}(c \wedge a)$. Thus either $a \wedge b \in A_{(t, s)}$ or $b \wedge c \in A_{(t, s)}$ or $c \wedge a \in A_{(t, s)}$. i.e., $A_{(t, s)}$ is a 2-absorbing ideal of L.
(ii) Let $A_{(t, s)}$ be a 2-absorbing ideal of L. Let $a, b, c \in L$ and $\mu_{A}(a \wedge b \wedge c)=t, \nu_{A}(a \wedge b \wedge c)=s$. Then $a \wedge b \wedge c \in A_{(t, s)}$. Since $A_{(t, s)}$ is a 2-absorbing ideal of L, either $a \wedge b \in A_{(t, s)}$ or $b \wedge c \in A_{(t, s)}$ or $c \wedge a \in A_{(t, s)}$. This implies that

$$
\begin{aligned}
& \left.t \leq \mu_{A}(a \wedge b \wedge c) \leq \mu_{A}(a \wedge b) \vee \mu_{A}(b \wedge c) \vee \mu_{A}(c \wedge a)\right\} \text { and } \\
& s \geq \nu_{A}(a \wedge b \wedge c) \geq \nu_{A}(a \wedge b) \wedge \nu_{A}(b \wedge c) \wedge \nu_{A}(c \wedge a) .
\end{aligned}
$$

Thus A is an IF2AI of L.
Now we show that every IFPI of L is an IF2AI.
Lemma 5.5. Let P be an IFPI of L. Then P is an IF2AI of L.
Proof. Let P be an IFPI of L. Then for all $a, b \in L$, we have

$$
\mu_{P}(a \wedge b) \leq \mu_{P}(a) \vee \mu_{P}(b) \text { and } \nu_{P}(a \wedge b) \geq \nu_{P}(a) \wedge \nu_{P}(b)
$$

Hence for all $a, b, c \in L$, we have

$$
\begin{aligned}
& \mu_{P}(a \wedge b \wedge c) \leq \mu_{P}(a \wedge b) \vee \mu_{P}(c) \text { and } \nu_{P}(a \wedge b \wedge c) \geq \nu_{P}(a \wedge b) \wedge \nu_{P}(c) \\
& \mu_{P}(a \wedge b \wedge c) \leq \mu_{P}(b \wedge c) \vee \mu_{P}(a) \text { and } \nu_{P}(a \wedge b \wedge c) \geq \nu_{P}(b \wedge c) \wedge \nu_{P}(a) \\
& \mu_{P}(a \wedge b \wedge c) \leq \mu_{P}(c \wedge a) \vee \mu_{P}(b) \text { and } \nu_{P}(a \wedge b \wedge c) \geq \nu_{P}(c \wedge a) \wedge \nu_{P}(b) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mu_{P}(a \wedge b \wedge c) \leq \mu_{P}(a \wedge b) \vee \mu_{P}(b \wedge c) \vee \mu_{P}(c \wedge a) \vee \mu_{P}(a) \vee \mu_{P}(b) \vee \mu_{P}(c) \text { and } \\
& \nu_{P}(a \wedge b \wedge c) \geq \nu_{P}(a \wedge b) \wedge \nu_{P}(b \wedge c) \wedge \nu_{P}(c \wedge a) \wedge \nu_{P}(a) \wedge \nu_{P}(b) \wedge \nu_{P}(c) .
\end{aligned}
$$

By the definition of IFI, it follows that for any $x, y \in L, \mu_{P}(x) \leq \mu_{P}(x \wedge y)$ and $\nu_{P}(x) \geq$ $\nu_{P}(x \wedge y)$. Thus we have

$$
\begin{aligned}
& \left.\mu_{P}(a \wedge b \wedge c) \leq \mu_{P}(a \wedge b) \vee \mu_{P}(b \wedge c) \vee \mu_{P}(c \wedge a)\right\} \text { and } \\
& \left.\nu_{P}(a \wedge b \wedge c) \geq \nu_{P}(a \wedge b) \wedge \nu_{P}(b \wedge c) \wedge \nu_{P}(c \wedge a)\right\} .
\end{aligned}
$$

Thus P is an IF2AI of L.
The following example shows that the converse of Lemma (5.5) does not hold.
Example 5.6. Consider the lattice L as shown in figure 1. Let P be an IFS on L defined by

$$
\mu_{P}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=0 \\
0.5, & \text { if } x=b \\
0, & \text { if } x=a, 1 .
\end{array} ; \quad \nu_{P}(x)= \begin{cases}0, & \text { if } x=0 \\
0.4, & \text { if } x=b \\
1, & \text { if } x=a, 1\end{cases}\right.
$$

Then P is an IF2AI of L. However, P is not an IFPI of L as $1=\mu_{P}(0)=\mu_{P}(a \wedge b) \neq 0.5=$ $0 \vee 0.5=\mu_{P}(a) \vee \mu_{P}(b)$ and $0=\nu_{P}(0)=\nu_{P}(a \wedge b) \neq 0.4=1 \wedge 0.4=\nu_{P}(a) \wedge \nu_{P}(b)$.

Lemma 5.7. The intersection of any two distinct IFPIs of L is an IF2AI of L.
Proof. Let P_{1} and P_{2} be two distinct IFPIs of L. We know that for any $a \in L$,

$$
\mu_{P_{1} \cap P_{2}}(a)=\mu_{P_{1}}(a) \wedge \mu_{P_{2}}(a) \text { and } \nu_{P_{1} \cap P_{2}}(a)=\nu_{P_{1}}(a) \vee \nu_{P_{2}}(a) .
$$

Let $a, b, c \in L$, we have

$$
\begin{aligned}
& \mu_{P_{1} \cap P_{2}}(a \wedge b \wedge c)=\mu_{P_{1}}(a \wedge b \wedge c) \wedge \mu_{P_{2}}(a \wedge b \wedge c) \text { and } \\
& \nu_{P_{1} \cap P_{2}}(a \wedge b \wedge c)=\nu_{P_{1}}(a \wedge b \wedge c) \vee \nu_{P_{2}}(a \wedge b \wedge c)
\end{aligned}
$$

Since every IFPI is an IF2AI, so we have
$\mu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \leq\left[\mu_{P_{1}}(a \wedge b) \vee \mu_{P_{1}}(b \wedge c) \vee \mu_{P_{1}}(c \wedge a)\right] \wedge\left[\mu_{P_{2}}(a \wedge b) \vee \mu_{P_{2}}(b \wedge c) \vee \mu_{P_{2}}(c \wedge a)\right]$ and
$\nu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \geq\left[\nu_{P_{1}}(a \wedge b) \wedge \nu_{P_{1}}(b \wedge c) \wedge \nu_{P_{1}}(c \wedge a)\right] \vee\left[\nu_{P_{2}}(a \wedge b) \wedge \nu_{P_{2}}(b \wedge c) \wedge \nu_{P_{2}}(c \wedge a)\right]$.
Since $P_{i}, i=1,2$ are IFPIs, so we can write

$$
\begin{gathered}
\mu_{P_{i}}(a \wedge b) \vee \mu_{P_{i}}(b \wedge c) \vee \mu_{P_{i}}(c \wedge a) \leq \mu_{P_{i}}(a) \vee \mu_{P_{i}}(b) \vee \mu_{P_{i}}(c) \text { and } \\
\nu_{P_{i}}(a \wedge b) \wedge \nu_{P_{i}}(b \wedge c) \wedge \nu_{P_{i}}(c \wedge a) \geq \nu_{P_{i}}(a) \wedge \nu_{P_{i}}(b) \wedge \nu_{P_{i}}(c)
\end{gathered}
$$

We note that all the terms in the R.H.S. of the above inequalities belong to the distributive lattice $[0,1]$. Hence we can write

$$
\begin{aligned}
\mu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \leq & {\left[\mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \vee \mu_{P_{1}}(c)\right] \wedge\left[\mu_{P_{2}}(a) \vee \mu_{P_{2}}(b) \vee \mu_{P_{2}}(c)\right] } \\
= & {\left[\mu_{P_{1}}(a) \wedge \mu_{P_{2}}(a)\right] \vee\left[\mu_{P_{1}}(a) \wedge \mu_{P_{2}}(b)\right] \vee\left[\mu_{P_{1}}(a) \wedge \mu_{P_{2}}(c)\right] } \\
& \vee\left[\mu_{P_{1}}(b) \wedge \mu_{P_{2}}(a)\right] \vee\left[\mu_{P_{1}}(b) \wedge \mu_{P_{2}}(b)\right] \vee\left[\mu_{P_{1}}(b) \wedge \mu_{P_{2}}(c)\right] \\
& \vee\left[\mu_{P_{1}}(c) \wedge \mu_{P_{2}}(a)\right] \vee\left[\mu_{P_{1}}(c) \wedge \mu_{P_{2}}(b)\right] \vee\left[\mu_{P_{1}}(c) \wedge \mu_{P_{2}}(a)\right] .
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
\mu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \leq & {\left[\mu_{P_{1}}(a) \wedge \mu_{P_{2}}(a)\right] \vee\left[\mu_{P_{1}}(a) \wedge \mu_{P_{2}}(b)\right] \vee\left[\mu_{P_{1}}(a) \wedge \mu_{P_{2}}(c)\right] } \\
& \vee\left[\mu_{P_{1}}(b) \wedge \mu_{P_{2}}(a)\right] \vee\left[\mu_{P_{1}}(b) \wedge \mu_{P_{2}}(b)\right] \vee\left[\mu_{P_{1}}(b) \wedge \mu_{P_{2}}(c)\right] \\
& \vee\left[\mu_{P_{1}}(c) \wedge \mu_{P_{2}}(a)\right] \vee\left[\mu_{P_{1}}(c) \wedge \mu_{P_{2}}(b)\right] \vee\left[\mu_{P_{1}}(c) \wedge \mu_{P_{2}}(a)\right] .
\end{aligned}
$$

Similarly, we can have

$$
\begin{aligned}
\nu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \geq & {\left[\nu_{P_{1}}(a) \vee \nu_{P_{2}}(a)\right] \wedge\left[\nu_{P_{1}}(a) \vee \nu_{P_{2}}(b)\right] \wedge\left[\nu_{P_{1}}(a) \vee \nu_{P_{2}}(c)\right] } \\
& \wedge\left[\nu_{P_{1}}(b) \vee \nu_{P_{2}}(a)\right] \wedge\left[\nu_{P_{1}}(b) \vee \nu_{P_{2}}(b)\right] \wedge\left[\nu_{P_{1}}(b) \vee \nu_{P_{2}}(c)\right] \\
& \wedge\left[\nu_{P_{1}}(c) \vee \nu_{P_{2}}(a)\right] \wedge\left[\nu_{P_{1}}(c) \vee \nu_{P_{2}}(b)\right] \wedge\left[\nu_{P_{1}}(c) \vee \nu_{P_{2}}(a)\right]
\end{aligned}
$$

Now, for any IFI A of L, we have $\mu_{A}(y) \leq \mu_{A}(x \wedge y)$ and $\nu_{A}(y) \geq \nu_{A}(x \wedge y)$ for all $x, y \in L$. This implies that

$$
\begin{aligned}
& \mu_{P_{1}}(x) \wedge \mu_{P_{2}}(y) \leq \mu_{P_{1}}(x \wedge y) \wedge \mu_{P_{2}}(x \wedge y)=\mu_{P_{1} \cap P_{2}}(x \wedge y) \text { and } \\
& \nu_{P_{1}}(x) \vee \nu_{P_{2}}(y) \geq \nu_{P_{1}}(x \wedge y) \vee \nu_{P_{2}}(x \wedge y)=\nu_{P_{1} \cap P_{2}}(x \wedge y)
\end{aligned}
$$

Using these, we get

$$
\begin{aligned}
& \mu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \leq \mu_{P_{1} \cap P_{2}}(a \wedge b) \vee \mu_{P_{1} \cap P_{2}}(b \wedge c) \vee \mu_{P_{1} \cap P_{2}}(c \wedge a) \text { and } \\
& \nu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \geq \nu_{P_{1} \cap P_{2}}(a \wedge b) \wedge \nu_{P_{1} \cap P_{2}}(b \wedge c) \wedge \nu_{P_{1} \cap P_{2}}(c \wedge a) .
\end{aligned}
$$

Since $P_{1} \cap P_{2}$ is an IFI, for all $x, y \in L$, we have

$$
\mu_{P_{1} \cap P_{2}}(x) \leq \mu_{P_{1} \cap P_{2}}(x \wedge y) \quad \text { and } \quad \nu_{P_{1} \cap P_{2}}(x) \geq \nu_{P_{1} \cap P_{2}}(x \wedge y) .
$$

Using these, we get

$$
\begin{aligned}
& \left.\mu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \leq \mu_{P_{1} \cap P_{2}}(a \wedge b) \vee \mu_{P_{1} \cap P_{2}}(b \wedge c) \vee \mu_{P_{1} \cap P_{2}}(c \wedge a)\right\} \text { and } \\
& \left.\nu_{P_{1} \cap P_{2}}(a \wedge b \wedge c) \geq \nu_{P_{1} \cap P_{2}}(a \wedge b) \wedge \nu_{P_{1} \cap P_{2}}(b \wedge c) \wedge \nu_{P_{1} \cap P_{2}}(c \wedge a)\right\} .
\end{aligned}
$$

Thus $P_{1} \cap P_{2}$ is an IF2AI of L.
The following example shows that the condition of "primeness" in Lemma (5.7) is necessary. This example also shows that in general the intersection of two IF2AIs need not be an IF2AI.

Example 5.8. Consider the lattice as shown in the following Figure 4:

Figure 4

Define IFS A_{1} and A_{2} as follows

$$
\mu_{A_{1}}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=0 \\
0.5, & \text { if } x=a, c, d \\
0.6, & \text { if } x=b \\
0, & \text { otherwise }
\end{array} ; \quad \nu_{A_{1}}(x)= \begin{cases}0, & \text { if } x=0 \\
0.4, & \text { if } x=a, c, d \\
0.2, & \text { if } x=b \\
1, & \text { otherwise }\end{cases}\right.
$$

and

$$
\mu_{A_{2}}(x)= \begin{cases}1, & \text { if } x=0 \\
0.3, & \text { if } x=a, b, c, e ; \quad \nu_{A_{2}}(x)=\left\{\begin{array}{ll}
0, & \text { if } x=0 \\
0, & \text { otherwise }
\end{array} \quad \begin{array}{ll}
0.6, & \text { if } x=a, b, c, e \\
1, & \text { otherwise }
\end{array}\right.\end{cases}
$$

We note that A_{1} and A_{2} are IF2AIs of L.
For

$$
\begin{gathered}
\mu_{A_{1}}(d \wedge e \wedge f)=\mu_{A_{1}}(c) \text { and } \mu_{A_{1}}(d \wedge e)=\mu_{A_{1}}(e \wedge f)=\mu_{A_{1}}(f \wedge d)=\mu_{A_{1}}(c) \\
\nu_{A_{1}}(d \wedge e \wedge f)=\nu_{A_{1}}(c) \text { and } \nu_{A_{1}}(d \wedge e)=\nu_{A_{1}}(e \wedge f)=\nu_{A_{1}}(f \wedge d)=\nu_{A_{1}}(c) . \\
\mu_{A_{1}}(g \wedge h \wedge i)=\mu_{A_{1}}(c)=0.5 \text { and } \mu_{A_{1}}(g \wedge h)=\mu_{A_{1}}(d)=0.5, \mu_{A_{1}}(h \wedge i)=\mu_{A_{1}}(f)=0, \\
\mu_{A_{1}}(i \wedge g)=\mu_{A_{1}}(e)=0 . \\
\nu_{A_{1}}(g \wedge h \wedge i)=\nu_{A_{1}}(c)=0.4 \text { and } \nu_{A_{1}}(g \wedge h)=\nu_{A_{1}}(d)=0.5, \nu_{A_{1}}(h \wedge i)=\nu_{A_{1}}(f)=1, \\
\nu_{A_{1}}(i \wedge g)=\nu_{A_{1}}(e)=1 .
\end{gathered}
$$

Similarly for other elements. Note that

$$
\mu_{A_{1} \cap A_{2}}(x)=\left\{\begin{array}{ll}
1, & \text { if } x=0 \\
0.3, & \text { if } x=a, b, c ; \\
0, & \text { otherwise }
\end{array} \quad \nu_{A_{1} \cap A_{2}}(x)= \begin{cases}0, & \text { if } x=0 \\
0.6, & \text { if } x=a, b, c \\
1, & \text { otherwise }\end{cases}\right.
$$

Thus $\mu_{A_{1} \cap A_{2}}(g \wedge h \wedge i)=\mu_{A_{1} \cap A_{2}}(c)=0.3$. But

$$
\begin{aligned}
\max \left\{\mu_{A_{1} \cap A_{2}}(f \wedge h), \mu_{A_{1} \cap A_{2}}(h \wedge i), \mu_{A_{1} \cap A_{2}}(i \wedge g)\right\} & =\max \left\{\mu_{A_{1} \cap A_{2}}(d), \mu_{A_{1} \cap A_{2}}(f), \mu_{A_{1} \cap A_{2}}(e)\right\} \\
& =\max \{0,0,0\} \\
& =0 .
\end{aligned}
$$

Thus

$$
\mu_{A_{1} \cap A_{2}}(g \wedge h \wedge i)=0.3 \not \equiv 0=\max \left\{\mu_{A_{1} \cap A_{2}}(f \wedge h), \mu_{A_{1} \cap A_{2}}(h \wedge i), \mu_{A_{1} \cap A_{2}}(i \wedge g)\right\} .
$$

Similarly, we can show that

$$
\nu_{A_{1} \cap A_{2}}(g \wedge h \wedge i)=0.6 \not \equiv 1=\min \left\{\nu_{A_{1} \cap A_{2}}(f \wedge h), \nu_{A_{1} \cap A_{2}}(h \wedge i), \nu_{A_{1} \cap A_{2}}(i \wedge g)\right\} .
$$

Hence $A_{1} \cap A_{2}$ is not an IF2AI of L.
Now we introduce the concept of a 2 -absorbing intuitionistic fuzzy ideal (2-AIFI) on the lines of a prime intuitionistic fuzzy ideal (PIFI).

Definition 5.9. A proper IFI P of L is called 2-absorbing intuitionistic fuzzy ideal (2-AIFI) of L if whenever for some $A, B, C \in I F I(L)$ we have
$A \cap B \cap C \subseteq P$ implies that either $A \cap B \subseteq P$ or $B \cap C \subseteq P$ or $C \cap A \subseteq P$.
The following example shows that the concept of a "IF2AI" is different from that of a "2-AIFI".
Example 5.10. Consider the following IFIs of the Lattice L as shown in figure 1.
and

We note that (i) P is an IF2AI and (ii) $A \cap B \cap C \subseteq P$. But $A \cap B \nsubseteq P, B \cap C \nsubseteq P$ and $C \cap A \nsubseteq P$. Thus P is not a 2-AIFI of L.

Lemma 5.11. Let I be an ideal of L. If χ_{I} is a 2-AIFI of L, then I is a 2 -AI of L.
Proof. Suppose that χ_{I} is a 2-AIFI of L. Let $a \wedge b \wedge c \in I$ for some $a, b, c \in L$. Suppose that $a \wedge b \notin I, b \wedge c \notin I$ amd $c \wedge a \notin I$. Define IFIs
$A(x)=\left\{\begin{array}{ll}(1,0), & \text { if } x \in(a] \\ (0.1), & \text { otherwise }\end{array} ; \quad B(x)=\left\{\begin{array}{ll}(1,0), & \text { if } x \in(b] \\ (0,1), & \text { otherwise }\end{array} ; \quad C(x)= \begin{cases}(1,0), & \text { if } x \in(c] \\ (0,1), & \text { otherwise } .\end{cases}\right.\right.$
We note that

$$
(A \cap B \cap C)(x)= \begin{cases}(1,0), & \text { if } x \in(a \wedge b \wedge c] \\ (0.1), & \text { otherwise }\end{cases}
$$

Thus $A \cap B \cap C \subseteq \chi_{I}$ but $A \cap B \nsubseteq \chi_{I}, B \cap C \nsubseteq \chi_{I}$ and $C \cap A \nsubseteq \chi_{I}$. This contradict the assumption that χ_{I} is a 2-AIFI of L.

Remark 5.12. However, we are unable to prove or disprove that if I is 2-AI of L, then χ_{I} is 2-AIFI of L.

Lemma 5.13. Every PIFI of a lattice L is a 2-AIFI of L.
Proof. Let P be a PIFI of L. Suppose that $A, B, C \in \operatorname{IFI}(L)$ and $A \cap B \cap C \subseteq P$. As P is a prime IFI of l, we have either
(1) $A \cap B \subseteq P$ or $C \subseteq P$, or
(2) $B \cap C \subseteq P$ or $A \subseteq P$, or
(3) $C \cap A \subseteq P$ or $B \subseteq P$.

Without loss of generality, suppose that $A \cap B \subseteq P$ or $C \subseteq P$. If $A \cap B \subseteq P$, then the proof is obvious and if $C \subseteq P$, then $A \cap C \subseteq P$ and $C \cap B \subseteq P$. Thus P is a 2-AIFI of L.

We are unable to give an example to show that the converse of Lemma (5.13) does not hold.
Proposition 5.14. The intersection of two PIFIs of L is a 2-AIFI of L.
Proof. Let P_{1} and P_{2} be two distinct PIFIs of L. Assume that A, B, C are IFIs of L such that $A \cap B \cap C \subseteq P_{1} \cap P_{2}$ but $A \cap B \nsubseteq P_{1} \cap P_{2}, B \cap C \nsubseteq P_{1} \cap P_{2}$ and $C \cap A \nsubseteq P_{1} \cap P_{2}$.

Clearly, $A \cap B \cap C \subseteq P_{1}$ and $A \cap B \cap C \subseteq P_{2}$. Since P_{1} and P_{2} are prime IFIs of L, we have (i) $A \cap B \subseteq P_{1}$ or $B \cap C \subseteq P_{1}$ or $C \cap A \subseteq P_{1}$ and (ii) $A \cap B \subseteq P_{2}$ or $B \cap C \subseteq P_{2}$ or $C \cap A \subseteq P_{2}$. We have the following cases:
Case (1). If $A \cap B \cap C \subseteq P_{1}$ and $A \cap B \subseteq P_{2}$, then we have $A \cap B \subseteq P_{1} \cap P_{2}$, a contradiction. Case (2). If $C \cap A \subseteq P_{1}$ and $C \cap A \subseteq P_{2}$, we get $C \subseteq P_{1} \cap P_{2}$ and hence $C \cap A \subseteq P_{1} \cap P_{2}$, a contradiction.
Case (3). Let $A \cap B \cap C \subseteq P_{1}$ and $C \cap A \subseteq P_{2}$. As P_{1} is a prime IFI, we get either $A \subseteq P_{1}$ or $\overline{B \subseteq P_{1}}$. Hence either $A \cap C \subseteq P_{1} \cap P_{2}$ or $B \cap C \subseteq P_{1} \cap P_{2}$, a contradiction in either case.
Case (4). Let $C \cap A \subseteq P_{1}$ and $A \cap B \subseteq P_{2}$. As P_{2} is a PIFI, we get either $A \subseteq P_{2}$ or $B \subseteq P_{2}$. Hence either $A \cap C \subseteq P_{1} \cap P_{2}$ or $B \cap C \subseteq P_{1} \cap P_{2}$, a contradiction in either case.

Hence at least one of the $A \cap B$ or $B \cap C$ or $C \cap A$ must be a subset of $P_{1} \cap P_{2}$. Therefore $P_{1} \cap P_{2}$ is a 2-AIFI of L.

Definition 5.15. A proper IFI A of a lattice L is called an intuitionistic fuzzy 2-absorbing primary ideal (IF2API) of L, if for $a, b, c \in L$

$$
\begin{aligned}
& \mu_{A}(a \wedge b \wedge c) \leq \mu_{A}(a \wedge b) \vee \mu_{\sqrt{A}}(b \wedge c) \vee \mu_{\sqrt{A}}(c \wedge a) \text { and } \\
& \nu_{A}(a \wedge b \wedge c) \geq \nu_{A}(a \wedge b) \wedge \nu_{\sqrt{A}}(b \wedge c) \wedge \nu_{\sqrt{A}}(c \wedge a) .
\end{aligned}
$$

Lemma 5.16. A proper ideal I of L is a 2 -absorbing primary ideal(2-API), if and only if χ_{I} is an IF2API of L.

Proof. Suppose that I is a 2 -absorbing prime ideal of L. Let $a, b, c \in L$.
If $a \wedge b \wedge c \in I$, then $\mu_{\chi_{I}}(a \wedge b \wedge c)=1, \nu_{\chi_{I}}(a \wedge b \wedge c)=0$.
As I is 2-API, we have either $a \wedge b \in I$ or $b \wedge c \in \sqrt{I}$ or $c \wedge a \in \sqrt{I}$.
Hence either $\mu_{\chi_{I}}(a \wedge b)=1, \nu_{\chi_{I}}(a \wedge b)=0$ or $\mu_{\sqrt{\chi_{I}}}(b \wedge c)=\mu_{\chi_{\sqrt{I}}}(b \wedge c)=1, \nu_{\sqrt{\chi_{I}}}(b \wedge c)=$ $\nu_{\chi_{\sqrt{I}}}(b \wedge c)=0$ or $\mu_{\sqrt{\chi_{I}}}(c \wedge a)=\mu_{\chi_{\sqrt{I}}}(c \wedge a)=1, \nu_{\sqrt{\chi_{I}}}(c \wedge a)=\nu_{\chi_{\sqrt{I}}}(c \wedge a)=0$.
Thus

$$
\begin{aligned}
& \mu_{\chi_{I}}(a \wedge b \wedge c)=1 \leq 1=\mu_{\chi_{I}}(a \wedge b) \vee \mu_{\chi_{\sqrt{I}}}(b \wedge c) \vee \mu_{\chi_{\sqrt{I}}}(c \wedge a) \text { and } \\
& \nu_{\chi_{I}}(a \wedge b \wedge c)=0 \geq 0=\nu_{\chi_{I}}(a \wedge b) \wedge \nu_{\chi_{\sqrt{I}}}(b \wedge c) \wedge \nu_{\chi_{\sqrt{I}}}(c \wedge a) .
\end{aligned}
$$

If $a \wedge b \wedge c \notin I$, then $\mu_{\chi_{I}}(a \wedge b \wedge c)=0, \nu_{\chi_{I}}(a \wedge b \wedge c)=1$.
Clearly, $a \wedge b \notin I$ and so $\mu_{\chi_{I}}(a \wedge b)=0, \nu_{\chi_{I}}(a \wedge b)=1$. Hence

$$
\begin{aligned}
& \mu_{\chi_{I}}(a \wedge b \wedge c)=0 \leq \mu_{\chi_{I}}(a \wedge b) \vee \mu_{\chi_{\sqrt{I}}}(b \wedge c) \vee \mu_{\chi_{\sqrt{I}}}(c \wedge a) \text { and } \\
& \nu_{\chi_{I}}(a \wedge b \wedge c)=1 \geq \nu_{\chi_{I}}(a \wedge b) \wedge \nu_{\chi_{\sqrt{I}}}(b \wedge c) \wedge \nu_{\chi_{\sqrt{I}}}(c \wedge a) .
\end{aligned}
$$

Thus χ_{I} is an IF2API of L.
Conversely, suppose that χ_{I} is an IF2API of L. Let $a \wedge b \wedge c \in I$. Then $\mu_{\chi_{I}}(a \wedge b \wedge c)=$ $1, \nu_{\chi_{I}}(a \wedge b \wedge c)=0$.

Suppose that $a \wedge b \notin I, b \wedge c \notin I$ and $c \wedge a \notin I$. Since χ_{I} is an IF2API of L, we have

$$
\begin{aligned}
& 1=\mu_{\chi_{I}}(a \wedge b \wedge c) \leq \mu_{\chi_{I}}(a \wedge b) \vee \mu_{\chi_{\sqrt{I}}}(b \wedge c) \vee \mu_{\chi_{\sqrt{I}}}(c \wedge a) \text { and } \\
& 0=\nu_{\chi_{I}}(a \wedge b \wedge c) \geq \nu_{\chi_{I}}(a \wedge b) \wedge \nu_{\chi_{\sqrt{I}}}(b \wedge c) \wedge \nu_{\chi_{\sqrt{I}}}(c \wedge a)
\end{aligned}
$$

Since each of $\mu_{\chi_{I}}(a \wedge b), \mu_{\chi_{\sqrt{I}}}(b \wedge c), \mu_{\chi_{\sqrt{I}}}(c \wedge a)$ and $\nu_{\chi_{I}}(a \wedge b), \nu_{\chi_{\sqrt{I}}}(b \wedge c), \nu_{\chi_{\sqrt{I}}}(c \wedge a)$ belongs to $[0,1]$, so atleast one of $\mu_{\chi_{I}}(a \wedge b), \mu_{\chi_{\sqrt{I}}}(b \wedge c), \mu_{\chi_{\sqrt{I}}}(c \wedge a)$ is 1 and atleast one of $\nu_{\chi_{I}}(a \wedge$ $b), \nu_{\chi_{\sqrt{I}}}(b \wedge c), \nu_{\chi_{\sqrt{I}}}(c \wedge a)$ must be 0 . This implies that either $a \wedge b \in I$ or $b \wedge c \in \sqrt{I}$ or $c \wedge a \in \sqrt{I}$. Thus I is a 2-API.

Lemma 5.17. Let Q is an intuitionistic fuzzy primary ideal of L, then Q is an IF2API of L
Proof. Let Q be an IF primary ideal of L. Let $a, b, c \in L$. Then

$$
\begin{aligned}
\mu_{Q}(a \wedge b \wedge c) & =\mu_{Q}((a \wedge b) \wedge(b \wedge c)) \\
& \leq \mu_{Q}(a \wedge b) \vee \mu_{\sqrt{Q}}(b \wedge c) \\
& \leq \mu_{Q}(a \wedge b) \vee \mu_{\sqrt{Q}}(b \wedge c) \vee \mu_{\sqrt{Q}}(c \wedge a)
\end{aligned}
$$

Thus $\mu_{Q}(a \wedge b \wedge c) \leq \mu_{Q}(a \wedge b) \vee \mu_{\sqrt{Q}}(b \wedge c) \vee \mu_{\sqrt{Q}}(c \wedge a)$. Similarly, we can show that $\nu_{Q}(a \wedge b \wedge c) \geq \nu_{Q}(a \wedge b) \wedge \nu_{\sqrt{Q}}(b \wedge c) \wedge \nu_{\sqrt{Q}}(c \wedge a)$. Hence Q is an IF2API of L.

The following example shows that an IF2API of L need not be an IF primary ideal of L.
Example 5.18. Consider the ideal $I=(0]$ of the lattice as shown in Figure 5.

Figure 5

We note that the ideal $(h]=\{x \in L: x \leq h\}=\{0, a, b, c, d, e, f, g, h\}$ and $(i]=$ $\{0, b, c, d, g, i\}$ and the only prime ideal of L. Hence $\sqrt{I}=(h] \cap(i]=(g]$.

We note that I is a 2-absorbing primary ideal as for any $x, y, z \in L, x \wedge y \wedge z \in I$ implies that either $x \wedge y \in I$ or $y \wedge z \in \sqrt{I}$ or $z \wedge x \in \sqrt{I}$. Hence by Lemma (5.16), χ_{I} is an IF2API of L.

We note that $\mu_{\chi_{I}}(h \wedge i)=1, \nu_{\chi_{I}}(h \wedge i)=0$ but $\mu_{\chi_{I}}(h)=0, \nu_{\chi_{I}}(h)=1$ as well as $\mu_{\chi_{\sqrt{I}}}(i)=$ $0, \nu_{\chi_{\sqrt{I}}}(i)=1$. Thus

$$
\mu_{\chi_{I}}(h \wedge i)=1 \not \equiv 0=\mu_{\chi_{I}}(h) \vee \mu_{\chi_{\sqrt{I}}}(i) \text { and } \nu_{\chi_{I}}(h \wedge i)=0 \not \equiv 0=\nu_{\chi_{I}}(h) \wedge \nu_{\chi_{\sqrt{I}}}(i) .
$$

Hence χ_{I} is not an IF primary ideal of L.
Lemma 5.19. If A is an IF2AI of L, then A is an IF2API of L.
Proof. Let A be an IF2AI of L. Let $a, b, c \in L$, we have

$$
\begin{aligned}
& \mu_{A}(a \wedge b \wedge c) \leq \mu_{A}(a \wedge b) \vee \mu_{A}(b \wedge c) \vee \mu_{A}(c \wedge a) \text { and } \\
& \nu_{A}(a \wedge b \wedge c) \geq \nu_{A}(a \wedge b) \wedge \nu_{A}(b \wedge c) \wedge \nu_{A}(c \wedge a) .
\end{aligned}
$$

Since $A \subseteq \sqrt{A}$, we get the result.
The following example shows that an IF2API of L need not be an IF2AI.
Example 5.20. Consider the ideal $I=(0]$ of the lattice as shown in Figure 6.
Consider the ideal $I=(0]$. The only prime ideals of L are $(j],(k],[l]$.
We have $\sqrt{I}=(j] \cap(k] \cap[l]=(d]$. Also, $\sqrt{\chi_{I}}=\chi_{\sqrt{I}}=\chi_{J}$, where $J=(d]$.
We note that I is a 2-API of L. Hence by Lemma (5.16), χ_{I} is an IF2API of L.
We note that I is not a 2-AI of L, as $d \wedge e \wedge f=0 \in I$, but $d \wedge e \notin I, e \wedge f \notin I$ and $d \wedge f \notin I$.
Thus we have

$$
\begin{aligned}
\mu_{\chi_{I}}(d \wedge e \wedge f) & =1 \not \equiv \mu_{\chi_{I}}(d \wedge e) \vee \mu_{\chi_{I}}(e \wedge f) \vee \mu_{\chi_{I}}(d \wedge f) \text { and } \\
\nu_{\chi_{I}}(d \wedge e \wedge f) & =0 \not \equiv \nu_{\chi_{I}}(d \wedge e) \wedge \nu_{\chi_{I}}(e \wedge f) \wedge \nu_{\chi_{I}}(d \wedge f) .
\end{aligned}
$$

Thus χ_{I} is not an IF2AI of L.

Figure 6

Lemma 5.21. Let A be an IFI of L. If \sqrt{A} is an IFPI, then A is an IF2API.
Proof. Let A be an IFI of L. Suppose that \sqrt{A} is an IFPI.
If A is not an IF2API, then there exist $a, b, c \in L$ such that

$$
\begin{aligned}
& \mu_{A}(a \wedge b \wedge c) \not \equiv \mu_{A}(a \wedge b) \vee \mu_{\sqrt{A}}(b \wedge c) \vee \mu_{\sqrt{A}}(c \wedge a) \text { and } \\
& \nu_{A}(a \wedge b \wedge c) \not \equiv \nu_{A}(a \wedge b) \wedge \nu_{\sqrt{A}}(b \wedge c) \wedge \nu_{\sqrt{A}}(c \wedge a) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \mu_{A}(a \wedge b) \vee \mu_{\sqrt{A}}(b \wedge c) \vee \mu_{\sqrt{A}}(c \wedge a)<\mu_{A}(a \wedge b \wedge c) \text { and } \\
& \nu_{A}(a \wedge b) \wedge \nu_{\sqrt{A}}(b \wedge c) \wedge \nu_{\sqrt{A}}(c \wedge a)>\nu_{A}(a \wedge b \wedge c) .
\end{aligned}
$$

Since \sqrt{A} is an IFPI, we have

$$
\begin{aligned}
\mu_{\sqrt{A}}(a \wedge b \wedge c) & =\mu_{\sqrt{A}}(b \wedge c) \vee \mu_{\sqrt{A}}(a)
\end{aligned}=\mu_{\sqrt{A}}(a \wedge c) \vee \mu_{\sqrt{A}}(b), ~(a \wedge b \wedge c)=\nu_{\sqrt{A}}(b \wedge c) \wedge \nu_{\sqrt{A}}(a)=\nu_{\sqrt{A}}(a \wedge c) \wedge \nu_{\sqrt{A}}(b)
$$

Hence

$$
\begin{aligned}
\mu_{\sqrt{A}}(b \wedge c) \vee \mu_{\sqrt{A}}(a \wedge c)=\mu_{\sqrt{A}}(b \wedge c) \vee \mu_{\sqrt{A}}(a) \vee \mu_{\sqrt{A}}(c)=\mu_{\sqrt{A}}(a \wedge b \wedge c) \vee \mu_{\sqrt{A}}(c) \text { and } \\
\nu_{\sqrt{A}}(b \wedge c) \wedge \nu_{\sqrt{A}}(a \wedge c)=\nu_{\sqrt{A}}(b \wedge c) \wedge \nu_{\sqrt{A}}(a) \wedge \nu_{\sqrt{A}}(c)=\nu_{\sqrt{A}}(a \wedge b \wedge c) \wedge \nu_{\sqrt{A}}(c) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
& \mu_{A}(a \wedge b) \vee \mu_{\sqrt{A}}(a \wedge b \wedge c) \vee \mu_{\sqrt{A}}(c)<\mu_{A}(a \wedge b \wedge c) \text { and } \\
& \nu_{A}(a \wedge b) \wedge \nu_{\sqrt{A}}(a \wedge b \wedge c) \wedge \nu_{\sqrt{A}}(c)>\nu_{A}(a \wedge b \wedge c) .
\end{aligned}
$$

This implies that $\mu_{\sqrt{A}}(a \wedge b \wedge c)<\mu_{A}(a \wedge b \wedge c)$ and $\nu_{\sqrt{A}}(a \wedge b \wedge c)>\nu_{A}(a \wedge b \wedge c)$, which is not possible. Hence A os an IF2API.

The following example shows that the converse of Lemma (5.21) does not hold.

Example 5.22. Consider the lattice as shown in Figure 7.

Figure 7

The only prime ideals of L containing the ideal $I=(c]$ are $(h]$ and $(i]$. Hence $\sqrt{I}=(h] \cap(i]=$ (f].

For any $x, y, z \in I, x \wedge y \wedge z \in I$ implies that either $x \wedge y \in I$ or $y \wedge z \in \sqrt{I}$ or $z \wedge x \in \sqrt{I}$. Hence I is 2-API and so by Lemma (5.16), χ_{I} is an IF2API. We note that $d \wedge e=a \in \sqrt{I}$ but $d \notin \sqrt{I}$ and $e \notin \sqrt{I}$. Thus \sqrt{I} is not a prime ideal of L. Hence by Theorem (3.3). $\sqrt{\chi_{I}}=\chi_{\sqrt{I}}$ is not an IFPI of L.

We omit the easy proof of the following Lemma.
Lemma 5.23. Let A be an IFI of L. Then $\sqrt{A}=\sqrt{\sqrt{A}}$.
Theorem 5.24. Let A be an IFI of L. Then \sqrt{A} is an IFPI if and only if \sqrt{A} is an IF primary ideal.

Proof. It follows from Lemma (4.5), that if \sqrt{A} is an IFPI, then \sqrt{A} is an IF primary ideal. The converse follows from the definition of an IF primary ideal and by Lemma (5.23).

The proof of the following Theorem follows from the definition of an IF2AI, an IF2API and Lemma (5.23).

Theorem 5.25. Let A be an IFI of L. Then \sqrt{A} is an IF2AI if and only if \sqrt{A} is an IF2PI.
Definition 5.26. A proper IFI Q of a lattice L is called a 2 -absorbing primary intuitionistic fuzzy ideal (2-APIFI) of L, if for any $A, B, C \in I F I(L)$ such that

$$
A \cap B \cap C \subseteq Q \text { implies that either } A \cap B \subseteq Q \text { or } B \cap C \subseteq \sqrt{Q} \text { or } C \cap A \subseteq \sqrt{Q} .
$$

Lemma 5.27. Let I be a ideal of L. If χ_{I} is an 2-APIFI of L, then I is a 2-AI of L.
Proof. Suppose that χ_{I} is a 2-APIFI of L. Let $a \wedge b \wedge c \in I$ for some $a, b, c \in L$.
Suppose that $a \wedge b \notin I, b \wedge c \notin I$ and $c \wedge a \notin I$. Then clearly, $a \notin I$ and $b, c \notin \sqrt{I}$.

Define IFIs A, B, C of L as
$A(x)=\left\{\begin{array}{ll}(1,0), & \text { if } x \in(a] \\ (0.1), & \text { otherwise }\end{array} ; \quad B(x)=\left\{\begin{array}{ll}(1,0), & \text { if } x \in(b] \\ (0,1), & \text { otherwise }\end{array} ; \quad C(x)= \begin{cases}(1,0), & \text { if } x \in(c] \\ (0,1), & \text { otherwise } .\end{cases}\right.\right.$
We note that

$$
(A \cap B \cap C)(x)= \begin{cases}(1,0), & \text { if } x \in(a \wedge b \wedge c] \\ (0.1), & \text { otherwise }\end{cases}
$$

Thus $A \cap B \cap C \subseteq \chi_{I}$ but $A \cap B \nsubseteq \chi_{I}, B \cap C \nsubseteq \chi_{\sqrt{I}}$ and $C \cap A \nsubseteq \chi_{\sqrt{I}}$. This contradicts the assumption that χ_{I} is a 2-APIFI of L.

Remark 5.28. However, we are unable to prove or disprove that if I is a 2-AI of L, then χ_{I} is a 2-APIFI of L.

Lemma 5.29. If Q is a primary IFI of L, then Q is a 2-APIFI of L.
Proof. Let Q be a primary IFI of L. Let for any $A, B, C \in I F I(L)$ such that $A \cap B \cap C \subseteq Q$. Then we have either

1. $A \cap B \subseteq Q$ or $C \subseteq \sqrt{Q}$; or
2. $A \subseteq Q$ or $B \cap C \subseteq \sqrt{Q}$; or
3. $A \subseteq \sqrt{Q}$ or $B \cap C \subseteq Q$; or
4. $B \subseteq Q$ or $A \cap C \subseteq \sqrt{Q}$.

These possibilities imply that either (i) $A \cap B \subseteq Q$ or (ii) $B \cap C \subseteq \sqrt{Q}$, or (iii) $C \cap A \subseteq \sqrt{Q}$. Hence Q is 2-APIFI of L.

Lemma 5.30. Let Q is a 2-AIFI of L, then Q is a 2-APIFI of L.
Proof. Let Q is a 2-AIFI of L. Let $A, B, C \in \operatorname{IFI}(L)$ such that $A \cap B \cap C \subseteq Q$. Then we have either $A \cap B \subseteq Q$ or $B \cap C \subseteq Q$ or $C \cap A \subseteq Q$. Since $Q \subseteq \sqrt{Q}$, we get the required result.

Definition 5.31. Let Q be an IFI of L. If P is the only PIFI containing Q, then we say that Q is P-primary IFI of L.

Theorem 5.32. Let Q_{1}, Q_{2} be IFIs and P_{1}, P_{2} be PIFIs of L. Suppose that Q_{1} is a P_{1}-primary IFI and Q_{2} is a P_{2}-primary IFI. Then $Q_{1} \cap Q_{2}$ is a 2-APIFI of L.

Proof. Since, Q_{i} is a P_{i}-primary IFI, for $i=1,2$. We get $\sqrt{Q_{i}}=P_{i}$.
Let $Q=Q_{1} \cap Q_{2}$. Then $\sqrt{Q}=P_{1} \cap P_{2}$. Now suppose that $A \cap B \cap C \subseteq Q$ for some $A, B, C \in I F I(L)$. Assume that $A \cap B \nsubseteq \sqrt{Q}$ and $B \cap C \nsubseteq \sqrt{Q}$. Then $A, B, C \nsubseteq \sqrt{Q}=P_{1} \cap P_{2}$. By Proposition (5.14), $\sqrt{Q}=P_{1} \cap P_{2}$ is a 2-AIFI of L. Since $A \cap B \nsubseteq \sqrt{Q}$ and $B \cap C \nsubseteq \sqrt{Q}$, we have $A \cap C \subseteq \sqrt{Q}$.

We show that $A \cap C \subseteq Q$.

Since $A \cap C \subseteq \sqrt{Q} \subseteq P_{1}$, we assume that $A \subseteq P_{1}$. As $A \nsubseteq \sqrt{Q}$ and $A \cap C \subseteq \sqrt{Q} \subseteq P_{2}$, we conclude that $A \nsubseteq P_{2}$ and $C \subseteq P_{2}$. Since $C \subseteq P_{2}$ and $C \nsubseteq \sqrt{Q}$ we have $C \nsubseteq P_{1}$.
If $A \subseteq Q_{1}$ and $C \subseteq Q_{2}$, then $A \cap C \subseteq Q$ and we are done.
We may assume that $A \nsubseteq Q_{1}$. Since $C \subseteq P_{2}$ and $B \cap C \subseteq \sqrt{Q}$ which is a contradiction. Thus, $A \subseteq Q_{1}$.
Since Q_{2} is a P_{2}-primary IFI, and $C \nsubseteq Q_{2}$, we get $A \cap B \subseteq P_{2}$.
Since $A \subseteq P_{1}$ and $A \cap B \subseteq P_{2}$, we have $A \cap B \subseteq \sqrt{Q}$ which is a contradiction. Thus, $C \subseteq Q_{2}$. Hence $A \cap C \subseteq Q$. Therefore, Q is a 2-APIFI of L.

Theorem 5.33. Suppose that Q is a non-constant IFI of L such that \sqrt{Q} is a PIFI. Then Q is a 2-APIFI of L.

Proof. Suppose that for some $A, B, C \in I F I(L), A \cap B \cap C \subseteq Q$ and $A \cap B \nsubseteq Q$.
(i): We note that $A \cap B \cap C \subseteq Q \subseteq \sqrt{Q}$. Hence, if $A \cap B \nsubseteq Q$, then as \sqrt{Q} is PIFI, we get $C \subseteq \sqrt{Q}$ and so $B \cap C \subseteq \sqrt{Q}$.
(ii : If $A \cap B \subseteq \sqrt{Q}$, then as \sqrt{Q} is PIFI, either $A \subseteq \sqrt{Q}$ or $B \subseteq \sqrt{Q}$.
Hence either $A \cap C \subseteq \sqrt{Q}$ or $C \cap B \subseteq \sqrt{Q}$. Thus, Q IS A 2-APIFI of L.
Now we give a characterization for \sqrt{Q} to be a PIFI.
Theorem 5.34. Let Q be a non-constant IFI of a lattice L. Then \sqrt{Q} is a PIFI of L if and only if \sqrt{Q} is a primary IFI of L.

Proof. Let \sqrt{Q} be a PIFI of L. Let $A, B, C \in I F I(L)$ be such that $A \cap B \subseteq \sqrt{Q}$. As \sqrt{Q} is a PIFI of L, either $A \subseteq \sqrt{Q}$ or $B \subseteq \sqrt{Q}=\sqrt{\sqrt{Q}}$. We conclude that \sqrt{Q} is a primary IFI of L.

Conversely, suppose that \sqrt{Q} is a primary IFI of L. Let $A, B, C \in \operatorname{IFI}(L)$ be such that $A \cap B \subseteq \sqrt{Q}$. As \sqrt{Q} is primary IFI of L, either $A \subseteq \sqrt{Q}$ or $B \subseteq \sqrt{\sqrt{Q}}=\sqrt{Q}$. Hence \sqrt{Q} is a prime IFI of L.

Now we prove the following characterization.
Theorem 5.35. Let Q be a non-constant IFI of a lattice L. Then \sqrt{Q} is a 2-AIFI of L if and only if \sqrt{Q} is a 2-APIFI of L.

Proof. Let \sqrt{Q} be a 2-AIFI of L. Let $A, B, C \in \operatorname{IFI}(L)$ be such that $A \cap B \subseteq \sqrt{Q}$. As \sqrt{Q} is a 2-AIFI of L, either $A \cap B \subseteq \sqrt{Q}$ or $B \cap C \subseteq \sqrt{Q}$ or $C \cap A \subseteq \sqrt{Q}$. Using $\sqrt{Q}=\sqrt{\sqrt{Q}}$, we conclude that \sqrt{Q} is a 2-APIFI of L.

Conversely, suppose that \sqrt{Q} is a 2-APIFI of L. Let $A, B, C \in I F I(L)$ be such that $A \cap B \cap C \subseteq \sqrt{Q}$. As \sqrt{Q} is 2-APIFI of L, either $A \cap B \subseteq \sqrt{Q}$ or $B \cap C \subseteq \sqrt{\sqrt{Q}}=\sqrt{Q}$ or $C \cap A \subseteq \sqrt{\sqrt{Q}}=\sqrt{Q}$. Hence \sqrt{Q} is a 2-AIFI of L.

Theorem 5.36. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. Let A_{1}, A_{2} be an IFI of L_{1} and L_{2}, respectively. Suppose that $\mu_{A_{1}}\left(0_{1}\right)=\mu_{A_{2}}\left(0_{2}\right)=1, \nu_{A_{1}}\left(0_{1}\right)=\nu_{A_{2}}\left(0_{2}\right)=0$, where $0_{1}, 0_{2}$ is the least element of L_{1}, L_{2}, respectively. If $A=A_{1} \times A_{2}$ is an IF2AI of L, then A_{1} is an IF2AI of L_{1} and A_{2} is an IF2AI of L_{2}.

Proof. Let $a, b, c \in L$. Since A is an IF2AI of L, we have

$$
\begin{aligned}
& \mu_{A}\left(a \wedge b \wedge c, 0_{2}\right) \leq \mu_{A}\left(a \wedge b, 0_{2}\right) \vee \mu_{A}\left(b \wedge c, 0_{2}\right) \vee \mu_{A}\left(c \wedge a, 0_{2}\right) \text { and } \\
& \nu_{A}\left(a \wedge b \wedge c, 0_{2}\right) \geq \nu_{A}\left(a \wedge b, 0_{2}\right) \wedge \nu_{A}\left(b \wedge c, 0_{2}\right) \wedge \nu_{A}\left(c \wedge a, 0_{2}\right)
\end{aligned}
$$

By using the definition for $A_{1} \times A_{2}$, we can write
$\mu_{A_{1}}(a \wedge b \wedge c) \wedge \mu_{A_{2}}\left(0_{2}\right) \leq\left[\mu_{A_{1}}(a \wedge b) \wedge \mu_{A_{2}}\left(0_{2}\right)\right] \vee\left[\mu_{A_{1}}(b \wedge c) \wedge \mu_{A_{2}}\left(0_{2}\right)\right] \vee\left[\mu_{A_{1}}(c \wedge a) \wedge \mu_{A_{2}}\left(0_{2}\right)\right]$
$\nu_{A_{1}}(a \wedge b \wedge c) \vee \nu_{A_{2}}\left(0_{2}\right) \geq\left[\nu_{A_{1}}(a \wedge b) \vee \nu_{A_{2}}\left(0_{2}\right)\right] \wedge\left[\nu_{A_{1}}(b \wedge c) \vee \nu_{A_{2}}\left(0_{2}\right)\right] \wedge\left[\nu_{A_{1}}(c \wedge a) \vee \nu_{A_{2}}\left(0_{2}\right)\right]$
By using $\mu_{A_{2}}\left(0_{2}\right)=1, \nu_{A_{2}}\left(0_{2}\right)=0$, we get

$$
\begin{aligned}
& \mu_{A_{1}}(a \wedge b \wedge c) \leq \mu_{A_{1}}(a \wedge b) \vee \mu_{A_{1}}(b \wedge c) \vee \mu_{A_{1}}(c \wedge a) \\
& \nu_{A_{1}}(a \wedge b \wedge c) \geq \nu_{A_{1}}(a \wedge b) \wedge \nu_{A_{1}}(b \wedge c) \wedge \wedge \nu_{A_{1}}(c \wedge a) .
\end{aligned}
$$

Thus A_{1} is an IF2AI of L_{1}. In a same way we can show that A_{2} is an IF2AI of L_{2}.
By using the similar steps, we can prove the following theorem.
Theorem 5.37. Let $L=L_{1} \times L_{2} \times \cdots \times L_{k}$ be a direct product of lattices $L_{1}, L_{2}, \ldots, L_{k}$. Let $A_{i}(1 \leq i \leq k)$ be an IFIs of L_{i}, respectively. Suppose that for each $i=1,2, \ldots, k, \mu_{A_{i}}\left(0_{2}\right)=1$, $\nu_{A_{i}}\left(0_{2}\right)=0$, where 0_{i} is the least element of L_{i}. If $A=A_{1} \times A_{2} \times \cdots \times A_{k}$ is an IF2AI of L, then each A_{i}, is an IF2AI of L_{i}.

The following example shows that the converse of the Theorem 5.36 need not hold.
Example 5.38. Consider the lattices L_{1}, L_{2} and $L=L_{1} \times L_{2}$ as in Example 3.6.
Define IFSs $A_{1} \in \operatorname{IFS}\left(L_{1}\right)$ and $A_{2} \in I F S\left(L_{2}\right)$ as follows:

$$
A_{1}(x)=\left\{\begin{array}{ll}
(1,0), & \text { if } x=0 \\
(0.16,0.7), & \text { if } x=a \\
(0.25,0.5), & \text { if } x=b, 1
\end{array} \quad ; \quad A_{2}(x)= \begin{cases}(1,0), & \text { if } x=0 \\
(0,1), & \text { if } x=1\end{cases}\right.
$$

We note that A_{1} is an IF2AI of L_{1} and A_{2} is an IF2AI of L_{2}. We consider $A \in \operatorname{IFS}\left(L_{1} \times L_{2}\right)$ defined by

$$
\mu_{A}(x, y)=\mu_{A_{1}}(x) \wedge \mu_{A_{2}}(y) \text { and } \nu_{A}(x, y)=\mu_{A_{1}}(x) \vee \nu_{A_{2}}(y) .
$$

i.e., $A=A_{1} \times A_{2}$. It is easy to check that

$$
A(x, y)= \begin{cases}(1,0), & \text { if }(x, y)=(0,0) \\ (0.25,0.5), & \text { if }(x, y)=(b, 0),(1,0) \\ (0.16,0.7), & \text { if }(x, y)=(a, 0) \\ (0,1), & \text { otherwise }\end{cases}
$$

We have

$$
\begin{gathered}
\mu_{A}[(a, 1) \wedge(1,0) \wedge(b, 1)]=\mu_{A}(0,0)=1 ; \nu_{A}[(a, 1) \wedge(1,0) \wedge(b, 1)]=\nu_{A}(0,0)=0 \\
\mu_{A}[(a, 1) \wedge(1,0)]=\mu_{A}(a, 0)=0.16 ; \nu_{A}[(a, 1) \wedge(1,0)]=\nu_{A}(a, 0)=0.70 \\
\mu_{A}[(1,0) \wedge(b, 1)]=\mu_{A}(b, 0)=0.25 ; \nu_{A}[(1,0) \wedge(b, 1)]=\nu_{A}(b, 0)=0.50 \\
\mu_{A}[(a, 1) \wedge(b, 1)]=\mu_{A}(a \wedge b, 1)=\mu_{A}(0,1)=0 ; \nu_{A}[(a, 1) \wedge(b, 1)]=\nu_{A}(a \wedge b, 1)=\nu_{A}(0,1)=1
\end{gathered}
$$

Thus
$\mu_{A}[(a, 1) \wedge(1,0) \wedge(b, 1)]=1 \not \equiv 0.25=\mu_{A}[(a, 1) \wedge(1,0)] \vee \mu_{A}[(1,0) \wedge(b, 1)] \vee \mu_{A}[(a, 1) \wedge(b, 1)] ;$ $\nu_{A}[(a, 1) \wedge(1,0) \wedge(b, 1)]=0 \not \equiv 0.5=\nu_{A}[(a, 1) \vee(1,0)] \wedge \nu_{A}[(1,0) \vee(b, 1)] \wedge \nu_{A}[(a, 1) \vee(b, 1)]$.

Hence A is not an IF2AI of L.
Theorem 5.39. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1} and L_{2}. Let P_{1}, P_{2} be IFI of L_{1} and L_{2}, respectively. Suppose that
(i) $\mu_{P_{1}}\left(0_{1}\right)=\mu_{P_{2}}\left(0_{2}\right)=1, \nu_{P_{1}}\left(0_{1}\right)=\nu_{P_{2}}\left(0_{2}\right)=0$, where $0_{1}, 0_{2}$ is the least element of L_{1}, L_{2}, respectively.
(ii) $\mu_{P_{1}}\left(1_{1}\right)=\mu_{P_{2}}\left(1_{2}\right)=0, \nu_{P_{1}}\left(0_{1}\right)=\nu_{P_{2}}\left(0_{2}\right)=1$, where $1_{1}, 1_{2}$ is the greatest element of L_{1}, L_{2}, respectively.

If $P=P_{1} \times P_{2}$ is an IF2AI of L, then P_{1} and P_{2} are IFPI of L_{1} and L_{2}, respectively.
Proof. Suppose that P_{1} is not an IFPI of L_{1}, then there exists $a, b, c \in L_{1}$ such that

$$
\mu_{P_{1}}(a \wedge b) \not \equiv \mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \text { and } \nu_{P_{1}}(a \wedge b) \not \equiv \nu_{P_{1}}(a) \wedge \nu_{P_{1}}(b)
$$

Consider the element $x=\left(a, 1_{2}\right), y=\left(1_{1}, 0_{2}\right)$ and $z=\left(b, 1_{2}\right)$ from L. We note the following

$$
\begin{aligned}
& \mu_{P}(x \wedge y \wedge z)=\mu_{P}\left(a \wedge b, 0_{2}\right)=\mu_{P_{1}}(a \wedge b) \vee \mu_{P_{1}}\left(0_{2}\right)=\mu_{P_{1}}(a \wedge b) \text { and } \\
& \nu_{P}(x \wedge y \wedge z)=\nu_{P}\left(a \wedge b, 0_{2}\right)=\nu_{P_{1}}(a \wedge b) \wedge \nu_{P_{1}}\left(0_{2}\right)=\nu_{P_{1}}(a \wedge b) .
\end{aligned}
$$

Now

$$
\begin{gathered}
\mu_{P}(x \wedge y)=\mu_{P}\left(a, 0_{2}\right)=\mu_{P_{1}}(a) \wedge \mu_{P_{2}}\left(0_{2}\right)=\mu_{P_{1}}(a) ; \\
\nu_{P}(x \wedge y)=\nu_{P}\left(a, 0_{2}\right)=\nu_{P_{1}}(a) \vee \nu_{P_{2}}\left(0_{2}\right)=\nu_{P_{1}}(a) \text { and } \\
\mu_{P}(y \wedge z)=\mu_{P}\left(b, 0_{2}\right)=\mu_{P_{1}}(b) \wedge \mu_{P_{2}}\left(0_{2}\right)=\mu_{P_{1}}(b) ; \\
\nu_{P}(y \wedge z)=\nu_{P}\left(b, 0_{2}\right)=\nu_{P_{1}}(b) \vee \nu_{P_{2}}\left(0_{2}\right)=\nu_{P_{1}}(b) \text { and } \\
\mu_{P}(z \wedge x)=\mu_{P}\left(a \wedge b, 1_{2}\right)=\mu_{P_{1}}(a \wedge b) \wedge \mu_{P_{2}}\left(1_{2}\right)=0 ; \\
\nu_{P}(z \wedge x)=\nu_{P}\left(a \wedge b, 1_{2}\right)=\nu_{P_{1}}(a \wedge b) \vee \nu_{P_{2}}\left(1_{2}\right)=1 .
\end{gathered}
$$

Since P is an IF2AI, we have

$$
\begin{aligned}
& \mu_{P}(x \wedge y \wedge z) \leq \mu_{P}(x \wedge y) \vee \mu_{P}(y \wedge z) \vee \mu_{P}(z \wedge x) \text { and } \\
& \nu_{P}(x \wedge y \wedge z) \geq \nu_{P}(x \wedge y) \wedge \nu_{P}(y \wedge z) \wedge \nu_{P}(z \wedge x), \text { i.e. }, \\
& \mu_{P_{1}}(a \wedge b) \leq \mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \vee 0=\mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \text { and } \\
& \nu_{P_{1}}(a \wedge b) \geq \nu_{P_{1}}(a) \wedge \nu_{P_{1}}(b) \wedge 1=\nu_{P_{1}}(a) \wedge \nu_{P_{1}}(b),
\end{aligned}
$$

a contradiction. Hence P_{1} is an IFPI of L_{1}. Similarly, we can show that P_{1} is an IFPI of L_{2}.
Theorem 5.40. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. Let P_{1}, P_{2} be an IFPI of L_{1} and L_{2}, respectively. If $P=P_{1} \times P_{2}$, then P is an IF2AI of L.

Proof. Let $(a, x),(b, y),(c, z) \in L$. To show that P is an IF2AI, we need to show that

$$
\begin{aligned}
& \mu_{P}[(a, x)\wedge(b, y) \wedge(c, z)] \leq \mu_{P}[(a, x) \wedge(b, y)] \vee \mu_{P}[(b, y) \wedge(c, z)] \vee \mu_{P}[(c, z) \wedge(a, x)] ; \\
& \nu_{P}[(a, x) \wedge(b, y) \wedge(c, z)] \geq \nu_{P}[(a, x) \wedge(b, y)] \wedge \nu_{P}[(b, y) \wedge(c, z)] \wedge \nu_{P}[(c, z) \wedge(a, x)] .
\end{aligned}
$$

i.e., to show that

$$
\begin{aligned}
& \mu_{P}(a \wedge b \wedge c, x \wedge y \wedge z) \leq \mu_{P}(a \wedge b, x \wedge y) \vee \mu_{P}(b \wedge c, y \wedge z) \vee \mu_{P}(c \wedge a, z \wedge x) \\
& \nu_{P}(a \wedge b \wedge c, x \wedge y \wedge z) \geq \nu_{P}(a \wedge b, x \wedge y) \wedge \nu_{P}(b \wedge c, y \wedge z) \wedge \nu_{P}(c \wedge a, z \wedge x)
\end{aligned}
$$

Also, by using definition of $P_{1} \times P_{2}$, we have

$$
\begin{gathered}
\mu_{P}(a \wedge b \wedge c, x \wedge y \wedge z)=\mu_{P_{1}}(a \wedge b \wedge c) \wedge \mu_{P_{2}}(x \wedge y \wedge z) ; \\
\nu_{P}(a \wedge b \wedge c, x \wedge y \wedge z)=\nu_{P_{1}}(a \wedge b \wedge c) \vee \nu_{P_{2}}(x \wedge y \wedge z) .
\end{gathered}
$$

As P_{1} and P_{2} are IFPIs of L_{1} and L_{2} respectively, we have

$$
\mu_{P_{1}}(a \wedge b \wedge c)=\mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \vee \mu_{P_{1}}(c) ; \nu_{P_{1}}(a \wedge b \wedge c)=\nu_{P_{1}}(a) \wedge \nu_{P_{1}}(b) \wedge \nu_{P_{1}}(c) .
$$

and

$$
\mu_{P_{2}}(x \wedge y \wedge z)=\mu_{P_{2}}(x) \vee \mu_{P_{2}}(y) \vee \mu_{P_{2}}(z) ; \nu_{P_{2}}(x \wedge y \wedge z)=\nu_{P_{2}}(x) \wedge \nu_{P_{2}}(y) \wedge \nu_{P_{2}}(z)
$$

Thus, we have

$$
\begin{aligned}
& {\left[\mu_{P}(a \wedge b, x \wedge y)\right] \vee\left[\mu_{P}(b \wedge c, y \wedge z)\right] \vee\left[\mu_{P}(c \wedge a, z \wedge x)\right]} \\
& =\left[\mu_{P_{1}}(a \wedge b) \wedge \mu_{P_{2}}(x \wedge y)\right] \vee\left[\mu_{P_{1}}(b \wedge c) \wedge \mu_{P_{2}}(y \wedge z)\right] \vee\left[\mu_{P_{1}}(c \wedge a) \wedge \mu_{P_{2}}(z \wedge x)\right] .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& {\left[\nu_{P}(a \wedge b, x \wedge y)\right] \wedge\left[\nu_{P}(b \wedge c, y \wedge z)\right] \wedge\left[\nu_{P}(c \wedge a, z \wedge x)\right]} \\
& =\left[\nu_{P_{1}}(a \wedge b) \vee \nu_{P_{2}}(x \wedge y)\right] \wedge\left[\nu_{P_{1}}(b \wedge c) \vee \nu_{P_{2}}(y \wedge z)\right] \wedge\left[\nu_{P_{1}}(c \wedge a) \vee \nu_{P_{2}}(z \wedge x)\right]
\end{aligned}
$$

Since P_{1} and P_{2} are IFPIs of L_{1} and L_{2} respectively, we can write

$$
\begin{aligned}
& \mu_{P}(a \wedge b, x \wedge y) \vee \mu_{P}(b \wedge c, y \wedge z) \vee \mu_{P}(c \wedge a, z \wedge x) \\
& =\left\{\left[\mu_{P_{1}}(a) \vee \mu_{P_{2}}(b)\right] \wedge\left[\mu_{P_{1}}(x) \vee \mu_{P_{2}}(y)\right]\right\} \vee\left\{\left[\mu_{P_{1}}(b) \vee \mu_{P_{2}}(c)\right]\right. \\
& \left.\quad \wedge\left[\mu_{P_{1}}(y) \vee \mu_{P_{2}}(z)\right]\right\} \vee\left\{\left[\mu_{P_{1}}(c) \vee \mu_{P_{2}}(a)\right] \wedge\left[\mu_{P_{1}}(z) \vee \mu_{P_{2}}(x)\right]\right\} .
\end{aligned}
$$

By using distributivity law, the R.H.S. of it can be written as

$$
\left[\mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \vee \mu_{P_{1}}(c)\right] \wedge\left[\mu_{P_{2}}(x) \vee \mu_{P_{2}}(y) \vee \mu_{P_{2}}(z)\right] .
$$

Thus, $\left[\mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \vee \mu_{P_{1}}(c)\right] \wedge\left[\mu_{P_{2}}(x) \vee \mu_{P_{2}}(y) \vee \mu_{P_{2}}(z)\right] \geq \mu_{P}(a \wedge b \wedge c, x \wedge y \wedge z)=$ $\mu_{P_{1}}(a \wedge b \wedge c) \wedge \mu_{P_{2}}(x \wedge y \wedge z)=\left[\mu_{P_{1}}(a) \vee \mu_{P_{1}}(b) \vee \mu_{P_{1}}(c)\right] \wedge\left[\mu_{P_{2}}(x) \vee \mu_{P_{2}}(y) \vee \mu_{P_{2}}(z)\right]$. Which is true. Similarly, we can show that
$\left[\nu_{P_{1}}(a) \wedge \nu_{P_{1}}(b) \wedge \nu_{P_{1}}(c)\right] \vee\left[\nu_{P_{2}}(x) \wedge \nu_{P_{2}}(y) \wedge \nu_{P_{2}}(z)\right] \leq \nu_{P}(a \wedge b \wedge c, x \wedge y \wedge z)$
$=\nu_{P_{1}}(a \wedge b \wedge c) \vee \mu_{P_{2}}(x \wedge y \wedge z)=\left[\nu_{P_{1}}(a) \wedge \nu_{P_{1}}(b) \wedge \nu_{P_{1}}(c)\right] \vee\left[\nu_{P_{2}}(x) \wedge \nu_{P_{2}}(y) \wedge \nu_{P_{2}}(z)\right]$. Which is also true.
Hence P is an IF2AI of L.
Theorem 5.41. Let $L=L_{1} \times L_{2}$ be a direct product of lattices L_{1}, L_{2}. Let Q be an IFI of L_{1}. Then $Q \times \chi_{L_{2}}$ is a 2-AIFPI of L, if and only if Q is a 2-AIFPI of L_{1}.

Proof. Suppose that $Q \times \chi_{L_{2}}$ is a 2-AIFPI of L. Let $A_{1}, A_{2}, A_{3} \in I F I\left(L_{1}\right)$ be such that $A_{1} \cap$ $A_{2} \cap A_{3} \subseteq Q$.
Consider $\left(A_{1} \cap A_{2} \cap A_{3}\right) \times \chi_{L_{2}} \subseteq Q \times \chi_{L_{2}}$. This implies that

$$
\left(A_{1} \times \chi_{L_{2}}\right) \cap\left(A_{2} \times \chi_{L_{2}}\right) \cap\left(A_{3} \times \chi_{L_{2}}\right) \subseteq Q \times \chi_{L_{2}} .
$$

Since $Q \times \chi_{L_{2}}$ is a 2-AIFPI of L, we get either $\left(A_{1} \times \chi_{L_{2}}\right) \cap\left(A_{2} \times \chi_{L_{2}}\right) \subseteq Q \times \chi_{L_{2}}$ or $\left(A_{2} \times \chi_{L_{2}}\right) \cap\left(A_{3} \times \chi_{L_{2}}\right) \subseteq \sqrt{Q \times \chi_{L_{2}}}=\sqrt{Q} \times \chi_{L_{2}}$ or $\left(A_{3} \times \chi_{L_{2}}\right) \cap\left(A_{1} \times \chi_{L_{2}}\right) \subseteq \sqrt{Q \times \chi_{L_{2}}}=$ $\sqrt{Q} \times \chi_{L_{2}}$.
Thus $\left(A_{1} \cap A_{2}\right) \subseteq Q$ or $\left(A_{2} \cap A_{3}\right) \subseteq \sqrt{Q}$ or $\left(A_{3} \cap A_{1}\right) \subseteq \sqrt{Q}$. Hence Q is a 2-AIFPI of L_{1}.
The converse follows by retracing similar steps.

References

[1] Ahn, T. C., Hur, K., \& Kang, H. W. (2019). Intuitionistic Fuzzy Lattices. International Review of Fuzzy Mathematics, 4(2), 83-100.
[2] Ahn, Y. S., Hur, K., \& Kim, D. S. (2005). The lattice of intuitionistic fuzzy ideals of a ring. Journal Of Applied Mathematics And Computing, 19, 551-572.
[3] Amroune, A., \& Ziane, B. (2019). More on intuitionistic fuzzy sublattices and their ideals. Facta Universitatis, Series: Mathematics and Informatics, 34(5), 871-888.
[4] Anderson, D. F., \& Badawi, A. (2011). On n-absorbing ideals of commutative rings, Communications in Algebra, 39, 1646-1672.
[5] Atanassov, K.T. (1983), Intuitionistic fuzzy sets. In: Sgurev, V. (Ed.). VII ITKR's session, Deposited in Central Science and Technology Library of the Bulgarian Academy of Sciences, Sofia.
[6] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
[7] Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets Theory and Applications, Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg.
[8] Atanassov, K., \& Stoeva, S. (1984). Intuitionistic L-fuzzy sets, Cybernetics and Systems Research, Vol. 2, R. Trappl (ed.) Elsevier Science Publishers B.V., North-Holland, pp. 539-540.
[9] Badawi, A. (2007). On 2-absorbing ideals of commutative rings. Bulletin of the Australian Mathematical Society, 75, 417-429.
[10] Badawi, A., \& Darani, A. Y. (2013), On weakly 2-absorbing ideals of commutative rings. Houston Journal of Mathematics, 39(2), 441-452.
[11] Bakhadach, I., Melliani, S., Oukessou, M., \& Chadli, S. L. (2016). Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring. Notes on Intuitionistic Fuzzy Sets, 22(2), 59-63.
[12] Basnet, D. K. (2011). Topics in intuitionistic fuzzy algebra. Lambert Academic Publishing.
[13] Boudaoud, S., Zedam, L., \& Milles, S. (2020). Principal intuitionistic fuzzy ideals and filters on a lattice. Discussiones Mathematicae General Algebra and Applications, 40, 75-88.
[14] Gerstenkorn, T., \& Tepavcevi, A., (2004). Lattice valued intuitionistic fuzzy sets. Central European Journal of Mathematics, 2(3), 388-398.
[15] Gratzer, G., (1978). General Lattice Theory. Academic Press, New York.
[16] Hur, K., Kang, H. W., \& Song, H. K. (2004). Intuitionistic fuzzy ideals on a distributive lattice. Proceedings of KIFS Spring Conference, 4(1), 372-377.
[17] Koguep, B. B. N., Nkuimi, C., \& Lele, C. (2008). On fuzzy prime ideals of lattice. SAMSA Journal of Pure and Applicable Mathematics, 3, 1-11.
[18] Milles, S., Zedam, L., \& Rak, E. (2017). Characterizations of intuitionistic fuzzy ideals and filters based on lattice operations. Journal of Fuzzy Set Valued Analysis, 3, 143-159.
[19] Sharma, P. K. (2022). On intuitionistic fuzzy primary ideal of a ring. Pan-American Journal of Mathematics, 1, 1-11.
[20] Sharma, P. K., Lata, H., \& Bharadwaj, N. (2022). A study on intuitionistic fuzzy 2-absorbing primary ideals in Г-ring. Notes on Intuitionistic Fuzzy Sets, 28(3), 280-292.
[21] Thomas, K. V., \& Nair, L. S. (2011). Intuitionistic fuzzy sublattices and ideals. Fuzzy Information and Engineering, 3, 321-331.
[22] Wasadikar, M. P., \& Gaikwad, K. T., (2015). On 2-absorbing and weakly 2-absorbing ideals of lattices. Mathematical Sciences International Research Journal, 4, 82-85.
[23] Wasadikar, M. P., \& Gaikwad, K. T. (2019). Some properties of 2-absorbing primary ideals in lattices. AKCE International Journal of Graphs and Combinatorics, 16, 18-26.
[24] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

