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1 Introduction

The concept of intuitionistic fuzzy sets was introduced by K. T. Atanassov [1–3] as a general-
ization to the notion of fuzzy sets by L. A. Zadeh [25]. R. Biswas was the first to introduce
the intuitionistic fuzzification of Algebraic structure and developed the concept of intuitionistic
fuzzy subgroup of a group in [5]. Later on many mathematicians worked on it and introduced
the notion of intuitionistic fuzzy subring, intuitionistic fuzzy submodule etc. (see [4, 8–15]). The
notion of intuitionistic fuzzy G-modules was introduced by the author et al. in [16]. Many prop-
erties like representation, reducibility, complete reducibility and injectivity of intuitionistic fuzzy
G-modules have been discussed in [17–24].

2 Preliminaries

In this section, we list some basic concepts and well known results onG-modules, exact sequence
of G-modules which are mainly taken from [6, 7]. The concepts about intuitionistic fuzzy set
theory and results about intuitionistic fuzzy G-modules are mainly taken from [3,4,14–16,18,19,
23].
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Let G be a group and M be a vector space over a field K. Then M is called a G-module if for
every g ∈ G and m ∈M, if there exists a product (called the action of G on M ), gm ∈M which
satisfies the following axioms

(i) 1G.m = m, ∀m ∈M ( 1G being the identity of G)

(ii) (g · h) ·m = g · (h ·m), ∀m ∈M, g, h ∈ G

(iii) g.(k1m1 + k2m2) = k1(g.m1) + k2(g.m2), ∀ k1, k2 ∈ K;m1,m2 ∈M and g ∈ G.

A subspace of M , which itself is a G-module with the same action is called G-submodule of
M . It can be seen that intersection of G-modules is again a G-submodule. A non-zero G-module
M is irreducible if the only G-submodules of M are {0} and M . Otherwise it is reducible. A
non-zero G-module M is completely reducible if for every G-submodule N of M , there exists a
G-submodule N∗ of M such that M = N ⊕ N∗. A G-module M is semi-simple if there exists
a family of irreducible G-submodules Mi such that M = ⊕ni=1Mi. It is evident that completely
reducible G-modules are semi-simple.

Definition 2.1. Let M and M∗ be G-modules. A mapping f : M → M∗ is a G-module homo-
morphism if

(i) f(k1m1 + k2m2) = k1f(m1) + k2f(m2)

(ii) f(gm) = gf(m), ∀ k1, k2 ∈ K;m,m1,m2 ∈M and g ∈ G.

Definition 2.2. Let f : M →M∗ is a G-module homomorphism. Then
ker f = {m ∈ M : f(m) = 0∗} is a G-submodule of M and Imf = {f(m) : m ∈ M} is a
G-submodule of M∗.

Proposition 2.3. If M is a G-module and N is a G-submodule of M , then M/N is a G-module
which is called Quotient G-modules.

Definition 2.4. A pair of module homomorphisms M
f−→ N

g−→ P is said to be exact at N if
Imf = ker g.

A sequence of module homomorphisms

. . .
fi−1−−→Mi−1

fi−→Mi
fi+1−−→Mi+1

fi+2−−→ . . .

is exact provided that Imfi = ker fi+1 for all indices i.

Remark 2.5. (i) For any module M , there are unique trivial module homomorphisms 0 →
M, 0 7→ 0, is a monomorphism and M → 0,m 7→ 0 is an epimorphism.

(ii) 0 −→M
f−→ N is exact if and only if ker f = 0, i.e., f is a monomorphism.

(iii) N
g−→ P −→ 0 is exact if and only if Img = P, i.e., g is a epimorphism.

(iv) If M
f−→ N

g−→ P is exact, then g ◦ f = 0.
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(v) An exact sequence 0 −→ M
f−→ N

g−→ P −→ 0 is called a short exact sequence, in which
M ∼= Imf = ker g,N/ ker g ∼= Img = P.

Whenever M ≤ N, there is a short exact sequence 0 −→M
i−→ N

π−→ N/M −→ 0.

(vi) A short exact sequence in (v) is said to be split if there exist homomorphisms
f̄ : N →M and ḡ : P → N such that f̄f = iM and gḡ = iP .

(vii) Let M ⊕N be the external direct sum of modules M and N . Then there exist the following
canonical embeddings

iM : M →M ⊕N given by m 7→ (m, 0)

iN : N →M ⊕N given by n 7→ (0, n)

and the canonical projections

πM : M ⊕N →M given by (m,n)→ m

πN : M ⊕N → N given by (m,n)→ n

Clearly, πM iM = IM (identity map on M ) and πN iN = IN (identity map on N ).
Therefore iMπM + iNπN = IM⊕N is the identity map on M ⊕N.

(viii) Consider an exact sequence of the form 0 −→M
iM−→M ⊕N πN−→ N −→ 0

where iM and πN are the canonical maps. Then following is commutative diagram 0 −→
M

iM−→ πM←−−M ⊕N πN−→ N/M −→ 0. i.e., πM iM = IM and πN iN = IN .

Then the above sequence split.

Theorem 2.6. (The Short Five Lemma) Let R be a ring and

0 M N P 0

0 M
′

N
′

P
′

0

f

ϕ

g

ψ ξ

f
′

g
′

a commutative diagram of R-module homomorphisms such that each row is a short exact se-
quence. Then

(i) ϕ and ξ are monomorphisms⇒ ψ is a monomorphism;

(ii) ϕ and ξ are epimorphisms⇒ ψ is a epimorphism;

(iii) ϕ and ξ are isomorphisms⇒ ψ is a isomorphism.

In such a case, the row short exact sequences are said to be isomorphic.

Theorem 2.7. Let R be a ring and 0 −→ M1
f−→ N

g−→ M2 −→ 0 a short exact sequence of
R-module homomorphisms. Then the following conditions are equivalent:
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(i) There is an R-module homomorphism h : M2 → N with gh = IM2 ;

(ii) There is an R-module homomorphism k : N →M1 with kf = IM1 ;

(iii) The given sequence is isomorphic to the direct sum short exact sequence

(iv) 0 −→M1
i−→M1⊕M2

π−→M2 −→ 0 ; in particular N ∼= M1⊕M2; such a sequence is called
a split exact sequence.

Definition 2.8. Let X be a non-empty set. An intuitionistic fuzzy set (IFS) A of X is an object of
the form A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where µA : X → [0, 1] and νA : X → [0, 1] define
the degree of membership and degree of non-membership of the element x ∈ X respectively and
for any x ∈ X, we have µA(x) + νA(x) ≤ 1.

Definition 2.9. Let A = {〈x, µA(x), νA(x)〉 : x ∈ X} and B = {〈x, µB(x), νB(x)〉 : x ∈ X} be
any two IFSs of X, then

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈ X

(ii) A = B if and only if µA(x) = µB(x) and νA(x) = νB(x) for all x ∈ X

(iii) Ac = {〈x, µAc(x), νAc(x)〉 : x ∈ X}, where µAc(x) = νA(x) and νAc(x) = µA(x) for all
x ∈ X

(iv) A ∩ B = {〈x, µA∩B(x), νA∩B(x)〉 : x ∈ X}, where µA∩B(x) = µA(x) ∧ µB(x) and
νA∩B(x) = νA(x) ∨ νB(x)

(v) A ∪ B = {〈x, µA∪B(x), νA∪B(x)〉 : x ∈ X}, where µA∪B(x) = µA(x) ∨ µB(x) and
νA∪B(x) = νA(x) ∧ νB(x).

Remark 2.10. For convenience, we write the IFS A = {〈x, µA(x), νA(x)〉 : x ∈ X} by A =

(µA, νA).

Definition 2.11. Let X and Y be two non-empty sets and f : X → Y be a mapping. Let A and
B be IFSs of X and Y , respectively. Then the image of A under the map f is denoted by f(A)

and is defined as f(A)(y) = (µf(A)(y), νf(A)(y)), where

µf(A)(y) =

∨{µA(x) : x ∈ f−1(y)}, if f−1(y) 6= �
0, otherwise

νf(A)(y) =

∧{νA(x) : x ∈ f−1(y)}, if f−1(y) 6= �
1, otherwise,

∀y ∈ Y.

Also the pre-image of B under f is denoted by f−1(B) and is defined as

f−1(B)(x) = {µf−1(B)(x), νf−1(B)(x)},

where, µf−1(B)(x) = µB(f(x)) and νf−1(B)(x) = νB(f(x)); ∀ x ∈ X.
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Remark 2.12. In general, µf(A)(f(x)) ≥ µA(x) and νf(A)(f(x)) ≤ νA(x) and equality hold if f
is one-one.

Definition 2.13. Let (X, .) be a groupoid and A,B be two IFSs of X . Then the intuitionistic
fuzzy sum of A and B is denoted by A+B and is defined as:
(A+B)(x) = (µA+B(x), νA+B(x)), where

µA+B(x) =

(∨x=a+b{µA(a) ∧ µB(b)},∧x=a+b{νA(a) ∨ νB(b)}, if x = a+ b

(0, 1), otherwise
; ∀x ∈ X.

Definition 2.14. For any IFS A = {〈x, µA(x), νA(x)〉 : x ∈ X} of set X . We denote the support
of the IFS set A by A∗ and is defined as

A∗ = {x ∈ X : µA(x) > 0 and νA(x) < 1}.

Proposition 2.15. Let f : X → Y be a mapping and A,B are IFS of X and Y , respectively.
Then the following result holds:

(i) f(A∗) ⊆ (f(A))∗ and equality hold when the map f is bijective

(ii) f−1(B∗) = (f−1(B))∗

Definition 2.16. Let G be a group and M be a G-module over K, which is a subfield of C. Then
an intuitionistic fuzzy G-module (IFGM) on M is an intuitionistic fuzzy set A = (µA, νA) of M
such that following conditions are satisfied:

(i) µA(ax + by) ≥ min{µA(x), µA(y)} and νA(ax + by) ≤ max{νA(x), νA(y)}, ∀a, b ∈ K
and x, y ∈M and

(ii) µA(gm) ≥ µA(m) and νA(gm) ≤ νA(m), ∀g ∈ G; m ∈M.

Definition 2.17. Let A ∈ GM (where GM denotes the intuitionistic fuzzy power set of G-module
M ). Then A is called an intuitionistic fuzzy submodule of G-module M , if it satisfies the follow-
ing:

(i) µA(0) = 1 and νA(0) = 0;

(ii) µA(gm) ≥ µA(m) and νA(gm) ≤ νA(m), ∀g ∈ G; m ∈M ;

(iii) µA(m1 + m2) ≥ min{µA(m1), µA(m2)} and νA(m1 + m2) ≤ max{νA(m1), νA(m2)},
m1,m2 ∈M.

We denote the set of all intuitionistic fuzzy submodules of G-module M by G(M).

Theorem 2.18. Let A ∈ G(M). Then A∗ is a G-submodule of M .

Theorem 2.19. For any A,B ∈ G(M), we have (A+B)∗ = A∗+B∗ and (A∩B)∗ = A∗ ∩B∗.
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Theorem 2.20. Let A ∈ G(M) and let N be a G-submodule of M . Define A|N ∈ GN (where GN

is the intuitionistic fuzzy power of G-module N ) as follows: µA|N (x) = µA(x) and νA|N (x) =

νA(x). Then A|N ∈ G(N).

Theorem 2.21. Let A ∈ G(M) and let N be a G-submodule of M . Define AN ∈ GM/N as
follows: µAN

(x + N) = ∨{µA(x + n) : n ∈ N} and νAN
(x + N) = ∧{νA(x + n) : n ∈ N},

∀x ∈M, where M/N denote the quotient module of M with respect to N . Then AN ∈ G(M/N).

Definition 2.22. Let A,B ∈ G(M) be such that A ⊆ B. Then B/A ∈ G(B∗/A∗) is called the
quotient of B with respect to A and is defined as

B/A(x+ A∗) = (µB/A(x+ A∗), νB/A(x+ A∗)),

where µB/A(x + A∗) = ∨{µB(x + y); y ∈ A∗} and νB/A(x + A∗) = ∧{νB(x + y); y ∈ A∗},
where x ∈ B∗.

Definition 2.23. We define two IFS Ω and Ω(M) of M as

Ω(x) =

(1, 0), if x = 0

(0, 1), if x 6= 0
; Ω(M) = (1, 0),∀x ∈M.

Then the IFS Ω and Ω(M) are IFSMs ofM which are actually equivalent of {0} andM in module
theory.

Lemma 2.24. For any IFS A = (µA, νA) of a module M , A∗ = {0} if and only if A = Ω.

Definition 2.25. If A,B ∈ G(M), then the sum A + B is called the direct sum of A and B if
A ∩B = Ω and we write it as A⊕B.

Theorem 2.26. Let A,B,C ∈ G(M) such that A = B ⊕ C, then A∗ = B∗ ⊕ C∗.

Definition 2.27. Let M and N be G-modules; A ∈ G(M), B ∈ G(N). Consider the direct sum
M ⊕N. We extend A and B on M ⊕N to A′ and B′ as follows

µA′ (m,n) =

µA(m), if n = 0

0, if n 6= 0
; νA′ (m,n) =

νA(m), if n = 0

1, if n 6= 0
; ∀(m,n) ∈M ⊕N

µB′ (m,n) =

µB(n), if m = 0

0, if m 6= 0
; νB′ (m,n) =

νB(n), if m = 0

1, if m 6= 0
; ∀(m,n) ∈M ⊕N.

Then A′ , B′ ∈ G(M ⊕N)

µA′∩B′ (m,n) =

1, if (m,n) = 0

0, if (m,n) 6= 0
; νA′∩B′ (m,n) =

0, if (m,n) = 0

1, if (m,n) 6= 0
; i.e., A

′ ∩B′ = Ω.

Therefore A′ +B
′ is infact a direct sum and we denote it by A⊕B.
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Remark 2.28. Note that

µA⊕B(m,n) = µA′∩B′ (m,n)

= ∨(m,n)=(m1,n1)+(m2,n2){µA′ (m1, n1) ∧ µB′ (m2, n2)},∀(m,n) ∈M ⊕N
= µA′ (m, 0) ∧ µB′ (m, 0)

= µA(m) ∧ µB(n).

Similarly νA⊕B(m,n) = νA(m) ∨ νB(n).

Definition 2.29. Let Ai ∈ G(M), i ∈ J , then we say that A is the direct sum {Ai : i ∈ J}
denoted by ⊕i∈JAi if

(i) A = Σi∈JAi

(ii) Aj ∩ Σi∈J\{j}Ai = Ω,∀j ∈ J.

Example 2.30. Let G = {1,−1},M = R2 = {(p, q) : p, q ∈ R} is a vector space over the field
R. Then M is a G-module. Define IFSs A = (µA, νA), B = (µB, νA), C = (µC , νC) of M by

µA(x) =


1, if x = (0, 0)

0.25, if x = (p, 0), p /∈ 0

0.25, if x = (p, q), q /∈ 0

; νA(x) =


1, if x = (0, 0)

0.5, if x = (p, 0), p /∈ 0

0.5, if x = (p, q), q /∈ 0;

µB(x) =


1, if x = (0, 0)

0.25, if x = (p, 0), p /∈ 0

0, if x = (p, q), q /∈ 0

; νB(x) =


0, if x = (0, 0)

0.5, if x = (p, 0), p /∈ 0

0, if x = (p, q), q /∈ 0;

µC(x) =


1, if x = (0, 0)

0.25, if x = (p, 0), p /∈ 0

0, if x = (p, q), q /∈ 0

; νC(x) =


0, if x = (0, 0)

0.5, if x = (0, q), q /∈ 0

1, if x = (p, q), p /∈ 0.

Then, A,B,C ∈ G(M) such that A = B ⊕ C.

Definition 2.31. Let A ∈ G(M). Then A is said to be a semi-simple G-module if whenever B
is strictly proper G-submodule of A (i.e., B ⊂ A), there exists a strictly proper G-submodule C
of A such that A = B ⊕ C. That is if B is a proper G-submodule of A such that B(x) = A(x)

∀x ∈ B∗ then there exists a proper G-submodule C of A satisfying C(x) = A(x) ∀ x ∈ C∗ such
that A = B ⊕ C.

Definition 2.32. Let M and M∗ be G-modules and let A,B be two intuitionistic fuzzy G-
submodules on M and M∗ respectively. Let f : M → M∗ be a G-module homomorphism.
Then f is called a weak intuitionistic fuzzy G-homomorphism of A onto B if f(A) ⊆ B. The
homomorphism f is an intuitionistic fuzzy G-homomorphism of A onto B if f(A) = B. We say
that A is an intuitionistic fuzzy G-homomorphic onto B and we write as A ≈ B.

Let f : M → M∗ be a G-module isomorphism. Then f is called a weak intuitionistic fuzzy
G-isomorphism if f(A) ⊆ B and f is an intuitionistic fuzzy G-isomorphism if f(A) = B and
we write it as A ∼= B.
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3 Exact sequence of intuitionistic fuzzy G-modules

From the theory of G-modules recall that a sequence of G-modules and G-module homomor-
phisms

. . .
fi−1−−→Mi−1

fi−→Mi
fi+1−−→Mi+1

fi+2−−→ . . . (3.1)

is said to be exact at Mi if Im(fi) = ker(fi+1); and the sequence is said to be exact if it is exact at
each Mi. In this section, we extend this notion to intuitionistic fuzzy G-modules and prove some
results.

Definition 3.1. LetMi, i ∈ Z beG-modules and letAi ∈ G(Mi), i ∈ Z. Suppose that (1) is exact
sequence of G-modules. Then the sequence

. . .
fi−1−−→ Ai−1

fi−→ Ai
fi+1−−→ Ai+1

fi+2−−→ . . . (3.2)

of intuitionistic fuzzy G-modules is said to be exact if, for all i ∈ Z,

(i) fi+1(Ai) ⊆ Ai+1 and

(ii) (fi(Ai−1))
∗ = ker(fi+1).

Theorem 3.2. Let A,B ∈ G(M) be such that A ⊕ B is a direct sum of intuitionistic fuzzy
submodules of G-module M so that A∗ ⊕ B∗ is a direct sum of G-modules. Then the sequence
0 −→ A

i−→ A⊕B π−→ B −→ 0 is exact, considering A ∈ G(A∗) and B ∈ G(B∗).

Proof. Note that the sequence 0 −→ A∗
i−→ A∗ ⊕ B∗

π−→ B∗ −→ 0 is an exact sequence of G-
modules where “i” and “π” are respectively the canonical injection and projection. We have to
prove that the sequence 0 −→ A

i−→ A⊕ B π−→ B −→ 0 is an exact sequence of intuitionistic fuzzy
G-modules.

Let x ∈ A∗ +B∗. Then i(A)(x) = (µi(A)(x), νi(A)(x)), where

µi(A)(x) =

∨{µA(t) : t ∈ A∗, i(t) = x}, if i−1(x) 6= �
0, otherwise

=

µA(x), if x ∈ A∗

0, if x /∈ A∗
and

νi(A)(x) =

∧{νA(t) : t ∈ A∗, i(t) = x}, if i−1(x) 6= �
1, otherwise

=

νA(x), if x ∈ A∗

1, if x /∈ A∗.

Thus, i(A) = A∀x ∈ A∗ (3.3)

Also, (A+B)(x) = (µA+B(x), νA+B(x)), where

µA+B(x) =

∨{µA(y) ∧ µB(z) : y, z ∈M, y + z = x}, if x = y + z

0, if x 6= y + z

=

µA(x), if x ∈ A∗

0, if x /∈ A∗
and
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νA+B(x) =

∧{νA(y) ∨ νB(z) : y, z ∈M, y + z = x}, if x = y + z

1, if x 6= y + z

=

νA(x), if x ∈ A∗

1, if x /∈ A∗.

[Note that A ⊕ B is a direct sum, so A ∩ B = Ω. If x = y + z with x ∈ A∗, then the only
possibility is x = x+ 0 or x = y + z; y, z ∈ A∗. But in the second case µB(z) = 0, νB(z) = 1].

Thus, A+B = A if x ∈ A∗ (3.4)

It follows from (3.3) and (3.4) that i(A) ⊆ A+B.

For x ∈ B∗, (π(A+B))(x) = (µπ(A+B)(x), νπ(A+B)(x)), where

µπ(A+B)(x) = ∨{µA+B(t) : t ∈ A∗ +B∗; π(t) = x}
= ∨{µA+B(r + x) : r ∈ A∗}[ Since π : A∗ +B∗ → B∗is the projection]

= ∨{µA(r) ∧ µB(x) : r ∈ A∗}
= µB(x).[ Since µA(r) = 1 with r = 0]

Similarly, we have νπ(A+B)(x) = νB(x). Hence π(A+B) = B.

Now by (1), we have

i(A)(x) =

(µA(x), νA(x)), if x ∈ A∗ = ker(π)

(0, 1), if x /∈ A∗ = ker(π).
i.e., (i(A))∗ = ker(π).

Therefore, 0 −→ A
i−→ A ⊕ B

π−→ B −→ 0 is an exact sequence of intuitionistic fuzzy G-
modules.

Remark 3.3. Note that in the above theorem, for convenience, we have denoted the intuitionistic
fuzzy G-module Ω ∈ G(M) by 0.

Also if 0 −→M
f−→ N is a sequence of G-modules and A ∈ G(M), B ∈ G(N), then it is easy

to see that 0 −→ A
f−→ B is an exact sequence of intuitionistic fuzzy G-modules if and only if f is

injective.

Definition 3.4. Let A,B ∈ G(M) be such that A ⊕ B is a direct sum of intuitionistic fuzzy
submodules of G-module M . Then the sequence 0 −→ A

i−→ A ⊕ B π−→ B −→ 0 of intuitionistic
fuzzy G-modules is called a split exact sequence of intuitionistic fuzzy G-modules.

Now we obtain a necessary condition for a given sequence A
f−→ B

g−→ C to be exact at B.

Theorem 3.5. LetM
f−→ N

g−→ P be a sequence ofG-modules exact at N and letA ∈ G(M), B ∈
G(N), C ∈ G(P ). Then the sequence A

f−→ B
g−→ C of intuitionistic fuzzy G-modules is exact at

B only ifA∗
f
′

−→ B∗
g
′

−→ C is a sequence ofG-modules exact atB∗, where f
′
and g

′
are restriction

of f and g to A∗ and B∗ respectively.
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Proof. Suppose that A
f−→ B

g−→ C is exact at B. Then by definition f(A) ⊆ B, g(B) ⊆ C and
(f(A))∗ = ker(g).

Now, consider the sequence A∗
f
′

−→ B∗
g
′

−→ C∗.
We claim that this sequence is exact at B∗.
For x ∈ (f(A))∗ :

⇔ µf(A)(x) > 0 and νf(A)(x) < 1

⇔ ∨{µA(t) : f(t) = x, t ∈M} > 0 and ∧{νA(t) : f(t) = x, t ∈M} < 1

⇔ ∃′s t1, t2 ∈M such that x = f(t1) = f(t2), µA(t1) > 0, νA(t2) < 1

(As µA(t1) + νA(t1) ≤ 1 always, so if µA(t1) > 0 then νA(t2) < 1)
⇔ ∃′s t1 ∈M such that x = f(t1), µA(t1) > 0 and νA(t1) < 1, i.e., t1 ∈ A∗

⇔ x = f(t1) ∈ f(A∗).

Thus, we get (f(A))∗ = f(A∗). Similarly, we get (g(A))∗ = g(A∗).

Therefore, f ′(A∗) = f(A∗) = (f(A))∗ ⊆ B∗ as f(A) ⊆ B.

Similarly, g′(B∗) = (g(B))∗ ⊆ C∗.

Now, Since (f(A))∗ = ker(g) it follows that f ′(A∗) = ker(g′).

Thus, the sequence A∗
f
′

−→ B∗
g
′

−→ C∗ is exact at B∗.
This completes the proof of the theorem.

Remark 3.6. The converse of the above theorem is not true. That is the sequenceA∗ −→ B∗ −→ C∗

is exact at B∗ does not implies that the sequence A
f−→ B

g−→ C is exact at B.

Example 3.7. Let M be a G-module, N and P are submodules of M such that N ⊕P is a direct
sum. Define A ∈ G(N), B ∈ G(P ) and C ∈ G(N ⊕ P ) as follows:

µA(x) =

1, if x = 0

0.8, if x ∈ N − {0}
; νA(x) =

0, if x = 0

0.1, if x ∈ N − {0}
;

µB(x) =

1, if x = 0

0.5, if x ∈ P − {0}
; νB(x) =

0, if x = 0

0.3, if x ∈ P − {0}
;

µC(x) =

1, if x = 0

0.3, if x ∈ N ⊕ P − {0}
; νC(x) =

0, if x = 0

0.5, if x ∈ N ⊕ P − {0}.

Clearly, A∗ = N,B∗ = P and C∗ = N ⊕ P. Obviously, N i−→ N ⊕ P π−→ P is exact at N ⊕ P.
That is A∗ i−→ C∗

π−→ B∗ is exact at C∗.
Now, µi(A)(x) = ∨{µA(t) : t ∈ N, i(t) = x} = µA(x)(with t = x ∈ N)

and νi(A)(x) = ∧{νA(t) : t ∈ N, i(t) = x} = νA(x)(with t = x ∈ N).

That is i(A) = A and clearly A 6⊂ B. Therefore, the sequence A i−→ C
π−→ B is not an exact

sequence of intuitionistic fuzzy G-modules.

Theorem 3.8. LetM
f−→ N

g−→ P be a sequence ofG-modules exact at N and letA ∈ G(M), B ∈
G(N) and C ∈ G(P ) be such that A

f−→ B
g−→ C is a sequence of intuitionistic fuzzy G-modules

exact at B. Then f(C(α,β)(A)) ⊆ ker(g) ∀α, β ∈ (0, 1) such that α + β ≤ 1.
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Proof. Since A
f−→ B

g−→ C is exact at B.
Therefore, f(A) ⊆ B, g(B) ⊆ C and (f(A))∗ = ker(g).

We know that f(C(α,β)(A)) ⊆ C(α,β)(f(A)) and g(C(α,β)(A)) ⊆ C(α,β)(g(A)).
Thus, if x ∈ f(C(α,β)(A)) be any element, then x ∈ C(α,β)(f(A))

⇒ µf(A)(x) ≥ α > 0 and νf(A)(x) ≤ β < 1 [∴ α, β ∈ (0,1)]
⇒ x ∈ (f(A))∗. But (f(A))∗ = ker(g). Therefore, x ∈ ker(g).

Hence f(C(α,β)(A)) ⊆ ker(g).

4 Isomorphism of short exact sequences
of intuitionistic fuzzy G-modules

Definition 4.1. Let 0 −→ M
f−→ N

g−→ P −→ 0 be a short exaxt sequence of G-modules. Let
A ∈ G(M), B ∈ G(N) and C ∈ G(P ). Then an exact sequence of intuitionistic fuzzy G-
modules of the form 0 −→ A

f−→ B
g−→ C −→ 0 is called a short exact sequence of intuitionistic

fuzzy G-modules.
Extending the concept of isomorphism between short exact sequences of G-modules in clas-

sical module theory to the intuitionistic fuzzy setting. We define isomophism and weak isomor-
phism between short exact sequences of intuitionistic fuzzyG-modules and obtain some sufficient
conditions under which the exact sequence 0 −→ A

i−→ A⊕ B π−→ B −→ 0 is weakly isomorphism
to the exact sequence 0 −→ C

f−→ D
g−→ E −→ 0. Also we get another set of sufficient conditions

under which the exact sequence 0 −→ C
f−→ D

g−→ E −→ 0 is weakly isomorphic to the exact
sequence 0 −→ A

i−→ A⊕B π−→ B −→ 0.

Recall that two short exact sequences of G-modules are said to be isomorphic if there is a
commutative diagram of G-modules homomorphism

0 M N P 0

0 M
′

N
′

P
′

0

f

ϕ

g

ψ ξ

f
′

g
′

such that ϕ, ψ, ξ are G-isomorphism.

Definition 4.2. Let

0 M N P 0

0 M
′

N
′

P
′

0

f

ϕ

g

ψ ξ

f
′

g
′
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0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0 (4.1)

and

0 −−−−→ A
′ f

′

−−−−→ B
′ g

′

−−−−→ C
′ −−−−→ 0 (4.2)

are two exact sequences of intuitionistic fuzzy G-modules. Then the sequence (4.1) is said to be
weakly isomorphic to the sequence (4.2) if ϕ(A) ⊆ A

′
, ψ(B) ⊆ B

′ and ξ(C) ⊆ C
′
. The sequence

(4.1) is said to be isomorphic to the sequence (4.2) if ϕ(A) = A
′
, ψ(B) = B

′ and ξ(C) = C
′
.

Related to (2.26) we have the following theorems in intuitionistic fuzzy module theory.

Theorem 4.3. Let 0 −→ M1
f−→ N

g−→ M2 −→ 0 be a short exact sequence of G-modules and let
A1 ∈ G(M1), A2 ∈ G(M2), B ∈ G(N) be such that 0 −→ A1

f−→ B
g−→ A2 −→ 0 is a short exact

sequence of intuitonistic fuzzy G-modules. If there is a G-module homomorphism h : M2 → N

with goh = IM2 such that h(A2) ⊆ B, then the short exact sequence 0 −→ A1
i−→ A1 ⊕ A2

π−→
A2 −→ 0 is weakly isomorphic to a given short sequence 0 −→ A1

f−→ B
g−→ A2 −→ 0. In particular

A1 ⊕ A2
∼= B.

Proof. We have by definition, f(A1) ⊆ B, g(B) ⊆ A2 and (f(A1))
∗ = ker(g).

Also it is given that h(A2) ⊆ B. Now consider the diagram

0 −−−−→M1
i−−−−→M1 ⊕M2

π−−−−→M2 −−−−→ 0

0 A1 A1 ⊕ A2 A2 0

0 A1 B A2 0

i

IM1

g

φ IM2

f g

0 −−−−→M1
f−−−−→ N

g−−−−→M2 −−−−→ 0

where φ : M1 ⊕ M2 → N is defined by φ(m1,m2) = f(m1) + h(m2). Then φ is a module
G-homomorphism. Moreover φ ◦ i = f ◦ IM1 and g ◦ φ = IM2 ◦ π.

Since IM1 and IM2 (identity maps) are isomorphisms φ is also an isomorphism (by short five
lemma of exact sequences of G-modules) and so N is isomorphic to M1 ⊕M2 and the sequences
0 −→ M1

i−→ M1 ⊕M2
π−→ M2 −→ 0 and 0 −→ M1

f−→ N
g−→ M2 −→ 0 are isomorphic short exact

sequences of G-modules.
Obviously IM1(A1) = A1, IM2(A2) = A2.

Now let x = φ(m
′
1,m

′
2) ∈ N be arbitrary, where m′1 ∈M1,m

′
2 ∈M2. Then we get

µφ(A1⊕A2)(x) = ∨{µA1⊕A2(t1, t2) : (t1, t2) ∈M1 ⊕M2;φ(t1, t2) = x}
= ∨{µA1(t1) ∧ µA2(t2) : t1 ∈M1, t2 ∈M2; f(t1) + h(t2) = φ(m

′

1,m
′

2)}
= ∨{µA1(t1) ∧ µA2(t2) : t1 ∈M1, t2 ∈M2; f(t1) + h(t2) = f(m

′

1) + h(m
′

2)}
= ∨{µA1(t1) ∧ µA2(t2) : t1 ∈M1, t2 ∈M2; f(t1) = f(m

′

1), h(t2) = h(m
′

2)}
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Thus,

µφ(A1⊕A2)(x) = ∨{µA1(t1)∧µA2(t2) : t1 ∈M1, t2 ∈M2; f(t1) = f(m
′

1), h(t2) = h(m
′

2)} (4.3)

[Since M1 ' φ(M1) = f(M1);M2 ' φ(M1) = f(M1), we get N ' M1 ⊕M2 ' f(M1) ⊕
h(M2)].

Since we have f(A1) ⊆ B and h(A2) ⊆ B it follows that
Since we have f(A1) ⊆ B and h(A2) ⊆ B it follows that

∨{µA1(t1) : t1 ∈M1; f(t1) = f(m
′

1)} ≤ µB(f(m
′

1)) (4.4)

and
∨{µA2(t2) : t2 ∈M2;h(t2) = h(m

′

2)} ≤ µB(h(m
′

2)) (4.5)

Since B is an intuitionistic fuzzy G-module, so from (4.4) and (4.5) we get we get
[∨{µA1(t1) : t1 ∈M1; f(t1) = f(m

′
1)}] ∧ [∨{µA2(t2) : t2 ∈M2;h(t2) = h(m

′
2)}]

≤ µB(f(m
′
1) + h(m

′
2)) = µB(φ(m

′
1,m

′
2)) = µB(x).

Using the complete distribuitity, we get ∨{µA1(t1) ∧ µA2(t2) : t1 ∈ M1, t2 ∈ M2; f(t1) =

f(m
′
1), h(t2) = h(m

′
1)} ≤ µB(x).

Therefore from (1), we get µφ(A1⊕A2)(x) ≤ µB(x) ∀x ∈ N.
Similarly, we can show that νφ(A1⊕A2)(x) ≥ νB(x) ∀x ∈ N. Hence φ(A1 ⊕ A2) ⊆ B.

Hence by definition, short exact sequence 0 −→ A1
i−→ A1 ⊕ A2

π−→ A2 −→ 0 is weakly isomorphic
(with identity map on A1 and A2) to the given short sequence 0 −→ A1

f−→ B
g−→ A2 −→ 0 and

hence A1 ⊕ A2
∼= B.

Theorem 4.4. Let 0 −→ M1
f−→ N

g−→ M2 −→ 0 be a short exact sequence of G-modules and let
A1 ∈ G(M1), A2 ∈ G(M2), B ∈ G(N) be such that 0 −→ A1

f−→ B
g−→ A2 −→ 0 is a short exact

sequence of intuitionistic fuzzy G-modules. If there is a G-module homomorphism k : M2 → N

with kof = IM1 such that k(B) ⊆ A1, then the short exact sequence 0 −→ A1
f−→ B

g−→ A2 −→ 0

is weakly isomorphic to the given short sequence 0 −→ A1
i−→ A1 ⊕ A2

π−→ A2 −→ 0. In particular
B ∼= A1 ⊕ A2.

Proof. We have f(A1) ⊆ B, g(B) ⊆ A2 and k(B) ⊆ A1 and we have the diagram

0 −−−−→M1
f−−−−→ N

g
−−−−→M2 −−−−→ 0

0 A1 B A2 0

0 A1 A1 ⊕ A2 A2 0

i

IM1

π

ψ IM2

f g

0 −−−→M1
i−−−→M1 ⊕M2

π−−−→M2 −−−→ 0

where ψ : N →M1 ⊕M2 is defined by ψ(n) = (k(n), g(n)).

Then ψ is a G-module homomorphism. Moreover ioIM1 = ψof and πoψ = IM2og.
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Since IM1 and IM2 (identity maps) are isomorphisms ψ is also an isomorphism ( by short five
lemma for exact sequences of G-modules) and so N is isomorphic to M1⊕M2 and the sequences
0 −→ M1

f−→ N
g−→ M2 −→ 0 and 0 −→ M1

i−→ M1 ⊕M2
π−→ M2 −→ 0 are isomorphic short exact

sequences of G-modules.
Obviously IM1(A1) = A1, IM2(A2) = A2.

Now, for (m1,m2) ∈M1 ⊕M2, we get

µψ(B)(m1,m2) = ∨{µB(n) : n ∈ N ; k(n) = m1andg(n) = m2} (4.6)

Also, since k(B) ⊆ A1 and g(B) ⊆ A2, we get

∨{µB(n) : n ∈ N ; k(n) = m1} ≤ µA1(m1) (4.7)

∨{µB(n) : n ∈ N ; g(n) = m2} ≤ µA1(m2) (4.8)

From (4.7) and (4.8) we deduce that

∨{µB(n) : n ∈ N ; k(n) = m1andg(n) = m2} ≤ µA1(m1) ∧ µA1(m2) (4.9)

Similarly we can show that

∧{νB(n) : n ∈ N ; k(n) = m1andg(n) = m2} ≥ νA1(m1) ∨ νA1(m2) (4.10)

Also we get
µA1⊕A2(m1,m2) = ∨{µA1(x1, x2) ∧ µA2(y1, y2) : (x1, x2), (y1, y2) ∈
M1 ⊕M2; (x1, x2) + (y1, y2) = (m1,m2)}
= µA1(m1) ∧ µA1(m2).

Thus,
µA1⊕A2(m1,m2) = µA1(m1) ∧ µA1(m2). (4.11)

Similarly, we have

µA1⊕A2(m1,m2) = νA1(m1) ∨ νA1(m2) (4.12)

Now, from (4.9), (4.10), (4.11) and (4.12) we see that ψ(B) ⊆ A1 ⊕ A2.

Thus the given short exact sequence 0 −→ A1
f−→ B

g−→ A2 −→ 0 is weakly isomorphic (with
identity map on A1 and A2) to the short exact sequence

0 −→ A1
i−→ A1 ⊕ A2

π−→ A2 −→ 0.

In particular B ∼= A1 ⊕ A2. This proves the theorem.

5 Semi-simple and split exact sequence
of intuitionistic fuzzy G-modules

In this section we establish a relation between semi-simple intuitionistic fuzzy G-modules and
split exact sequence of intuitionistic fuzzy G-modules.
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Theorem 5.1. Let M and N be two G-modules and let A ∈ G(M), B ∈ G(N) where A∗ = M.

Then the sequence 0 −→ A
i−→ A ⊕ B

π−→ B −→ 0 is an exact sequence of intuitionistic fuzzy
G-modules.

Proof. We have to prove that 0 −→ A
i−→ A⊕B π−→ B −→ 0 is exact.

Let (m,n) ∈M ⊕N. Then

µi(A)(m,n) = ∨{µA(t) : t ∈M, i(t) = (m,n)} =

µA(m), if n = 0

0, if n 6= 0
(5.1)

and

νi(A)(m,n) = ∧{νA(t) : t ∈M, i(t) = (m,n)} =

νA(m), if n = 0

0, if n 6= 0.
(5.2)

Also,
µA+B(m,n) = µA(m) ∧ µB(n) = µA(m)ifn = 0 (5.3)

and
νA+B(m,n) = νA(m) ∨ νB(n) = νA(m)ifn = 0 (5.4)

From (5.1), (5.2), (5.3) and (5.4) we get
i(A)(m,n) ⊆ (A+B)(m,n) ∀(m,n) ∈M ⊕N.
Therefore,

i(A) ⊆ (A+B) (5.5)

For x ∈ N we have

µπ(A+B)(x) = ∨{µA+B(m,n) : (m,n) ∈M ⊕N ; π(m,n) = x}
= ∨{µA+B(m,x) : x ∈ N}[ Since π : M ⊕N 99K N is a projection ]

= ∨{µA(m) ∧ µB(x) : x ∈ N}
= µB(x).[ Since µA(m) = 1 with m = 0]

Similarly we can get νπ(A+B)(x) = νB(x).

Thus, π(A+B)(x) = B(x) ∀x ∈ N.
Hence

π(A+B) = B. (5.6)

Now, since A∗ = M, it follows from (5.1) and (5.2) that
µi(A)(m,n) > 0 and νi(A)(m,n) < 1 if n = 0 i.e., if (m,n) ∈ kerπ and
µi(A)(m,n) = 0 and νi(A)(m,n) = 1 if n /∈ 0 i.e, if (m,n) /∈ kerπ.

i.e.,
(i(A))∗ = ker π. (5.7)

From (5.5), (5.6) and (5.7) we see that the sequence 0 −→ A
i−→ A ⊕ B π−→ B −→ 0 is an exact

sequence intuitionistic fuzzy G-modules.

80



Definition 5.2. Let M and N be two left G-modules; let C ∈ G(M), B ∈ G(N) and A ∈
G(M ⊕N). Then a short exact sequence of intuitionistic fuzzy G-modules of the form

0 −−−−→M
i−−−−→M ⊕N π−−−−→ N −−−−→ 0

and 0 −−−−→ C −−−−→ A −−−−→ B −−−−→ 0

is said to be a short exact sequence if A = C ⊕B.

Definition 5.3. Let M, N and P be left G-modules and let C ∈ G(M), A ∈ G(N), C ∈ G(P ).

Then a short exact sequnce of G-modules of the form

0 −−−−→M
f−−−−→ N

g−−−−→ P −−−−→ 0

and 0 −−−−→ C −−−−→ A −−−−→ B −−−−→ 0

is said to be a split exact sequence if N = M ⊕ P and A = C ⊕ B so that the given sequence is
isomorphic to the short exact sequence

0 −−−−→M
i−−−−→M ⊕ P π−−−−→ N −−−−→ 0

and 0 −−−−→ C −−−−→ C ⊕B −−−−→ B −−−−→ 0

Theorem 5.4. All short exact sequences of G-modules are split if and only if G-modules are
semi-simple.

Proof. Assume that all short exact sequences of G-modules are split exact sequences. Let M be
a semi-simple G-module and let A ∈ G(M). Then we show that A is semi-simple. That is to
show that if C ∈ G(M) is given then C ⊆ A,C 6= Ω, C(x) = A(x) ∀x ∈ C∗, C∗ ⊆ A∗, then
there exists a B ∈ G(M) such that B ⊆ A,B 6= Ω, B(x) = A(x) ∀x ∈ B∗, B∗ ⊆ A∗ satisfying
A = C ⊕B.
Since C∗ ⊆ A∗ we have the short exact sequence of sequence of G-modules

0 −−−−→ C∗
i−−−−→ A∗

π−−−−→ A∗/C∗ −−−−→ 0

We consider the intuitionistic fuzzy G-modules C ∈ G(C∗), A ∈ G(A∗) and A/C ∈ G(A∗/C∗).

We claim that the sequence

0 −−−−→ C∗
i−−−−→ A∗

π−−−−→ A∗/C∗ −−−−→ 0

and 0 −−−−→ C −−−−→ A −−−−→ A/C −−−−→ 0

of intuitionistic fuzzy G-modules is exact. For:
(i)

µi(C)(x) = ∨{µC(t) : t ∈ C∗, i(t) = x}

=

µC(x), if x ∈ C∗

0, if x /∈ C∗.
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Similarly,

νi(C)(x) = ∧{νC(t) : t ∈ C∗, i(t) = x}

=

νC(x), if x ∈ C∗

1, if x /∈ C∗.

Since C ⊆ A we get i(C) ⊆ A.

(ii)

µπ(A)(x+ C∗) = ∨{µA(t) : t ∈ A∗; π(0) = x+ C∗}
= ∨{µA(t) : t ∈ A∗; t+ C∗ = x+ C∗}
= ∨{µA(t) : t ∈ A∗; t ∈ x+ C∗}
= µA/C(x+ C∗).

Similarly, we can show that νπ(A)(x+ C∗) = νA/C(x+ C∗).

Thus (π(A))(x+ C∗) = A/C(x+ C∗) and so π(A) = A/C.

and (iii) since

µi(C)(x) =

µc(x), if x ∈ C∗

0, if x ∈ C∗
; νi(C)(x) =

νc(x), if x ∈ C∗

1, if x ∈ C∗.

we see that
µi(C)(x) > 0 and νi(C)(x) < 1 if x ∈ kerπ. Also µi(C)(x) = 0 and νi(C)(x) = 1 if x /∈ kerπ.

Since all exact sequence of intuitionistic fuzzy G-modules are split exact sequences we get
A∗ = C∗ ⊕ A∗/C∗ and A = C ⊕ A/C where C ∈ G(C∗) and A/C ∈ G(A∗/C∗).

Now A∗/C∗ can be considered as a submodule N of A∗ and hence of M and A/C can be consid-
ered as an intuitionistic fuzzy G-module of M.
Also we note that

(A/C)∗ = {x+ C∗ ∈ A∗/C∗ : µA/C(x+ C∗) > 0 and νA/C(x+ C∗) < 1}
= {x+ C∗ ∈ A∗/C∗ : ∨{µA(t) : t ∈ x+ C∗} > 0 and ∧ {νA(t) : t ∈ x+ C∗} < 1}
= {x+ C∗ ∈ A∗/C∗ : ∃t ∈ x+ C∗ with µA(t) > 0 and νA(t) < 1}
= A∗/C∗.

Thus A∗ = C∗ ⊕ N where A∗, C∗ and N are all submodules of M and since A = C ⊕ A/C it
follows that A/C(x) = A(x) ∀x ∈ N ⇒ A∗/C∗ = (A/C)∗.

Thus there exists a strictly proper intuitionistic fuzzy G-module A/C of A such that A/C(x) =

A(x) ∀x ∈ (A/C)∗ and A = C ⊕ A/C.
Therefore A is semi simple.
Conversely suppose that all G-modules are semi-simple.
Consider the short exact sequence of modules

0 −−−−→M
f−−−−→ N

g−−−−→ P −−−−→ 0

0 −−−−→ C∗
f |C∗−−−−→ A∗

g|A∗−−−−→ B∗ −−−−→ 0

0 −−−−→ C −−−−→ A −−−−→ B −−−−→ 0
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To show that this sequence splits. For this it is enough to show that exact sequence 0 −→M
f−→

N
g−→ P −→ 0 is isomorphic to 0 −→M

i−→M ⊕ P g−→ P −→ 0.

So we consider the sequence

0 −−−−→M
i−−−−→M ⊕ P g−−−−→ P −−−−→ 0

0 −−−−→ C∗
f |C∗−−−−→ A∗

π|A∗−−−−→ B∗ −−−−→ 0

0 −−−−→ C −−−−→ A −−−−→ B −−−−→ 0

Obviously C = i(C) ⊆ A. Therefore since A is semi simple A = C ⊕ D for some strictly
proper G-submodule D of A. Since A∗ = C∗ ⊕ D∗. Also since a submodule of a semi simple
G-module is semi-simple we see that A∗ is semi simple and so we get A∗ = C∗ ⊕ B∗. Hence
D∗ ∼= A∗/C∗ ∼= B∗. So D can be considered as G-submodule of P and we can define D to be B
so that A = C ⊕B. This completes the proof of the theorem.

6 Conclusions

The main focus of this article is to introduce the concept of exact sequence of G-modules by
intuitonistic fuzzification the concept in crisp theory. We established a relation between semi-
simpleG-modules and split exact sequences ofG-modules. This is useful in the study of injective
and projective intuitionistic fuzzy G-modules in terms of exact sequences.
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