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1 Introduction

The concept of intuitionistic fuzzy sets was introduced by K. T. Atanassov [1-3] as a general-
ization to the notion of fuzzy sets by L. A. Zadeh [25]. R. Biswas was the first to introduce
the intuitionistic fuzzification of Algebraic structure and developed the concept of intuitionistic
fuzzy subgroup of a group in [5]. Later on many mathematicians worked on it and introduced
the notion of intuitionistic fuzzy subring, intuitionistic fuzzy submodule etc. (see [4,8—15]). The
notion of intuitionistic fuzzy GG-modules was introduced by the author et al. in [16]. Many prop-
erties like representation, reducibility, complete reducibility and injectivity of intuitionistic fuzzy
(G-modules have been discussed in [17-24].

2 Preliminaries

In this section, we list some basic concepts and well known results on G-modules, exact sequence
of G-modules which are mainly taken from [6,7]. The concepts about intuitionistic fuzzy set
theory and results about intuitionistic fuzzy G-modules are mainly taken from [3,4,14-16,18,19,
23].
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Let G be a group and M be a vector space over a field K. Then M is called a G-module if for
every g € G and m € M, if there exists a product (called the action of G on M), gm € M which
satisfies the following axioms

(i) 1g.m =m,Vm € M (15 being the identity of ;)
(i) (g-h) - m=g-(h-m),Yme M,gheG
(iii) g.(k1m1 + kgmg) = kl(gml) —+ k2<g.m2>, i kl,kg € K;ml,mQ eM andg €d.

A subspace of M, which itself is a G-module with the same action is called G-submodule of
M. Tt can be seen that intersection of (G-modules is again a G-submodule. A non-zero G-module
M is irreducible if the only G-submodules of M are {0} and M. Otherwise it is reducible. A
non-zero G-module M is completely reducible if for every GG-submodule N of M, there exists a
G-submodule N* of M such that M = N & N*. A G-module M is semi-simple if there exists
a family of irreducible G-submodules A/; such that M = @] ; M;. It is evident that completely
reducible G-modules are semi-simple.

Definition 2.1. Let M and M* be G-modules. A mapping f : M — M™* is a G-module homo-
morphism if

(@) f(kimy + komg) = ki f(my) + ko f (mo)
(i) f(gm)=gf(m),V ki, ke € K;m,my,my € Mandg € G.

Definition 2.2. Let f : M — M* is a G-module homomorphism. Then
ker f = {m € M : f(m) = 0*} is a G-submodule of M and Imf = {f(m) : m € M} isa
G-submodule of M*.

Proposition 2.3. If M is a G-module and N is a G-submodule of M, then M /N is a G-module
which is called Quotient G-modules.

Definition 2.4. A pair of module homomorphisms M Iy N % Pis said to be exact at N if
Imf = kerg.
A sequence of module homomorphisms
REIENG VALY VAN VAR S

is exact provided that Im f; = ker f; . for all indices .

Remark 2.5. (i) For any module M, there are unique trivial module homomorphisms 0 —
M, 0 — 0, 1s a monomorphism and M — 0, m — 0 1s an epimorphism.

(ii) 0 — M L N is exact if and only if ker f = 0, i.e., f is a monomorphism.
(iii) N & P — 01is exact if and only if Img = P, i.e., g is a epimorphism.

Gv) If M L N % Pisexact, then go f = 0.
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(v) An exact sequence 0 — M i> N £ P — 0is called a short exact sequence, in which
M = Imf =kerg, N/ kerg = Img = P.
Whenever M < N, there is a short exact sequence 0 — M - N = N/M — 0.

(vi) A short exact sequence in (V) is said to be split if there exist homomorphisms
f:N— Mandg: P — N suchthat ff =iy and gg = ip.

(vii) Let M & N be the external direct sum of modules M and N. Then there exist the following
canonical embeddings

ing : M — M @ N given by m — (m,0)
in: N — M@ N given by n — (0,n)

and the canonical projections

3

7wy : M ® N — M given by (m,n) —
v : M @& N — N givenby (m,n) —n

Clearly, mpsi5; = I (identity map on M) and myiny = Iy (identity map on V).
Therefore 5,7y + inTn = Ipen 1S the identity map on M & N.

(viii) Consider an exact sequence of the form 0 — M 25 M & N 5 N — 0
where i), and 7y are the canonical maps. Then following is commutative diagram 0 —
M M

M2IE Mo NS N/M = 0.ie., myiy = Iy and Tyiy = Iy.
Then the above sequence split.

Theorem 2.6. (The Short Five Lemma) Let R be a ring and

0 s M — s N 2, p > 0
[ R
0—— M LN 25 P s 0

a commutative diagram of R-module homomorphisms such that each row is a short exact se-
quence. Then

(i) © and & are monomorphisms = 1 is a monomorphism;
(ii)  and & are epimorphisms = 1 is a epimorphism;
(iii) @ and & are isomorphisms = 1) is a isomorphism.
In such a case, the row short exact sequences are said to be isomorphic.

Theorem 2.7. Let R be a ring and 0 — M, LN My — 0 a short exact sequence of

R-module homomorphisms. Then the following conditions are equivalent:
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(i) There is an R-module homomorphism h : My — N with gh = I)y,;
(ii) There is an R-module homomorphism k : N — My with kf = Iy,;
(iii) The given sequence is isomorphic to the direct sum short exact sequence

(iv) 0 = M, KN Mi®My, S My —0; in particular N = M, & Ms; such a sequence is called
a split exact sequence.

Definition 2.8. Let X be a non-empty set. An intuitionistic fuzzy set (IFS) A of X is an object of
the form A = {(x, pa(x),va(z)) : * € X}, where puq : X — [0,1] and v4 : X — [0, 1] define
the degree of membership and degree of non-membership of the element x € X respectively and
for any x € X, we have pa(z) + va(z) < 1.

Definition 2.9. Let A = {(x, ua(x),va(x)) : z € X} and B = {{z, ug(z),vp(z)) : x € X} be
any two IFSs of X, then

(i) AC Bifandonlyif ps(z) < pp(x) and vy(z) > vg(z) forallz € X
(i) A= Bifandonlyif pus(x) = pp(z)and va(z) = vg(z) forallz € X

(i) A° = {(z, pac(x),vac(x)) : x € X}, where pac(z) = va(x) and vae(z) = pa(z) for all
reX

iv) AN B = {(x,uanp(x),vanp(z)) : * € X}, where panp(z) = pa(x) A pp(x) and

vang(x) = va(x) Vvg(x)
(v) AU B = {(z,paus(z),vaup(z)) : © € X}, where paup(x) = pa(z) V pp(x) and
vaus(x) = va(x) ANvg(z).
Remark 2.10. For convenience, we write the IFS A = {(x, pa(x),va(x)) : x € X} by A =
(NA»VA)'

Definition 2.11. Let X and Y be two non-empty sets and f : X — Y be a mapping. Let A and
B be IFSs of X and Y/, respectively. Then the image of A under the map f is denoted by f(A)

and is defined as f(A)(y) = (1) (y), vy(a)(y)), where

V{pa(z) -z e f(y)}, iffHy) #0

ray(y) = )
w 0, otherwise

Mra(z) rz e f7Hy)}, iffHy) #0 vy
1, otherwise,

viay(y) = cy.

Also the pre-image of B under f is denoted by f~1(B) and is defined as
FHUB) (@) = {pgm) (), vi-10m)(2)},
where, 115y (2) = pp(f(x)) and vi-1(py(x) = vp(f(x)); Vo € X.
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Remark 2.12. In general, ji(4)(f(x)) > pa(z) and vy (f(2)) < va(x) and equality hold if f
is one-one.

Definition 2.13. Let (X, .) be a groupoid and A, B be two IFSs of X. Then the intuitionistic
fuzzy sum of A and B is denoted by A + B and is defined as:

(A+ B)(z) = (pa+p(x), varp(z)), where

(Va=atp{na(a) A pp(d)}; Ae=arp{vale) Vp(b)}, ifz=a+b

HA B(x): ,VZUEX
! (0,1), otherwise

Definition 2.14. For any IFS A = {(x, ua(x),va(x)) : © € X} of set X. We denote the support
of the IFS set A by A* and is defined as
A*={x € X : pa(x) >0and va(x) < 1}.

Proposition 2.15. Let f : X — Y be a mapping and A, B are IFS of X and Y, respectively.
Then the following result holds:

(i) f(A*) C (f(A))* and equality hold when the map f is bijective
(ii) f7H(B") = (f7(B))"

Definition 2.16. Let GG be a group and M be a G-module over K, which is a subfield of C. Then
an intuitionistic fuzzy G-module (IFGM) on M is an intuitionistic fuzzy set A = (ua,va) of M
such that following conditions are satisfied:

(i) palar + by) > min{pa(z), pa(y)} and va(az + by) < max{va(z),va(y)}, Va,b € K
and z,y € M and

() pa(gm) > pa(m) and va(gm) < wva(m),Vg € G;m € M.

Definition 2.17. Let A € G (where G™ denotes the intuitionistic fuzzy power set of G-module
M). Then A is called an intuitionistic fuzzy submodule of G-module M, if it satisfies the follow-
ing:

(i) 114(0) = 1and v4(0) = 0;
(i) palgm) > pa(m) and va(gm) < va(m),Vg € G;m € M;

(iii) pa(my + mg) > min{pa(my), pa(ms)} and va(my + ms) < max{va(mi),va(ms)},
my, mo € M.

We denote the set of all intuitionistic fuzzy submodules of G-module M by G(M).
Theorem 2.18. Let A € G(M). Then A* is a G-submodule of M.

Theorem 2.19. Forany A, B € G(M), we have (A+ B)* = A*+ B* and (AN B)* = A*N B*.
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Theorem 2.20. Let A € G(M) and let N be a G-submodule of M. Define A|y € GV (where G
is the intuitionistic fuzzy power of G-module N) as follows: paj,(r) = pa(x) and vy, (x) =
Z/A({L’). Then A’N € G(N)

Theorem 2.21. Let A € G(M) and let N be a G-submodule of M. Define Ay € GM/N as
follows: pay(x+ N) = V{pa(x+n):n € N}tandva,(x + N) = AMra(z +n) : n € N},
Vo € M, where M/N denote the quotient module of M with respect to N. Then Ay € G(M/N).

Definition 2.22. Let A, B € G(M) be such that A C B. Then B/A € G(B*/A*) is called the
quotient of B with respect to A and is defined as

B/A(zx + A*) = (upja(r + A*),vp/a(z + AY)),

where pipja(z + A*) = V{up(z +y);y € A"} and vpja(z + A") = Mup(z +y);y € A},
where x € B*.

Definition 2.23. We define two IFS 2 and (M) of M as

(1,0), ifz=0

Then the IFS 2 and (M ) are IFSMs of M which are actually equivalent of {0} and M in module
theory.

Lemma 2.24. For any IFS A = (14, v4) of a module M, A* = {0} if and only if A = (.

Definition 2.25. If A, B € G(M), then the sum A + B is called the direct sum of A and B if
AN B = and we writeitas A ® B.

Theorem 2.26. Let A, B,C' € G(M) such that A = B & C, then A* = B* & C*.

Definition 2.27. Let M and N be G-modules; A € G(M), B € G(N). Consider the direct sum
M @ N. Weextend Aand Bon M @ N to A" and B’ as follows

pa(m), ifn=0 va(m), ifn=0

oy (mym) = ;v (myn) = ;. V(m,n) e M®N
4 0, itn£0  ° 1, ifn % 0
n), ifm=20 vg(n), ifm=20
/JJB/(mvn) = IuB( ) ) VB/(m7n> = B( ) ; v(man) € MEBN
0, ifm #0 1, if m % 0
Then A, B € G(M @ N)
1, if(m,n)=0 0, if(mn) =0 , /
Wy qp (Myn) = ( ) i Vyag (mon) = ( ) e, ANB = Q.
0, if(m,n)#0 1, if (m,n)#0

Therefore A" 4+ B’ is infact a direct sum and we denote it by A @ B.
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Remark 2.28. Note that
pasp(m,n) = pyqg(m,n)
= Vimm)=(min)+men) {Ha (M1, 11) A pigr (M, n2)},¥(m,n) € M & N
= o (m,0) A iy (m, 0)
= pa(m) A pp(n).
Similarly vagp(m,n) = va(m) V vg(n).
Definition 2.29. Let A; € G(M),i € J, then we say that A is the direct sum {A; : i € J}
denoted by B, A; if
(i) A=XicsA;

Example 2.30. Let G = {1,—1}, M = R?> = {(p,q) : p,q € R} is a vector space over the field
R. Then M is a G-module. Define IFSs A = (ua,va), B = (1, va),C = (uc, ve) of M by

( 4

1,  ifz=(0,0) L, ifz=(0,0)
pa(r) = 4025, ifz=(p,0),p¢g0; valr)=1405, ifz=(p,0),p¢O0
\0'25) lfx:(p)q)7q¢0 \0'57 1fx_(p7 ) qgo’
(1, ifz=(0,0) (0, ifz=(0,0)
pe(r) =025 ifz=(p,0),pg0; va(x)=105 ifr=(p0),p¢0
0, ifr=(p,q),q¢0 (0, ifz=(p,q),q¢0;
(1, ifz=(0,0) (0, ifz=1(0,0)
pe(r) = €0.25, ifz = (p,0),p¢0; velr)=405 ifz=/(04q),q¢0
\0, lfx:(p,q),qé'éo \]-7 1fx:(p,q),p¢0

Then, A, B,C € G(M) suchthat A= B & C.

Definition 2.31. Let A € G(M). Then A is said to be a semi-simple G-module if whenever B
is strictly proper G-submodule of A (i.e., B C A), there exists a strictly proper GG-submodule C
of A such that A = B & C. That is if B is a proper G-submodule of A such that B(z) = A(z)
Va € B* then there exists a proper G-submodule C' of A satisfying C'(x) = A(x) V z € C* such
that A= B @ C.

Definition 2.32. Let M and M* be GG-modules and let A, B be two intuitionistic fuzzy G-
submodules on M and M* respectively. Let f : M — M™* be a G-module homomorphism.
Then f is called a weak intuitionistic fuzzy G-homomorphism of A onto B if f(A) C B. The
homomorphism f is an intuitionistic fuzzy G-homomorphism of A onto B if f(A) = B. We say
that A is an intuitionistic fuzzy G-homomorphic onto B and we write as A ~ B.

Let f : M — M* be a G-module isomorphism. Then f is called a weak intuitionistic fuzzy
G-isomorphism if f(A) C B and f is an intuitionistic fuzzy G-isomorphism if f(A) = B and
we write it as A = B.
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3 Exact sequence of intuitionistic fuzzy G-modules

From the theory of (G-modules recall that a sequence of G-modules and G-module homomor-
phisms

=NV AN VA LN Y A N 3.1)

is said to be exact at M; if Im(f;) = ker(f;+1); and the sequence is said to be exact if it is exact at
each M;. In this section, we extend this notion to intuitionistic fuzzy G-modules and prove some
results.

Definition 3.1. Let M;, ¢ € Z be G-modules and let A; € G(M;),i € Z. Suppose that (1) is exact
sequence of G-modules. Then the sequence

LN W N B (i= Ny B A N (3.2)

of intuitionistic fuzzy G-modules is said to be exact if, for all © € 7,
() fi+1(A;) € A4 and

() (fi(Aic1))" = ker(fiy1).

Theorem 3.2. Let A, B € G(M) be such that A & B is a direct sum of intuitionistic fuzzy
submodules of G-module M so that A* & B* is a direct sum of G-modules. Then the sequence
0—+A5 A®BS B — 0is exact, considering A € G(A*) and B € G(B*).

Proof. Note that the sequence 0 — A* 4 A*@ B* 5 B* — 0 is an exact sequence of G-
modules where “/” and “7” are respectively the canonical injection and projection. We have to
prove that the sequence 0 — A % A® B B — 0is an exact sequence of intuitionistic fuzzy
G-modules.

Letx € A* 4 B*. Then i(A)(x) = (pia)(), via)(z)), where

V{pa(t) it € A% i(t) =z}, ifi t(z)#0 palz), ifze A*
piay(z) = = and
0, otherwise 0, ifx & A*
(@) MNMra(t) it € A% i(t) =z}, ifil(z) £ 0 va(z), ifze A*
Vl A xTr) = =
W 1, otherwise 1, ifz ¢ A"
Thus, i(A) = AVz € A* (3.3)

Also, (A+ B)(z) = (pass(x),vayp(z)), where

V{pa) App(2) iy, 2 € My +2 =2}, ifr=y+z

parp(x) = .
0, ife#y+z

palx), ifxe A*
= and

0, if v ¢ A*
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Mya(®) Vvs(s) g,z € My +z=a}, ife=y+z

VA B(l’) =
i 1, ife#y+z

va(z), ifxe A*
1, ifz ¢ A

[Note that A & B is a direct sum, so AN B = Q. If z = y + z with x € A*, then the only
possibility isx =z + 0orz =y + z; y, 2 € A*. Butin the second case up(z) = 0,vp(2) = 1].

Thus, A+ B=Aifx € A" (3.4)

It follows from (3.3) and (3.4) that i(A) C A+ B.
For z € B*7 (F(A + B))(l’) = (/%r(A—l—B) (%), Vr(A+B) (l’)), where

frarpy(z) = V{pasp(t) 1t € A"+ B 7(t) =z}
V{parp(r+z):r € A"} Since 7 : A* + B* — B"is the projection|
= V{ua(r) A pnla) s € A7)
= pup(z).[Since pa(r) =1 with r = 0]

Similarly, we have v (a4 5)(z) = vp(x). Hence 7(A + B) = B.
Now by (1), we have
(pa(z),va(x)), ifxe A* =ker(nm)

i(A)(x) = 0.1), if ¢ A" = kor(r). i.e., (i(A))" = ker(m).

Therefore, 0 —+ A > A@ B 5 B — 0 is an exact sequence of intuitionistic fuzzy G-
modules. [

Remark 3.3. Note that in the above theorem, for convenience, we have denoted the intuitionistic
fuzzy G-module 2 € G(M) by 0.

Alsoif0 — M L Nisa sequence of G-modules and A € G(M), B € G(N), then it is easy
to see that 0 — A %> B is an exact sequence of intuitionistic fuzzy GG-modules if and only if f is

injective.

Definition 3.4. Let A, B € G(M) be such that A @ B is a direct sum of intuitionistic fuzzy
submodules of G-module M. Then the sequence 0 — A -+ A @ B = B — 0 of intuitionistic
fuzzy G-modules is called a split exact sequence of intuitionistic fuzzy G-modules.

Now we obtain a necessary condition for a given sequence A Iy B O to be exact at B.

Theorem 3.5. Let M 5> N % Pbea sequence of G-modules exact at N and let A € G(M), B €
G(N),C € G(P). Then the sequence A LBSC of intuitionistic fuzzy G-modules is exact at

B only if A* 1B % Cisa sequence of G-modules exact at B*, where f and g are restriction
of fand g to A* and B* respectively.
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Proof. Suppose that A Iy B % C'is exact at B. Then by definition f(A) C B,g(B) C C and
(F(A))" = Ker(g). o

Now, consider the sequence A* f—> B* Ly C~,

We claim that this sequence is exact at B*.

Forz € (f(A))":

54 [Lf(A)(QS) > (0 and I/f(A)(x) <1

S V{pua(t): fit)=x,t € M} > 0and A{va(t): f(t) =z, te M} <1
& Jsty,ty € M suchthat x = f(t;) = f(ta), palty) > 0,va(ts) < 1

(As pa(ty) + va(ty) < 1always, soif pa(ty) > 0 then va(ts) < 1)

< J'st; € M such that z = f(t1), pa(ty) > 0and va(ty) < 1,ie., £ € A
e r=f(t) € f(A).

Thus, we get (f(A))* = f(A*). Similarly, we get (¢(A))* = g(A*).
Therefore, f (A*) = f(A*) = (f(A))* C B*as f(A) C B.

Similarly, ¢ (B*) = (g(B))* C C*.

Now, Since (f(A))* = k r(g )1t follows that f'(A*) = ker(¢).

Thus, the sequence A* Ly B* %5 C* is exact at B*.
This completes the proof of the theorem. [

Remark 3.6. The converse of the above theorem is not true. That is the sequence A* — B* — C*
is exact at B* does not implies that the sequence A Iy B4 Cisexact at B.

Example 3.7. Let M be a G-module, N and P are submodules of M such that N & P is a direct
sum. Define A € G(N),B € G(P) and C € G(N & P) as follows:

1, ifx=0 0, ifz=0
pa(z) = . ;o va(z) = . )
0.8, ifxe N—{0} 0.1, ifze N —{0}
1, ifr=0 0, ifr=20
pp(z) = , ; vp(x) = . ;
0.5, ifze P—{0} 0.3, ifzeP—{0}
1, ifx=0 0, ifz=0
pie(z) = . ; velz) = .
0.3, ifre NP —{0} 0.5, ifxe NP —{0}.

Clearly, A* = N, B* = P and C* = N & P. Obviously, N L NeP D Pisexactat N & P.
Thatis A* - C* I B* is exact at C*.

Now, pjay(x) = V{pa(t) : t € N,i(t) = 2} = pa(x)(witht =z € N)

and v;ay(x) = AMwa(t) it € N,i(t) = 2} = va(z)(witht = 2 € N).

That is i(A) = A and clearly A ¢ B. Therefore, the sequence A % ¢ 5 Bis not an exact
sequence of intuitionistic fuzzy G-modules.

Theorem 3.8. Let M 5> N % Pbea sequence of G-modules exact at Nand let A € G(M), B €

G(N) and C € G(P) be such that A LB Cisa sequence of intuitionistic fuzzy G-modules
exact at B. Then f(C(a,(A)) C ker(g) Vo, 8 € (0,1) such that o + < 1.
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Proof. Since A Iy B % Cis exact at B.
Therefore, f(A) C B,g(B) C Cand (f(A))* = ker(g).
We know that £(Cla.s)(4)) € Clas)(F(A)) and g(Cla(4)) € Clay(9(A)):
Thus, if z € f(Cap)(A)) be any element, then x € C, p)(f(A))
= ppay(@) 2 a>0and vy (z) < f <1, € (0D
=z € (f(A))*. But (f(A))* = ker(g). Therefore, x € ker(g).
Hence f(C(a,3)(A)) C ker(g). O

4 Isomorphism of short exact sequences

of intuitionistic fuzzy G-modules

Definition 4.1. Let 0 — M £ N % P — 0 be a short exaxt sequence of G-modules. Let
A € GIM),B € G(N) and C € G(P). Then an exact sequence of intuitionistic fuzzy G-
modules of the form 0 — A & B % ' — 0is called a short exact sequence of intuitionistic
fuzzy G-modules.

Extending the concept of isomorphism between short exact sequences of G-modules in clas-
sical module theory to the intuitionistic fuzzy setting. We define isomophism and weak isomor-
phism between short exact sequences of intuitionistic fuzzy G-modules and obtain some sufficient
conditions under which the exact sequence 0 — A L A®BL B 0is weakly isomorphism
to the exact sequence 0 — C' 5 D% B = 0. Also we get another set of sufficient conditions
under which the exact sequence 0 — C' D% FE S 0is weakly isomorphic to the exact
sequenceO—>Ai>A69B1>B—>O.

Recall that two short exact sequences of (G-modules are said to be isomorphic if there is a
commutative diagram of G-modules homomorphism

0 s ML N 2, p > 0
ool ks
0 M LN P > 0
such that o, ¥, £ are G-isomorphism.
Definition 4.2. Let
0o— M1 N2 3P 0
ool ke
0 M LN P > 0
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Ny NG » 0 (4.1)

and

0 A

, B -9 ¢ > 0 4.2)
are two exact sequences of intuitionistic fuzzy G-modules. Then the sequence (4.1) is said to be
weakly isomorphic to the sequence (4.2) if o(A) C A, (B) C B and £(C) C C'. The sequence
(4.1) is said to be isomorphic to the sequence (4.2) if p(A) = A, ¢(B) = B" and £(C) = C'.

Related to (2.26) we have the following theorems in intuitionistic fuzzy module theory.

Theorem 4.3. Let 0 — M, N5 My — 0 be a short exact sequence of G-modules and let
Ay € G(My), Ay € G(M,), B € G(N) be such that 0 — A 5y B % Ay — 0is a short exact
sequence of intuitonistic fuzzy G-modules. If there is a G-module homomorphism h : My — N
with goh = Iy, such that h(As) C B, then the short exact sequence 0 — A; 2 A @A S

As — 0 is weakly isomorphic to a given short sequence 0 — A, ENY; N As — 0. In particular
Al D AQ =B

Proof. We have by definition, f(A;) C B, g(B) C As and (f(A;))* = ker(g).
Also it is given that h(Ay) C B. Now consider the diagram

1 ™

0 >M1 Ml@Mg \MQ > 0

0 )Al i)Al@AQ g>A2

lf M l¢ ll Ma

0 > Ay L B I A > 0

~
)

/ g

0 M1 > N M2 > 0

where ¢ : My @& My — N is defined by ¢(my,ms) = f(my) + h(mz). Then ¢ is a module
G-homomorphism. Moreover ¢ o i = fo Iy, and go ¢ = I, o.

Since Iy, and I);, (identity maps) are isomorphisms ¢ is also an isomorphism (by short five
lemma of exact sequences of G-modules) and so N i 1s 1s0morph1c to M, @ M, and the sequences
0> M SMedM S My — 0and 0 — M1 N % M, — 0 are isomorphic short exact
sequences of G-modules.

Obviously Iy, (A1) = Ay, Iy, (Ag) = As.
Now let z = ¢(m), m,) € N be arbitrary, where m; € M;, m, € M. Then we get

Ho(oar) (@) = V{kaea,(ti,t2) 1 (G, t2) € My @& Ma; d(th, t2) = x}
= V{pa, (t1) A pa,(ta) sty € Mi,to € My; f(t1) +h
= V{pa, (t1) A pa,(ta) 1ty € My, ta € My; f(t1) + h
= V{pa, (t1) A pay(ta) st € Myt € My; f(th) = f(mi)a h(t2) = h(m,)}
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Thus,

M¢(A1@A2)(95) = V{pa, (L) Apay(t2) : t € My, ty € My; f(t1) = f(mll)7 h(ts) = h(mlz)} (4.3)

[Since M7 ~ ¢(My) = f(My); My ~ ¢(My) = f(M;), we get N ~ M; & My ~ f(M;) @
h(Ms)].
Since we have f(A;) C B and h(Ay) C B it follows that

Since we have f(A;) C B and h(A) C B it follows that

Ve, (t1) : ty € Mys f(t1) = f(my)} < pp(f(my)) (4.4)

and
V{ i, (t2) : 1o € Ma; h(tz) = h(my)} < pp(h(ms)) (4.5)

Since B is an intuitionistic fuzzy G-module, so from (4.4) and (4.5) we get we get
[V{pa, (1) 1 € Mas f(t1) = F(m)) ] A [V{a, (ta) < ta € Ma; h(ts) = h(m,)}]
< up(f(my) + h(my)) = pp(e(my,my)) = pp(x).
Using the complete distribuitity, we get V{pa, (t1) A pa,(ts) : t1 € My, ta € My, f(ty) =
fmi), htz) = h(my)} < pp ().

Therefore from (1), we get fig(a,04,)(2) < pp(z) Vo € N.

Similarly, we can show that V4, 64,)(2) > vp(x) Yo € N. Hence ¢(A; © Ay) C B.
Hence by definition, short exact sequence 0 — A; 2 A @ Ay 5 Ay — 0is weakly isomorphic
(with identity map on A; and A,) to the given short sequence 0 — A; EN S JEN Ay — 0 and

hence 4; @ A, = B. O

Theorem 4.4. Let 0 — M, NS My — 0 be a short exact sequence of G-modules and let
Ay € G(M,),As € G(M,), B € G(N) be such that 0 — A, I B % Ay — 0is a short exact
sequence of intuitionistic fuzzy G-modules. If there is a G-module homomorphism k : My — N
with kof = Iy, such that k(B) C Ay, then the short exact sequence 0 — A, EN RN Ay — 0
is weakly isomorphic to the given short sequence 0 — Ay AN A @ Ay 5 Ay = 0. In particular
B= A, & A,

Proof. We have f(A;) C B,g(B) C Ay and k(B) C A; and we have the diagram

/ g

0 > M,y N

\MQ 0

l[ My ld} lf Moy

0 )Al f)Al@AQ g>A2 > 0

L M @ My, T M, 0

0 \Ml

where ¢ : N — M; & M, is defined by 1(n) = (k(n), g(n)).
Then ) is a G-module homomorphism. Moreover i0ly;, = tof and moy = I, 0g9.
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Since Iy, and 1), (identity maps) are isomorphisms 1) is also an isomorphism ( by short five
lemma for exact sequences of G-modules) and so N is 1s0m0rph1c to M, & M- and the sequences
0— M1 N % My = 0and 0 = My = M; & My = M, — 0 are isomorphic short exact

sequences of G-modules.
Obviously I, (A1) = Ay, Iy, (Ag) = As.
Now, for (mq, my) € My & My, we get

s (1, m2) = V() : n € N; k(n) = myandg(n) = m) “6)
Also, since k(B) C A; and g(B) C A,, we get
V{pup(n) :n € N;k(n) =mq} < pa, (my) 4.7)
V{up(n) :n € N;g(n) =ma} < pa, (mo) (4.8)
From (4.7) and (4.8) we deduce that
V{ugp(n) : n € N;k(n) = miandg(n) = mo} < pra, (ma) A pa, (mo) (4.9)
Similarly we can show that
NMrp(n) :n € N;k(n) = miandg(n) = mo} > va,(my) V va, (ms) (4.10)

Also we get

Harwa, (Ma,ma) = V{pa, (1, 22) A pra, (Y1, y2) (21, 22), (Y1, y2) €
My @ Ma; (w1, 22) + (Y1, 42) = (M1, ma)}

= pa, (ma) A pa, (m).
Thus,

PaeA, (M1, ma) = pa, (ma) A pa, (ma). (4.11)

Similarly, we have

Paea, (M1, ma) = va, (M1) V 14, (M2) (4.12)

Now, from (4.9), (4.10), (4.11) and (4.12) we see that ¢)(B) C A; & As.
Thus the given short exact sequence 0 — A; EN; JER Ay — 0 is weakly isomorphic (with
identity map on A; and A,) to the short exact sequence

O—)A1L>A1€BA21>A2—>O
In particular B = A; @ A,. This proves the theorem. ]

5 Semi-simple and split exact sequence

of intuitionistic fuzzy GG-modules

In this section we establish a relation between semi-simple intuitionistic fuzzy G-modules and
split exact sequence of intuitionistic fuzzy GG-modules.
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Theorem 5.1. Let M and N be two G-modules and let A € G(M), B € G(N) where A* = M.
Then the sequence 0 — A - A@® B = B — 0 is an exact sequence of intuitionistic fuzzy
G-modules.

Proof. We have to prove that 0 — A % A® B S B — 0is exact.
Let (m,n) € M & N. Then

:uA(m)7 ifn=20

picay(m,n) = V{pa(t) : t € M,i(t) = (m,n)} = 0, ifn £ 0 (5.1
and
Vi(A)(m,n) = /\{VA(t) 1t e M,i(t) — (m7n)} _ gjl(m)a jz ; 3 (5.2)
Also,
parp(m,n) = pa(m) A pg(n) = pa(m)ifn =0 (5.3)
and
varp(m,n) =va(m)Vug(n) =va(m)ifn=0 (5.4)
From (5.1), (5.2), (5.3) and (5.4) we get
i(A)(m,n) C (A+ B)(m,n) ¥(m,n) € M & N.
Therefore,
i(A) C (A+ B) (5.5)

For x € N we have

Hr(A+B) (:B) = V{MA—I-B(man) : (mun) eMe Naﬂ—(man) = l’}
= V{parp(m,z):x € N} Sincew: M & N --» N is a projection |
= V{pa(m) A pp(z) 1z € N}
= pp(z).[ Since pa(m) = 1 with m = 0]

Similarly we can get v (a4p)(7) = vB(2).
Thus, 7(A + B)(x) = B(x) Vx € N.
Hence
m(A+ B) = B. (5.6)

Now, since A* = M, it follows from (5.1) and (5.2) that
picay(m,n) > 0and v 4y(m,n) < 1ifn = 0i.e., if (m,n) € ker7 and
picay(m,n) = 0and v a)(m,n) = 1if n ¢ Oi.e, if (m,n) ¢ ker .
1.e.,
(1(A))* = kerm. (5.7)

From (5.5), (5.6) and (5.7) we see that the sequence 0 — A LA @B 5 B — 0is an exact
sequence intuitionistic fuzzy G-modules. U
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Definition 5.2. Let M and N be two left G-modules; let C' € G(M),B € G(N) and A €
G(M @ N). Then a short exact sequence of intuitionistic fuzzy G-modules of the form
0 M—LsMoN-T"5N 0
and 0 > C > A > B >0

is said to be a short exact sequence if A = C' & B.

Definition 5.3. Let M, N and P be left G-modules and let C' € G(M), A € G(N),C € G(P).
Then a short exact sequnce of G-modules of the form

0 oM N9, p ' 0
and 0 s C s A s B s 0

is said to be a split exact sequence if N = M ¢ P and A = C' & B so that the given sequence is
isomorphic to the short exact sequence
0 M—LsMaerP-LoN 0
and 0 > C' >»C' @ B > B > 0

Theorem 5.4. All short exact sequences of G-modules are split if and only if G-modules are
semi-simple.

Proof. Assume that all short exact sequences of GG-modules are split exact sequences. Let M be
a semi-simple G-module and let A € G(M). Then we show that A is semi-simple. That is to
show that if C' € G(M) is given then C C A, C # Q,C(x) = A(z) Vo € C*,C* C A*, then
there exists a B € G(M) such that B C A, B # Q, B(x) = A(z) Vo € B*, B* C A* satisfying
A=C@aB.
Since C* C A* we have the short exact sequence of sequence of GG-modules

0 y O —L s A Ty Av)Cr —— 0
We consider the intuitionistic fuzzy G-modules C' € G(C*), A € G(A*) and A/C € G(A*/C™).
We claim that the sequence

1 T

0 > O > A* > A*/C* —— 0
and 0 C A A/C 0

of intuitionistic fuzzy G-modules is exact. For:
@)
piey(x) = V{pc(t):te C*i(t) =z}

pc(x), ifzxeC*
0, ifz ¢ C*.
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Similarly,
viey(x) = NMue(t) it e Ci(t) = x}
vo(z), ifxeC*
1, if z ¢ C*.
Since C' C A we get i(C) C A.
(i1)
pray(@ +C%) = V{pa(t) : t € A% 7(0) =z + C*}
= V{ua(t):t€e A5t+C* =2+ C"}
= V{pa(t):te Atex+C"}
= /,LA/C(I + C*)
Similarly, we can show that v,y (z 4+ C*) = v4,c(x + C*).
Thus (7(A))(z + C*) = A/C(x + C*) and so m(A) = A/C.
and (iii) since
pe(z), ifxeC* ve(z), ifxeC”

picy(x) = s vioy(r) =
© 0, ifx € C* © 1, if € C*.

we see that

piccy(z) > 0and vy (z) < Lif & € ker 7. Also iy (x) = 0 and vyoy(x) = 1if x ¢ ker .
Since all exact sequence of intuitionistic fuzzy G-modules are split exact sequences we get
A*=C"® A*/C*and A = C @ A/C where C € G(C*)and A/C € G(A*/C*).

Now A*/C* can be considered as a submodule N of A* and hence of M and A/C can be consid-

ered as an intuitionistic fuzzy G-module of M.
Also we note that

(A/C) = {o+C € A"/C" : paje(x+C*) > 0and vyc(x 4+ C*) < 1}

{x+C € A"/C" : V{pa(t) :t€ex+C"} >0and A{va(t):tcx+C"} <1}

{r+C" € A"/C* : Ft € o+ C* with pua(t) > 0and va(t) < 1}

= A*/C™.

Thus A* = C* & N where A*, C* and N are all submodules of M and since A = C' @ A/C' it
follows that A/C(z) = A(z) Ve € N = A*/C* = (A/C)*.
Thus there exists a strictly proper intuitionistic fuzzy G-module A/C of A such that A/C(z) =
Alx)Vz € (A/C)*and A=Cad A/C.
Therefore A is semi simple.

Conversely suppose that all G-modules are semi-simple.
Consider the short exact sequence of modules

0 oM N s P s 0
0 C*ﬂwmﬁ B 0
0 7 O 7 A 7 B 7 0

g
Q\A*
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To show that this sequence splits. For this it is enough to show that exact sequence 0 — M ER
N % P — 0is isomorphicto0 - M 5 M @ P %L P — 0.
So we consider the sequence

1 9

0 s M Mo P s P 0
0 o Hlory e Tla g 0
0 C s A s B s 0

Obviously C' = i(C') C A. Therefore since A is semi simple A = C' & D for some strictly
proper G-submodule D of A. Since A* = C* & D*. Also since a submodule of a semi simple
G-module is semi-simple we see that A* is semi simple and so we get A* = C* @ B*. Hence
D* = A*/C* = B*. So D can be considered as G-submodule of P and we can define D to be B
so that A = C' @ B. This completes the proof of the theorem. O]

6 Conclusions

The main focus of this article is to introduce the concept of exact sequence of G-modules by
intuitonistic fuzzification the concept in crisp theory. We established a relation between semi-
simple G-modules and split exact sequences of G-modules. This is useful in the study of injective
and projective intuitionistic fuzzy GG-modules in terms of exact sequences.
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