Notes on Intuitionistic Fuzzy Sets Print ISSN 1310-4926, Online ISSN 2367-8283 Vol. 22, 2016, No. 1, 7-12

On intuitionistic fuzzy norms and distances generated by the intuitionistic fuzzy subtractions

 $-'_{11}$ and $-''_{11}$

Diana Tisheva¹, Beloslav Riečan² and Krassimir Atanassov³

¹ Faculty of Economics and Business Administration Sofia University "St. Kliment Ohridski", Bulgaria e-mail: dianaht@feb.uni-sofia.bg

² Department of Mathematics, Faculty of Natural Sciences, Matej Bel University Tajovského 40, 974 01 Banská Bystrica, Slovakia Mathematical Institute of Slovak Acad. of Sciences Štefánikova 49, SK–81473 Bratislava, Slovakia

e-mails: riecan@mat.savba.sk, riecan@fpv.umb.sk

³ Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering **Bulgarian Academy of Sciences** Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria **Intelligent Systems Laboratory** Prof. Asen Zlatarov University, Bourgas-8000, Bulgaria e-mail: krat@bas.bg

Received: 11 October 2011 Revised: 15 December 2015 Accepted: 17 March 2016

Abstract: Two of the interesting intuitionistic fuzzy subtractions are $-'_{11}$ and $-''_{11}$. They are used for introduction of 5 new intuitionistic fuzzy norms and 10 new intuitionistic fuzzy distances. For them it is proved that they are intuitionistic fuzzy pairs.

Keywords: Intuitionistic fuzzy distance, Intuitionistic fuzzy norm, Intuitionistic fuzzy subtrac-

AMS Classification: 03E72.

1 On intuitionistic fuzzy subtractions $-'_{11}$ and $-''_{11}$

Different versions of operations "implication", "negation" and "subtraction" were introduced over the Intuitionistic fuzzy sets (IFS, see [3]). Here, following [3,5], we will give the definitions of two of the "subtraction" operations: $-\frac{1}{11}$ and $-\frac{11}{11}$.

First, we shall give some definitions.

In the definitions we shall use functions sg and \overline{sg} :

$$\operatorname{sg}(x) = \left\{ \begin{array}{ll} 1 & \text{if } x > 0 \\ \\ 0 & \text{if } x \le 0 \end{array} \right.,$$

$$\overline{sg}(x) = \begin{cases} 0 & \text{if } x > 0 \\ 1 & \text{if } x \le 0 \end{cases}$$

Let the IFSs

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \}$$

and

$$B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle | x \in E \}$$

be given (for the description of their components see [1,3]). Then

$$A \cap B = \{ \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle | x \in E \}.$$

The negation \neg_{11} , that generates the definitions of "subtraction" operations $-'_{11}$ and $-''_{11}$ has the form (see, e.g., [3,4]):

$$\neg_{11}A = \{ \langle x, \operatorname{sg}(\nu_A(x)), \overline{\operatorname{sg}}(\nu_A(x)) \rangle | x \in E \},$$

The definitions of operation "subtraction" use the well-known formula from set theory:

$$A - B = A \cap \neg B$$
.

In the IFS-case, we also can define the operation "subtraction" by:

$$A -_i' B = A \cap \neg_i B, \tag{1}$$

where \neg_i is one of the IF-negations, but, as we discussed in [2], the Law for Excluded Middle is not always valid in IFS theory. By this reason, we can introduce a new series of "subtraction" operations, that have the form:

$$A -_i'' B = \neg_i \neg_i A \cap \neg_i B, \tag{2}$$

where i = 1, 2, ..., 34.

In [3,5], the properties of negation \neg_{11} and both IF-subtractions generated by it are studied. Below, we will make the subsequent step of our research.

2 Norms and distances, generated by operation $-'_{11}$

Using (1) and (2), we obtain the following forms of "subtraction" operations:

$$A -_{11}' B = \{ \langle x, \min(\mu_A(x), \operatorname{sg}(\nu_B(x))), \max(\nu_A(x), \overline{\operatorname{sg}}(\nu_B(x))) \rangle | x \in E \}$$

and

$$A -_{11}'' B = \{\langle x, \min(\overline{sg}(\nu_A(x)), sg(\nu_B(x))), \max(sg(\nu_A(x)), \overline{sg}(\nu_B(x)))\rangle | x \in E\}.$$

Now, following [3], two norms of element $x \in E$ will be defined about set $A \subseteq E$ by:

$$||x||'_{11} = \langle \min(\mu_A(x), \operatorname{sg}(\nu_A(x))), \max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(x))) \rangle$$

and

$$||x||_{11}'' = \langle \min(\overline{sg}(\nu_A(x)), sg(\nu_A(x))), \max(sg(\nu_A(x)), \overline{sg}(\nu_A(x))) \rangle.$$

We must check that both pairs are intuitionistic fuzzy pairs, i.e., the sum of their components is smaller or equal to 1.

Really, for a given IFS A and for each $x \in E$ we obtain that if $\nu_A(x) = 0$, then

$$\min(\mu_A(x), \operatorname{sg}(\nu_A(x))) + \max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(x)))$$
$$= \min(\mu_A(x), 0) + \max(\nu_A(x), 1) = 1$$

and

$$\min(\overline{sg}(\nu_A(x)), sg(\nu_A(x))) + \max(sg(\nu_A(x)), \overline{sg}(\nu_A(x)))$$
$$= \min(\overline{sg}(\nu_A(x)), 0) + \max(sg(\nu_A(x)), 1) = 1;$$

if $\nu_A(x) > 0$, then

$$\min(\mu_A(x), sg(\nu_B(x))) + \max(\nu_A(x), \overline{sg}(\nu_B(x)))$$

$$= \min(\mu_A(x), 1) + \max(\nu_A(x), 0) = \mu_A(x) + \nu_A(x) \le 1$$

and

$$\min(\overline{sg}(\nu_A(x)), sg(\nu_A(x))) + \max(sg(\nu_A(x)), \overline{sg}(\nu_A(x)))$$

$$= \min(\overline{sg}(\nu_A(x)), 1) + \max(sg(\nu_A(x)), 0)$$

$$= \overline{sg}(\nu_A(x)) + sg(\nu_A(x)) = 1.$$

On the other hand, we see that

$$||x||_{11}'' = \langle 0, 1 \rangle,$$

i.e., this norm is not interesting. By this reason, we will discuss only the first one.

All norms, defined over IFSs up to now, excluding these from [3], are real numbers, and eventually, belong to the interval [0, 1].

Let
$$e^*, o^*, u^* \in E$$
, so that

$$\mu_A(e^*) = 1, \ \nu_A(e^*) = 0,$$

$$\mu_A(o^*) = 0, \ \nu_A(o^*) = 1,$$

$$\mu_A(u^*) = 0, \ \nu_A(u^*) = 0.$$

Then,

$$||e^*||'_{11} = ||o^*||'_{11} = ||u^*||'_{11} = \langle 0, 1 \rangle.$$

Now, similarly to [3], we will introduce the following five distances between the values of two elements $x, y \in E$ about the IFS A, by analogy with the first norm:

$$d'_{11,str.opt}(A)(x,y) = \langle \min(\mu_A(x), \operatorname{sg}(\nu_A(y))) + \min(\mu_A(y), \operatorname{sg}(\nu_A(x))) \rangle$$

$$- \min(\mu_A(x), \operatorname{sg}(\nu_A(y))) \cdot \min(\mu_A(y), \operatorname{sg}(\nu_A(x))),$$

$$\max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(y))) \cdot \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x))) \rangle,$$

$$d'_{11,opt}(A)(x,y) = \langle \max(\min(\mu_A(x), \operatorname{sg}(\nu_A(y))), \min(\mu_A(y), \operatorname{sg}(\nu_A(x)))) \rangle,$$

$$\min(\max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(y))), \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))) \rangle,$$

$$d'_{11,aver}(A)(x,y) = \langle \frac{\min(\mu_A(x), \operatorname{sg}(\nu_A(y))) + \min(\mu_A(y), \operatorname{sg}(\nu_A(x)))}{2} \rangle,$$

$$d'_{11,aver}(A)(x,y) = \langle \min(\mu_A(x), \operatorname{sg}(\nu_A(y)), \mu_A(y), \overline{\operatorname{sg}}(\nu_A(x))) \rangle,$$

$$d'_{11,pes}(A)(x,y) = \langle \min(\mu_A(x), \operatorname{sg}(\nu_A(y)), \mu_A(y), \operatorname{sg}(\nu_A(x))) \rangle,$$

$$\max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(y)), \nu_A(y), \overline{\operatorname{sg}}(\nu_A(x))) \rangle,$$

$$d'_{11,str.pes}(A)(x,y) = \langle \min(\mu_A(x), \operatorname{sg}(\nu_A(y)), \min(\mu_A(y), \operatorname{sg}(\nu_A(x))),$$

$$\max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(y))) + \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))$$

$$- \max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(y))) \cdot \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x))) \rangle.$$

Theorem 1. The five distances are intuitionistic fuzzy pairs.

Proof: We will check the fifth case. Let

$$X \equiv \min(\mu_A(x), \operatorname{sg}(\nu_A(y))) \cdot \min(\mu_A(y), \operatorname{sg}(\nu_A(x)))$$
$$+ \max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(y))) + \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))$$
$$- \max(\nu_A(x), \overline{\operatorname{sg}}(\nu_A(y))) \cdot \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x))).$$

If $\nu_A(y) = 0$. Then,

$$X = \min(\mu_A(x), 0) \cdot \min(\mu_A(y), \operatorname{sg}(\nu_A(x)))$$

$$+ \max(\nu_A(x), 1) + \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))$$

$$- \max(\nu_A(x), 1) \cdot \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))$$

$$= 0 + 1 + \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x))) - \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x))) = 1.$$

If $\nu_A(y) > 0$. Then,

$$X = \min(\mu_A(x), 1) \cdot \min(\mu_A(y), \operatorname{sg}(\nu_A(x)))$$

$$+ \max(\nu_A(x), 0) + \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))$$

$$- \max(\nu_A(x), 0) \cdot \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))$$

$$= \mu_A(x) \cdot \min(\mu_A(y), \operatorname{sg}(\nu_A(x)))$$

$$+ \nu_A(x) + \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x)))$$

$$- \nu_A(x) \cdot \max(\nu_A(y), \overline{\operatorname{sg}}(\nu_A(x))).$$

If $\nu_A(x) = 0$. Then,

$$X = \mu_A(x) \cdot \min(\mu_A(y), 0) + \nu_A(x) + \max(\nu_A(y), 1) - \nu_A(x) \cdot \max(\nu_A(y), 1)$$
$$= 0 + 0 + 1 - 0 = 1.$$

If $\nu_A(x) > 0$. Then,

$$X = \mu_A(x) \cdot \min(\mu_A(y), 1) + \nu_A(x) + \max(\nu_A(y), 0) - \nu_A(x) \cdot \max(\nu_A(y), 0)$$
$$= \mu_A(x) \cdot \mu_A(y) + \nu_A(x) + \nu_A(y) - \nu_A(x) \cdot \nu_A(y)$$
$$\leq (1 - \nu_A(x)) \cdot (1 - \nu_A(y)) + \nu_A(x) + \nu_A(y) - \nu_A(x) \cdot \nu_A(y) = 1.$$

Therefore, $d'_{11,str_pes}(A)(x,y)$ is an intuitionistic fuzzy pair.

Now, we must mention the validity of the following equalities:

$$\begin{split} d'_{11,str_opt}(A)(e^*,o^*) &= \langle 1,0 \rangle, \\ d'_{11,str_opt}(A)(e^*,u^*) &= \langle 0,1 \rangle, \\ d'_{11,str_opt}(A)(o^*,u^*) &= \langle 0,0 \rangle, \\ d'_{11,opt}(A)(e^*,o^*) &= \langle 1,0 \rangle, \\ d'_{11,opt}(A)(e^*,u^*) &= \langle 0,1 \rangle, \\ d'_{11,opt}(A)(o^*,u^*) &= \langle 0,0 \rangle, \\ d'_{11,opt}(A)(e^*,o^*) &= \langle \frac{1}{2},\frac{1}{2} \rangle, \\ d'_{11,aver}(A)(e^*,o^*) &= \langle 0,1 \rangle, \\ d'_{11,aver}(A)(o^*,u^*) &= \langle 0,1 \rangle, \\ d'_{11,pes}(A)(e^*,o^*) &= \langle 0,1 \rangle, \\ d'_{11,pes}(A)(o^*,u^*) &= \langle 0,1 \rangle, \\ d'_{11,pes}(A)(e^*,o^*) &= \langle 0,1 \rangle, \\ d'_{11,str_pes}(A)(e^*,o^*) &= \langle 0,1 \rangle, \\ d'_{11,str_pes}(A)(e^*,o^*) &= \langle 0,1 \rangle, \\ d'_{11,str_pes}(A)(e^*,o^*) &= \langle 0,1 \rangle, \end{split}$$

$$d'_{11,str.pes}(A)(e^*, u^*) = \langle 0, 1 \rangle, d'_{11,str.pes}(A)(o^*, u^*) = \langle 0, 1 \rangle.$$

Finally, similarly to [3], we will introduce the following five distances between the values of element $x \in E$ about two IFSs A and B, by analogy with the first norm:

$$d'_{11,str_opt}(A,B)(x) = \langle \min(\mu_A(x),\operatorname{sg}(\nu_B(x))) + \min(\mu_B(x),\operatorname{sg}(\nu_A(x))) \\ - \min(\mu_A(x),\operatorname{sg}(\nu_B(x))). \min(\mu_B(x),\operatorname{sg}(\nu_A(x))), \\ \max(\nu_A(x),\overline{\operatorname{sg}}(\nu_B(x))). \max(\nu_B(x),\overline{\operatorname{sg}}(\nu_A(x))) \rangle, \\ d'_{11,opt}(A,B)(x) = \langle \max(\min(\mu_A(x),\operatorname{sg}(\nu_B(x))), \min(\mu_B(x),\operatorname{sg}(\nu_A(x)))) \rangle, \\ \min(\max(\nu_A(x),\overline{\operatorname{sg}}(\nu_B(x))), \max(\nu_B(x),\overline{\operatorname{sg}}(\nu_A(x)))) \rangle, \\ d'_{11,aver}(A,B)(x) = \langle \frac{\min(\mu_A(x),\operatorname{sg}(\nu_B(x))) + \min(\mu_B(x),\operatorname{sg}(\nu_A(x)))}{2} \rangle, \\ d'_{11,aver}(A,B)(x) = \langle \min(\mu_A(x),\operatorname{sg}(\nu_B(x))) + \max(\nu_B(x),\overline{\operatorname{sg}}(\nu_A(x))) \rangle, \\ d'_{11,pes}(A,B)(x) = \langle \min(\mu_A(x),\operatorname{sg}(\nu_B(x)), \mu_B(x),\operatorname{sg}(\nu_A(x))) \rangle, \\ \max(\nu_A(x),\overline{\operatorname{sg}}(\nu_B(x)), \nu_B(x),\overline{\operatorname{sg}}(\nu_A(x))) \rangle, \\ d'_{11,str_pes}(A,B)(x) = \langle \min(\mu_A(x),\operatorname{sg}(\nu_B(x)), \min(\mu_B(x),\operatorname{sg}(\nu_A(x))) \rangle, \\ \max(\nu_A(x),\overline{\operatorname{sg}}(\nu_B(x))) + \max(\nu_B(x),\overline{\operatorname{sg}}(\nu_A(x))) \rangle, \\ \max(\nu_A(x),\overline{\operatorname{sg}}(\nu_B(x))) + \max(\nu_B(x),\overline{\operatorname{sg}}(\nu_A(x))) \rangle. \\$$

Theorem 2. The five last distances are intuitionistic fuzzy pairs.

3 Conclusion

In a next authors' research, some applications of the new norm and distances in the area of data bases will be discussed.

References

- [1] Atanassov, K. (1999) *Intuitionistic Fuzzy Sets*. Springer, Heidelberg.
- [2] Atanassov, K. (2006) On intuitionistic fuzzy negations and De Morgan Laws. In: *Proc. of Eleventh International Conf. IPMU*, Paris, July 2–7, 2006, 2399–2404.
- [3] Atanassov K. (2012) On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
- [4] Atanassov K. & Dimitrov, D. (2008) On the negations over intuitionistic fuzzy sets. Part 1. *Annual of "Informatics" Section Union of Scientists in Bulgaria*, 1, 49–58.
- [5] Riečan, B., Boyadzhieva, D. & Atanassov, K. (2009) On intuitionistic fuzzy subtraction related to intuitionistic fuzzy negation \neg_{11} . *Notes on Intuitionistic Fuzzy Sets*, 15(4), 9–14.