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Abstract: Since the introduction of the basic model of FCM in 1986 by B. Kosko numerous
extensions of FCMs have been developed and tested in various domains of application. Although
in the years after 2000 (the period 2001-2012) there is a considerable increase in the number
of published research papers on FCMs and the underlying theoretical foundations, only a few
formal definitions of the extended models were given. In this work, a new formal definition of
Intuitionistic fuzzy cognitive map (IFCM) is proposed combining the model of directed graph
and the notion of Intuitionistic fuzzy index matrix.
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1 Introduction

When building different mathematical models of real-world systems scientists and engineers have
always to analyze ill-structured and/or weakly-formalized problems. The concept of ill-structured
problem (situation) was introduced by H. Simon [14]. It means that the building elements of
the system in interest as well as their interrelationships have both quantitative and qualitative
nature. In order to cope with this duality the modern decision theory and system analysis utilize
various methods of mathematics, cognitive sciences, behavioral sciences, sociology, economics
and informatics.

2 Cognitive mapping approach, generic model
and extensions

Several new modeling technologies have been proposed in the second half of the past century
with the aim to overcome some inherent difficulties of the ill-structured problems. One of the
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most promising approaches to the analysis and modeling of such problems or systems is based on
the notion of cognitive map (CM), and is named cognitive mapping approach to decision making
[5]. After the studies conducted by R. Axelrod (1976) in the early 70s cognitive maps (CMs)
were introduced as a mathematical and graphical representation of a persons system of beliefs.
CMs, also called causal maps, are built up of only two fundamental elements, i.e. concepts (or
factors) that represent the variables in the analyzed system and causal beliefs (or relationships)
that determine the causal relations among those variables. In general case, each factor represents
a variable that characterizes the analyzed system, e.g. factors usually stand for parameters, at-
tributes, states, events, actions, values, goals, trends, components, resources etc. The factors that
determine a change are named cause factors, while those that undergo the change are effect fac-
tors. The causal relationships between the factors may be positive or negative. To depict these
interrelations a signed digraph G(V,E) with vertex set V (nodes of the graph) and arc set E
(edges of the graph) was proposed as underlying mathematical model of CMs. The nodes of the
signed digraph correspond to the factors that characterize a system or a situation and the edges
define causal relationships existing between the factors.

The application of CMs to real-life systems revealed some limitations, e.g. they do not allow
the use of fuzzy nodes, fuzzy arcs, or rules, neither they permit feedback, i.e. the arcs could not
form closed loops, etc. Hence, Axelrods CM has bounded flexibility to simulate the dynamical
behavior of those systems.

Ten years later, in 1986, starting from the generic model of cognitive mapping approach,
Axelrods cognitive maps, B. Kosko [10] introduced fuzzy cognitive maps (FCMs) as an extension
of the latter. A fuzzy cognitive map (FCM) delineates the whole system to be modeled by a graph
representation of system behavior. In general, FCMs are fuzzy signed digraphs with feedback.
The functions and powers of cognitive maps were augmented by adding the following properties:

• nodes reflect the degree to which the factors (concepts) are active in the system at a partic-
ular time and can take values in the set {−1;+1} or in the set {0; 1};

• arcs can take any real value in the interval [−1;+1];

• the value of each node is function of time;

• the value of each node at any moment ti+1 is a function of the weighted sum of all its
incoming node values plus the previous value of the node at time ti.

The most significant enhancement was the way of assigning fuzzy values to the causal rela-
tionships between the nodes. In other words, a weight of causal relationship between two factors
quantifies the strength of causal influence from the causal factor to the effect factor.

Although the conventional FCMs are more flexible and reliable than the generic model of
CMs, they also have some disadvantages. To overcome them in the past two decades different
extensions of FCMs have been proposed and found numerous applications in diverse areas of
science, industry and business activities. The first attempt to reflect the advances in their ap-
plication was made by [1]. Next significant step to shed light on various aspects of the FCMs
application was the collection of articles in the book [8] with foreword by B. Kosko. The most
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comprehensive overview of the evolution in this field is the recent study on FCMs and their ap-
plications by E.I. Papageorgiou [11, 12]. Almost all types of FCMs extensions use as a basis the
theory of fuzzy sets. Among the variety of those extensions some models proposed in the area
of medical diagnosis and decision making have implemented unique approach [7, 9, 13]. Un-
like the vast majority of existing models, based on the use of fuzzy sets theory, D.K. Iakovidis,
and E. I. Papageorgiou developed two different models of extended FCMs utilizing the notion
of Intuitionistic Fuzzy Sets (IFSs, see, e.g. [2, 4]) and called them intuitionistic fuzzy cognitive
maps (iFCM-I, iFCM-II). Both models follow the two steps process of construction applied to the
conventional model of FCM. The difference between the FCM model and iFCM-I is that to the
causal relations (in form of IF-THEN rules) connecting the concepts was included also the hesita-
tion of the experts in expressing these rules. While iFCM-I takes into account only the hesitancy
in expression of the influences between concepts (introducing in this way the intuitionistic fuzzy
sets in the reasoning process), iFCM-II allows in addition to that the modeling of the concepts as
linguistic variables thus giving the model more general mathematical formulation, based entirely
on IFS theory. These properties make iFCM-II more capable of modeling both the uncertainties
of concept values and those of causal relations among them.

As seen from the previous explanations the mathematical model of directed graph has been
gradually extended in order to achieve more precise representation of subjective expert knowledge
reflecting the system in interest. That is why the accuracy (precision) of the extended model along
with its validity and reliability is very important to support the decision makers in drawing correct
inferences, i.e. to derive correct predictions from the extended FCM model. On the other hand the
choice of specific model mainly depends on the goals and type of system analysis (static and/or
dynamic).

3 Formal definitions

The study of different FCMs extensions revealed that the construction of the models precedes the
stage of system analysis. The process of construction and development of FCM may consists of
two or three stages [15], but some of them could be combined in one. At the first stage experts are
dealing with determination of the conceptual and causal architecture that includes identification
of key factors and causal relationships among them. The second stage, parameterization of FCM,
encompasses construction of linguistic scales, selection of aggregation functions and assignment
of values to nodes and arcs. Namely, the assignment methods for different types of values (signs,
numbers, linguistic variables, rules, etc.) to the nodes (factors) and to the arcs (causal relation-
ships) allow the researchers to draw distinction between the various extensions of FCM. This all
can be summarized in a preliminary abstract definition of FCM in form of 4-tuple:

FCM = 〈F,W, Sn(f), Sa(w)〉,

where:

• F - is the set of factors of the system (problem, situation);

• W - stands for the set of causal relationships between factors;
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• Sn(f) - is set of scales for the values of system factors;

• Sa(w) - denotes set of scales for the strength of causal relationships.

There are several possible formal definitions of FCMs in the literature. Probably the most
commonly used formal definition is in the form given by Chen [6], which respects the original
numerical matrix representation proposed by Kosko, where FCM is defined as a 4-tuple,

CM = (C,E, α, β),

where:

• C is finite set of cognitive units (i.e., concepts), C = {C1, C2, ..., Cn};

• E is a finite set of directed edges between cognitive units, E = {e1, e2, ..., em};

• α is a mapping function from cognitive units to an interval [a, b], where−1 ≤ a ≤ b ≤ +1;

• β : E → [−1,+1] is a mapping function from directed edges to real values between -1 and
+1.

In this paper we propose a formal definition of Intuitionistic Fuzzy Cognitive Map (IFCM)
based on the notion of Intuitionistic Fuzzy Index Matrix (IFIM, see [3]). The new definition is
introduced as an extension of Chens formal definition of FCM [6].

4 On intuitionistic fuzzy cognitive maps

Let C = {C1, C2, ..., Cn} be a set of cognitive units and for every i (i ∈ {1, 2, ..., n}), µC(Ci) and
νC(Ci) are degrees of validity and non-validity of the cognitive unit Ci.

Extending Chen’s formal definitions of Fuzzy Cognitive Map (FCM, see [6]), we introduce
the concept of an Intuitionistic FCM (IFCM) as the pair

IFCM = 〈C,E〉,

where
C = {〈Ci, µC(Ci), νC(Ci)〉|Ci ∈ C}

is an IFS and
E = [C, C, {〈µE(ei,j), νE(ei,j)〉}],

is an Intuitionistic Fuzzy Index Matrix (IFIM, see [3]) of incidence and for every i, j ∈ {1, 2, ..., n},
µE(ei,j) and νE(ei,j) are degrees of validity and non-validity of the oriented edge between neigh-
bouring nodes Ci, Cj ∈ C.

For every two cognitive units Ci and Cj that are connected with an edge ei,j , we can in-
troduce different criteria for correctness, e.g. if Ci is higher than Cj (i.e., 〈µC(Ci), νC(Ci)〉 ≥
〈µC(Cj), νC(Cj)〉), then

1 (top-down-max-min) 〈µC(Ci), νC(Ci)〉 ∨ 〈µE(ei,j), νE(ei,j)〉 ≥ 〈µC(Cj), νC(Cj)〉;
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2 (top-down-average) 〈µC(Ci), νC(Ci)〉@〈µE(ei,j), νE(ei,j)〉 ≥ 〈µC(Cj), νC(Cj)〉;

3 (top-down-min-max) 〈µC(Ci), νC(Ci)〉 ∧ 〈µE(ei,j), νE(ei,j)〉 ≥ 〈µC(Cj), νC(Cj)〉;

4 (down-top-max-min) 〈µC(Ci), νC(Ci)〉 ∧ 〈µE(ei,j), νE(ei,j)〉 ≤ 〈µC(Cj), νC(Cj)〉;

5 (down-top-average) 〈µC(Ci), νC(Ci)〉@〈µE(ei,j), νE(ei,j)〉 ≤ 〈µC(Cj), νC(Cj)〉;

6 (down-top-min-max) 〈µC(Ci), νC(Ci)〉 ∨ 〈µE(ei,j), νE(ei,j)〉 ≤ 〈µC(Cj), νC(Cj)〉.

Other criteria also are possible.
If Cr is some one of the above six, or another criterion for correctness, and if all vertices and

arcs of a given IFCM satisfy criterion Cr, then this IFSC is called Cr-correct IFCM.
The validity of the following assertion is checked easy on the basis of the above definitions of

correctness.
Theorem. If the IFCM is:

(a) (top-down-min-max)-correct, then it is (top-down-average)-correct and (top-down-max-
min)-correct;

(b) (top-down-average)-correct, then it is (top-down-max-min)-correct;

(c) (down-top-max-min)-correct, then it is (down-top-average)-correct and (down-top-min-
max)-correct;

(d) (down-top-average)-correct, then it is (down-top-min-max)-correct.

5 Conclusion

In near future we will extend the concept of an IFCM is some directions: temporal IFCM, hierar-
chical IFCM and others, using possibilities, giving by apparatus of the IFIMs.
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