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1 Introduction
Undoubtedly the notion of fuzzy set theory initiated by Zadeh [50] in 1965 in a seminal paper,
plays the central role for further development. This notion tries to show that an object corresponds
more or less to the particular category we want to assimilate it to; that was how the idea of
defining the membership of an element to a set not on the Aristotelian pair {0, 1} any more but
on the continuous interval [0, 1] was born. As a generalization of a fuzzy set, the concept of
an intuitionistic fuzzy set was introduced by Atanassov [3, 4]. The concept of fuzzy group was
introduced by Rosenfled [48] and Anthony and Sherwood [2] gave the definition of fuzzy subgroup
based on 𝑡-norm. Solairaju and Nagarajan [49] introduced the notion of 𝑄-fuzzy groups. Norms
were introduced in the framework of probabilistic metric spaces. However, they are widely applied
in several other fields, e.g., in fuzzy set theory, fuzzy logic, and their applications. By using norms,
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the author investigated some properties of fuzzy algebraic structures [8–47]. In this paper, we
define 𝑄-intuitionistic fuzzy subgroups of a group with respect to norms (𝑡-norms and 𝑡-conorms)
and investigate properties of them.

2 Preliminaries
This section contains some basic definitions and preliminary results which will be needed in the
sequal. For more details we refer to [1, 3, 5–7].

Definition 2.1. A group is a non-empty set 𝐺 on which there is a binary operation (𝑎, 𝑏) → 𝑎𝑏

such that:
(1) if 𝑎 and 𝑏 belong to 𝐺, then 𝑎𝑏 is also in 𝐺 (closure),
(2) 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐺 (associativity),
(3) there is an element 𝑒 ∈ 𝐺 such that 𝑎𝑒 = 𝑒𝑎 = 𝑎 for all 𝑎 ∈ 𝐺 (identity),
(4) if 𝑎 ∈ 𝐺, then there is an element 𝑎−1 ∈ 𝐺 such that 𝑎𝑎−1 = 𝑎−1𝑎 = 𝑒 (inverse).

One can easily check that this implies the unicity of the identity and of the inverse. A group
𝐺 is called abelian if the binary operation is commutative, i.e., 𝑎𝑏 = 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝐺.

Remark 2.2. There are two standard notations for the binary group operation: either the additive
notation, that is (𝑎, 𝑏) → 𝑎 + 𝑏 in which case the identity is denoted by 0, or the multiplicative
notation, that is (𝑎, 𝑏) → 𝑎𝑏 for which the identity is denoted by 𝑒.

Proposition 2.3. Let 𝐺 be a group. Let 𝐻 be a non-empty subset of 𝐺. The following are
equivalent:
(1) 𝐻 is a subgroup of 𝐺.

(2) 𝑥, 𝑦 ∈ 𝐻 implies 𝑥𝑦−1 ∈ 𝐻 for all 𝑥, 𝑦.

Definition 2.4. Let 𝐺 be an arbitrary group with a multiplicative binary operation and identity 𝑒.
A fuzzy subset of 𝐺, we mean a function from 𝐺 into [0, 1]. The set of all fuzzy subsets of 𝐺 is
called the [0, 1]-power set of 𝐺 and is denoted [0, 1]𝐺.

Definition 2.5. For sets 𝑋, 𝑌 and 𝑍, 𝑓 = (𝑓1, 𝑓2) : 𝑋 → 𝑌 × 𝑍 is called a complex mapping if
𝑓1 : 𝑋 → 𝑌 and 𝑓2 : 𝑋 → 𝑍 are mappings.

Definition 2.6. Let 𝑋 be a nonempty set. A complex mapping 𝐴 = (𝜇𝐴, 𝜈𝐴) : 𝑋 → [0, 1]× [0, 1]

is called an intuitionistic fuzzy set (in short, 𝐼𝐹𝑆) in 𝑋 such that 𝜇𝐴, 𝜈𝐴 ∈ [0, 1]𝑋 and for all
𝑥 ∈ 𝑋 we have (𝜇𝐴(𝑥) + 𝜈𝐴(𝑥)) ∈ [0, 1]. In particular, ∅𝑋 and 𝑈𝑋 denote the intuitionistic fuzzy
empty set and intuitionistic fuzzy whole set in 𝑋 defined by ∅𝑋(𝑥) = (0, 1) and 𝑈𝑋(𝑥) = (1, 0),

respectively. We will denote the set of all 𝐼𝐹𝑆𝑠 in 𝑋 as 𝐼𝐹𝑆(𝑋).

Definition 2.7. Let 𝑋 be a nonempty set and let 𝐴 = (𝜇𝐴, 𝜈𝐴) and 𝐵 = (𝜇𝐵, 𝜈𝐵) be 𝐼𝐹𝑆𝑠 in 𝑋.

Then:

(1) Inclusion: 𝐴 ⊆ 𝐵 iff 𝜇𝐴 ≤ 𝜇𝐵 and 𝜈𝐴 ≥ 𝜈𝐵.

(2) Equality: 𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.
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Definition 2.8. A 𝑡-norm 𝑇 is a function 𝑇 : [0, 1] × [0, 1] → [0, 1] having the following four
properties:

(T1) 𝑇 (𝑥, 1) = 𝑥 (neutral element)
(T2) 𝑇 (𝑥, 𝑦) ≤ 𝑇 (𝑥, 𝑧) if 𝑦 ≤ 𝑧 (monotonicity)
(T3) 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥) (commutativity)
(T4) 𝑇 (𝑥, 𝑇 (𝑦, 𝑧)) = 𝑇 (𝑇 (𝑥, 𝑦), 𝑧) (associativity),

for all 𝑥, 𝑦, 𝑧 ∈ [0, 1].

Corollary 2.9. Let 𝑇 be a 𝑡-norm. Then for all 𝑥 ∈ [0, 1],

(1) 𝑇 (𝑥, 0) = 0.

(2) 𝑇 (0, 0) = 0.

Example 2.10. (1) Standard intersection 𝑡-norm 𝑇𝑚(𝑥, 𝑦) = min{𝑥, 𝑦}.

(2) Bounded sum 𝑡-norm 𝑇𝑏(𝑥, 𝑦) = max{0, 𝑥+ 𝑦 − 1}.

(3) Algebraic product 𝑡-norm 𝑇𝑝(𝑥, 𝑦) = 𝑥𝑦.

(4) Drastic 𝑡-norm

𝑇𝐷(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
𝑦, if 𝑥 = 1

𝑥, if 𝑦 = 1

0, otherwise.

(5) Nilpotent minimum 𝑡-norm

𝑇𝑛𝑀(𝑥, 𝑦) =

{︃
min{𝑥, 𝑦}, if 𝑥+ 𝑦 > 1

0, otherwise.

(6) Hamacher product 𝑡-norm

𝑇𝐻0(𝑥, 𝑦) =

{︃
0, if 𝑥 = 𝑦 = 0
𝑥𝑦

𝑥+𝑦−𝑥𝑦
, otherwise.

The drastic 𝑡-norm is the pointwise smallest 𝑡-norm and the minimum is the pointwise largest
𝑡-norm:

𝑇𝐷(𝑥, 𝑦) ≤ 𝑇 (𝑥, 𝑦) ≤ 𝑇min(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ [0, 1].

Lemma 2.11. Let 𝑇 be a 𝑡-norm. Then

𝑇 (𝑇 (𝑥, 𝑦), 𝑇 (𝑤, 𝑧)) = 𝑇 (𝑇 (𝑥,𝑤), 𝑇 (𝑦, 𝑧)),

for all 𝑥, 𝑦, 𝑤, 𝑧 ∈ [0, 1].
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Definition 2.12. A 𝑡-conorm 𝐶 is a function 𝐶 : [0, 1]× [0, 1] → [0, 1] having the following four
properties:

(C1) 𝐶(𝑥, 0) = 𝑥

(C2) 𝐶(𝑥, 𝑦) ≤ 𝐶(𝑥, 𝑧) if 𝑦 ≤ 𝑧

(C3) 𝐶(𝑥, 𝑦) = 𝐶(𝑦, 𝑥)

(C4) 𝐶(𝑥,𝐶(𝑦, 𝑧)) = 𝐶(𝐶(𝑥, 𝑦), 𝑧) ,

for all 𝑥, 𝑦, 𝑧 ∈ [0, 1].

Corollary 2.13. Let 𝐶 be a 𝐶-conorm. Then for all 𝑥 ∈ [0, 1],

(1) 𝐶(𝑥, 1) = 1.

(2) 𝐶(0, 0) = 0.

Example 2.14. (1) Standard union 𝑡-conorm 𝐶𝑚(𝑥, 𝑦) = max{𝑥, 𝑦}.

(2) Bounded sum 𝑡-conorm 𝐶𝑏(𝑥, 𝑦) = min{1, 𝑥+ 𝑦}.

(3) Algebraic sum 𝑡-conorm 𝐶𝑝(𝑥, 𝑦) = 𝑥+ 𝑦 − 𝑥𝑦.

(4) Drastic 𝑡-conorm

𝐶𝐷(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
𝑦 if 𝑥 = 0

𝑥 if 𝑦 = 0

1 otherwise,

dual to the drastic 𝑡-norm.
(5) Nilpotent maximum 𝑡-conorm , dual to the nilpotent minimum 𝑇 -norm:

𝐶𝑛𝑀(𝑥, 𝑦) =

{︃
max{𝑥, 𝑦} if 𝑥+ 𝑦 < 1

1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity)

𝐶𝐻2(𝑥, 𝑦) =
𝑥+ 𝑦

1 + 𝑥𝑦

is a dual to one of the Hamacher 𝑡-norms. Note that all 𝑡-conorms are bounded by the maximum
and the drastic t-conorm:

𝐶max(𝑥, 𝑦) ≤ 𝐶(𝑥, 𝑦) ≤ 𝐶𝐷(𝑥, 𝑦)

for any 𝑡-conorm 𝐶 and all 𝑥, 𝑦 ∈ [0, 1].

Recall that 𝑡-norm 𝑇 (respectively, 𝑡-conorm 𝐶) is idempotent if for all 𝑥 ∈ [0, 1], 𝑇 (𝑥, 𝑥) = 𝑥

(respectively, 𝐶(𝑥, 𝑥) = 𝑥).

Lemma 2.15. Let 𝐶 be a 𝑡-conorm. Then

𝐶(𝐶(𝑥, 𝑦), 𝐶(𝑤, 𝑧)) = 𝐶(𝐶(𝑥,𝑤), 𝐶(𝑦, 𝑧)),

for all 𝑥, 𝑦, 𝑤, 𝑧 ∈ [0, 1].
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3 Main results
Definition 3.1. Let (𝐺, .) be a group and 𝑄 be a non empty set. An intuitionistic fuzzy set
𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝐼𝐹𝑆(𝐺×𝑄) is said to be a 𝑄-intuitionistic fuzzy subgroup of 𝐺 with respect to
norms (𝑡-norm 𝑇 and 𝑡-conorm 𝐶) if the following conditions are satisfied:

(1) 𝐴(𝑥𝑦, 𝑞) = (𝜇𝐴(𝑥𝑦, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞))

⊇ 𝐴(𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))),

(2) 𝐴(𝑥−1, 𝑞) = (𝜇𝐴(𝑥
−1, 𝑞), 𝜈𝐴(𝑥

−1, 𝑞))

⊇ 𝐴(𝑥, 𝑞)

= (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞))

which means:
(a) 𝜇𝐴(𝑥𝑦, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)),

(b) 𝜈𝐴(𝑥𝑦, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞)),

(c) 𝜇𝐴(𝑥
−1, 𝑞) ≥ 𝜇𝐴(𝑥, 𝑞),

(d) 𝜈𝐴(𝑥
−1, 𝑞) ≤ 𝜈𝐴(𝑥, 𝑞),

for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄. Throughout this paper the set of all 𝑄-intuitionistic fuzzy subgroups
of 𝐺 with respect to norms (𝑡-norm 𝑇 and 𝑡-conorm 𝐶) will be denoted by 𝑄𝐼𝐹𝑆𝑁(𝐺).

Lemma 3.2. The conditions (2) of Definition 3.1 imply that

𝐴(𝑥−1, 𝑞) = 𝐴(𝑥, 𝑞)

for all 𝑥 ∈ 𝐺 and 𝑞 ∈ 𝑄.

Proof. Let 𝑥 ∈ 𝐺 and 𝑞 ∈ 𝑄. As 𝐴(𝑥−1, 𝑞) ⊇ 𝐴(𝑥, 𝑞) so 𝜇𝐴(𝑥
−1, 𝑞) ≥ 𝜇𝐴(𝑥, 𝑞), and

𝜈𝐴(𝑥
−1, 𝑞) ≤ 𝜈𝐴(𝑥, 𝑞). Then

𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴((𝑥
−1)−1, 𝑞) ≥ 𝜇𝐴(𝑥

−1, 𝑞) ≥ 𝜇𝐴(𝑥, 𝑞)

and
𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴((𝑥

−1)−1, 𝑞) ≤ 𝜈𝐴(𝑥
−1, 𝑞) ≤ 𝜈𝐴(𝑥, 𝑞)

and then 𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴(𝑥
−1, 𝑞) and 𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴(𝑥

−1, 𝑞). Thus

𝐴(𝑥−1, 𝑞) = (𝜇𝐴(𝑥
−1, 𝑞), 𝜈𝐴(𝑥

−1, 𝑞)) = (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = 𝐴(𝑥, 𝑞).

Proposition 3.3. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) such that 𝑇 and 𝐶 be idempotent. Then

𝐴(𝑒𝐺, 𝑞) ⊇ 𝐴(𝑥, 𝑞)

for all 𝑥 ∈ 𝐺 and 𝑞 ∈ 𝑄.

34



Proof. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) and 𝑥 ∈ 𝐺 and 𝑞 ∈ 𝑄. Then

𝜇𝐴(𝑒𝐺, 𝑞) = 𝜇𝐴(𝑥𝑥
−1, 𝑞)

≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑥
−1, 𝑞))

= 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑥, 𝑞)) = 𝜇𝐴(𝑥, 𝑞)

and so

𝜇𝐴(𝑒𝐺, 𝑞) ≥ 𝜇𝐴(𝑥, 𝑞). (a)

Also

𝜈𝐴(𝑒𝐺, 𝑞) = 𝜈𝐴(𝑥𝑥
−1, 𝑞)

≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥
−1, 𝑞))

= 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞))

= 𝜈𝐴(𝑥, 𝑞)

and then

𝜈𝐴(𝑒𝐺, 𝑞) ≤ 𝜈𝐴(𝑥, 𝑞). (b)

Thus from (a) and (b) we have that

𝐴(𝑒𝐺, 𝑞) = (𝜇𝐴(𝑒𝐺, 𝑞), 𝜈𝐴(𝑒𝐺, 𝑞)) ⊇ (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = 𝐴(𝑥, 𝑞).

Proposition 3.4. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺). If 𝑇 and 𝐶 are idempotent and

𝐴(𝑥𝑦−1, 𝑞) = 𝐴(𝑒𝐺, 𝑞),

then
𝐴(𝑥, 𝑞) = 𝐴(𝑦, 𝑞)

for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄.

Proof. Let 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄. Then

𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴(𝑥𝑦
−1𝑦, 𝑞)

≥ 𝑇 (𝜇𝐴(𝑥𝑦
−1, 𝑞), 𝜇𝐴(𝑦, 𝑞))

= 𝑇 (𝜇𝐴(𝑒𝐺, 𝑞), 𝜇𝐴(𝑦, 𝑞))

≥ 𝑇 (𝜇𝐴(𝑦, 𝑞), 𝜇𝐴(𝑦, 𝑞))

= 𝜇𝐴(𝑦, 𝑞) = 𝜇𝐴(𝑦𝑥
−1𝑥, 𝑞)

≥ 𝑇 (𝜇𝐴(𝑦𝑥
−1, 𝑞), 𝜇𝐴(𝑥, 𝑞))

= 𝑇 (𝜇𝐴((𝑥𝑦
−1)−1, 𝑞), 𝜇𝐴(𝑥, 𝑞))

= 𝑇 (𝜇𝐴(𝑥𝑦
−1, 𝑞), 𝜇𝐴(𝑥, 𝑞))

= 𝑇 (𝜇𝐴(𝑒𝐺, 𝑞), 𝜇𝐴(𝑥, 𝑞))

≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑥, 𝑞))

= 𝜇𝐴(𝑥, 𝑞),

thus

𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴(𝑦, 𝑞). (a)
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Also

𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴(𝑥𝑦
−1𝑦, 𝑞)

≤ 𝐶(𝜈𝐴(𝑥𝑦
−1, 𝑞), 𝜈𝐴(𝑦, 𝑞))

= 𝐶(𝜈𝐴(𝑒𝐺, 𝑞), 𝜈𝐴(𝑦, 𝑞))

≤ 𝐶(𝜈𝐴(𝑦, 𝑞), 𝜈𝐴(𝑦, 𝑞))

= 𝜈𝐴(𝑦, 𝑞) = 𝜈𝐴(𝑦𝑥
−1𝑥, 𝑞)

≤ 𝐶(𝜇𝐴(𝑦𝑥
−1, 𝑞), 𝜈𝐴(𝑥, 𝑞))

= 𝐶(𝜈𝐴((𝑥𝑦
−1)−1, 𝑞), 𝜈𝐴(𝑥, 𝑞))

= 𝐶(𝜈𝐴(𝑥𝑦
−1, 𝑞), 𝜈𝐴(𝑥, 𝑞))

= 𝐶(𝜈𝐴(𝑒𝐺, 𝑞), 𝜈𝐴(𝑥, 𝑞))

≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞))

= 𝜈𝐴(𝑥, 𝑞),

then

𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴(𝑦, 𝑞). (b)

Therefore
𝐴(𝑥, 𝑞) = (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = (𝜇𝐴(𝑦, 𝑞), 𝜈𝐴(𝑦, 𝑞)) = 𝐴(𝑦, 𝑞).

Proposition 3.5. Let 𝑇 and 𝐶 be idempotent. Then

𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺)

if and only if

𝐴(𝑥𝑦−1, 𝑞) ⊇ 𝐴(𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞)))

for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄.

Proof. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) and 𝑥, 𝑦 ∈ 𝐺, 𝑞 ∈ 𝑄. Then

𝜇𝐴(𝑥𝑦
−1, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦

−1, 𝑞))

≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞))

and

𝜈𝐴(𝑥𝑦
−1, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦

−1, 𝑞))

≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞)),

and then

𝐴(𝑥𝑦−1, 𝑞) = (𝜇𝐴(𝑥𝑦
−1, 𝑞), 𝜈𝐴(𝑥𝑦

−1, 𝑞))

⊇ 𝐴(𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))).

Conversely, let

𝐴(𝑥𝑦−1, 𝑞) ⊇ 𝐴(𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))).
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Then

𝜇𝐴(𝑥
−1, 𝑞) = 𝜇𝐴(𝑒𝐺𝑥

−1, 𝑞)

≥ 𝑇 (𝜇𝐴(𝑒𝐺, 𝑞), 𝜇𝐴(𝑥, 𝑞))

≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑥, 𝑞))

= 𝜇𝐴(𝑥, 𝑞)

and

𝜈𝐴(𝑥
−1, 𝑞) = 𝜈𝐴(𝑒𝐺𝑥

−1, 𝑞)

≤ 𝐶(𝜈𝐴(𝑒𝐺, 𝑞), 𝜈𝐴(𝑥, 𝑞))

≤ 𝐶(𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞))

= 𝜈𝐴(𝑥, 𝑞)

and then

𝐴(𝑥−1, 𝑞) ⊇ 𝐴(𝑥, 𝑞). (1)

Also

𝜇𝐴(𝑥𝑦, 𝑞) = 𝜇𝐴(𝑥(𝑦
−1)−1, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦

−1, 𝑞)) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞))

and

𝜈𝐴(𝑥𝑦, 𝑞) = 𝜈𝐴(𝑥(𝑦
−1)−1, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦

−1, 𝑞)) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))

Hence

𝐴(𝑥𝑦, 𝑞) = (𝜇𝐴(𝑥𝑦, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞)) ⊇ 𝐴(𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))). (2)

Therefore from (1) and (2) we get that

𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺).

Proposition 3.6. Let 𝜇𝐴, 𝜈𝐴 ∈ [0, 1]𝐺×𝑄 such that

𝐴(𝑒𝐺, 𝑞) = (1, 0)

and
𝐴(𝑥𝑦−1, 𝑞) ⊇ (𝑇 (𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)), 𝐶(𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)))

for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄. Then

𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺).

Proof. Let 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄. Then

𝜇𝐴(𝑥
−1, 𝑞) = 𝜇𝐴(𝑒𝐺𝑥

−1, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑒𝐺, 𝑞), 𝜇𝐴(𝑥, 𝑞)) = 𝑇 (1, 𝜇𝐴(𝑥, 𝑞)) = 𝜇𝐴(𝑥, 𝑞)

and

𝜈𝐴(𝑥
−1, 𝑞) = 𝜈𝐴(𝑒𝐺𝑥

−1, 𝑞) ≤ 𝐶(𝜈𝐴(𝑒𝐺, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = 𝐶(0, 𝜈𝐴(𝑥, 𝑞)) = 𝜈𝐴(𝑥, 𝑞)

and so

𝐴(𝑥−1, 𝑞) = (𝜇𝐴(𝑥
−1, 𝑞), 𝜈𝐴(𝑥

−1, 𝑞)) ⊇ (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = 𝐴(𝑥, 𝑞). (1)
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Also

𝜇𝐴(𝑥𝑦, 𝑞) = 𝜇𝐴(𝑥((𝑦)
−1)−1, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦

−1, 𝑞)) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞))

and

𝜈𝐴(𝑥𝑦, 𝑞) = 𝜈𝐴(𝑥((𝑦)
−1)−1, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦

−1, 𝑞)) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))

and so

𝐴(𝑥𝑦, 𝑞) = (𝜇𝐴(𝑥𝑦, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞)) ⊇ 𝐴(𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))). (2)

Therefore from (1) and (2) we will have

𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺).

Proposition 3.7. If 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺), then

𝐻 = {𝑥 ∈ 𝐺 | 𝐴(𝑥, 𝑞) = (1, 0) ∀𝑞 ∈ 𝑄}

is a subgroup of 𝐺.

Proof. Let 𝑥, 𝑦 ∈ 𝐻 and 𝑞 ∈ 𝑄. Then 𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴(𝑦, 𝑞) = 1 and 𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴(𝑦, 𝑞) = 0.

Since 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺), so

𝜇𝐴(𝑥𝑦
−1, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)) = 𝑇 (1, 1) = 1

and this implies that 𝜇𝐴(𝑥𝑦
−1, 𝑞) = 1. Also

𝜈𝐴(𝑥𝑦
−1, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞)) = 𝐶(0, 0) = 0

and so 𝜈𝐴(𝑥𝑦
−1, 𝑞) = 0. Then

𝐴(𝑥𝑦−1, 𝑞) = (𝜇𝐴(𝑥𝑦
−1, 𝑞), 𝜈𝐴(𝑥𝑦

−1, 𝑞)) = (1, 0)

and then 𝑥𝑦−1 ∈ 𝐻 so from Proposition 2.3 we obtain that 𝐻 will be a subgroup of 𝐺.

Proposition 3.8. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) such that 𝑇 and 𝐶 be idempotent. Then

𝐻 = {𝑥 ∈ 𝐺 | 𝐴(𝑥, 𝑞) = 𝐴(𝑒𝐺, 𝑞) ∀𝑞 ∈ 𝑄}

is a subgroup of 𝐺.

Proof. Let 𝑥, 𝑦 ∈ 𝐻 and 𝑞 ∈ 𝑄 then 𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴(𝑦, 𝑞) = 𝜇𝐴(𝑒𝐺, 𝑞) and 𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴(𝑦, 𝑞) =

𝜈𝐴(𝑒𝐺, 𝑞). Since 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) so

𝜇𝐴(𝑥𝑦
−1, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞))

= 𝑇 (𝜇𝐴(𝑒𝐺, 𝑞), 𝜇𝐴(𝑒𝐺, 𝑞))

= 𝜇𝐴(𝑒𝐺, 𝑞)

≥ 𝜇𝐴(𝑥𝑦
−1, 𝑞)

and so 𝜇𝐴(𝑥𝑦
−1, 𝑞) = 𝜇𝐴(𝑒𝐺, 𝑞).
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Also

𝜈𝐴(𝑥𝑦
−1, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))

= 𝐶(𝜈𝐴(𝑒𝐺, 𝑞), 𝜈𝐴(𝑒𝐺, 𝑞))

= 𝜈𝐴(𝑒𝐺, 𝑞)

≤ 𝜈𝐴(𝑥𝑦
−1, 𝑞),

then 𝜈𝐴(𝑥𝑦
−1, 𝑞) = 𝜈𝐴(𝑒𝐺, 𝑞). Therefore,

𝐴(𝑥𝑦−1, 𝑞) = (𝜇𝐴(𝑥𝑦
−1, 𝑞), 𝜈𝐴(𝑥𝑦

−1, 𝑞)) = (𝜇𝐴(𝑒𝐺, 𝑞), 𝜈𝐴(𝑒𝐺, 𝑞)) = 𝐴(𝑒𝐺, 𝑞).

Thus 𝑥𝑦−1 ∈ 𝐻 and Proposition 2.3 give us that 𝐻 is a subgroup of 𝐺.

Proposition 3.9. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) and 𝐴(𝑥𝑦−1, 𝑞) = (1, 0) then

𝐴(𝑥, 𝑞) = 𝐴(𝑦, 𝑞)

for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄.

Proof. Assume that 𝑥, 𝑦 ∈ 𝐺, 𝑞 ∈ 𝑄. As 𝐴 ∈ 𝑄𝐼𝐹𝑆𝑇 (𝐺), so

𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴(𝑥𝑦
−1𝑦, 𝑞)

≥ 𝑇 (𝜇𝐴(𝑥𝑦
−1, 𝑞), 𝜇𝐴(𝑦, 𝑞)) = 𝑇 (1, 𝜇𝐴(𝑦, 𝑞)) = 𝜇𝐴(𝑦, 𝑞)

= 𝜇𝐴(𝑦
−1, 𝑞) = 𝜇𝐴(𝑥

−1𝑥𝑦−1, 𝑞)

≥ 𝑇 (𝜇𝐴(𝑥
−1, 𝑞), 𝜇𝐴(𝑥𝑦

−1, 𝑞)) = 𝑇 (𝜇𝐴(𝑥
−1, 𝑞), 1)

= 𝜇𝐴(𝑥
−1, 𝑞) = 𝜇𝐴(𝑥, 𝑞),

hence
𝜇𝐴(𝑥, 𝑞) = 𝜇𝐴(𝑦, 𝑞).

Also

𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴(𝑥𝑦
−1𝑦, 𝑞)

≤ 𝐶(𝜈𝐴(𝑥𝑦
−1, 𝑞), 𝜈𝐴(𝑦, 𝑞)) = 𝐶(0, 𝜈𝐴(𝑦, 𝑞)) = 𝜈𝐴(𝑦, 𝑞)

= 𝜈𝐴(𝑦
−1, 𝑞) = 𝜈𝐴(𝑥

−1𝑥𝑦−1, 𝑞)

≤ 𝐶(𝜈𝐴(𝑥
−1, 𝑞), 𝜈𝐴(𝑥𝑦

−1, 𝑞)) = 𝐶(𝜈𝐴(𝑥
−1, 𝑞), 0)

= 𝜈𝐴(𝑥
−1, 𝑞) = 𝜈𝐴(𝑥, 𝑞),

thus
𝜈𝐴(𝑥, 𝑞) = 𝜈𝐴(𝑦, 𝑞).

Now
𝐴(𝑥, 𝑞) = (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = (𝜇𝐴(𝑦, 𝑞), 𝜈𝐴(𝑦, 𝑞)) = 𝐴(𝑦, 𝑞).
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Proposition 3.10. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺). Then

𝐴(𝑥𝑦, 𝑞) = 𝐴(𝑦𝑥, 𝑞)

if and only if
𝐴(𝑥, 𝑞) = 𝐴(𝑦−1𝑥𝑦, 𝑞)

for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄.

Proof. Let 𝑥, 𝑦 ∈ 𝐺, 𝑞 ∈ 𝑄 and 𝐴(𝑥𝑦, 𝑞) = 𝐴(𝑦𝑥, 𝑞). Then

𝜇𝐴(𝑦
−1𝑥𝑦, 𝑞) = 𝜇𝐴(𝑦

−1(𝑥𝑦), 𝑞) = 𝜇𝐴(𝑥𝑦𝑦
−1, 𝑞) = 𝜇𝐴(𝑥𝑒𝐺, 𝑞) = 𝜇𝐴(𝑥, 𝑞)

and
𝜈𝐴(𝑦

−1𝑥𝑦, 𝑞) = 𝜈𝐴(𝑦
−1(𝑥𝑦), 𝑞) = 𝜈𝐴(𝑥𝑦𝑦

−1, 𝑞) = 𝜈𝐴(𝑥𝑒𝐺, 𝑞) = 𝜈𝐴(𝑥, 𝑞)

and so

𝐴(𝑦−1𝑥𝑦, 𝑞) = (𝜇𝐴(𝑦
−1𝑥𝑦, 𝑞), 𝜈𝐴(𝑦

−1𝑥𝑦, 𝑞)) = (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = 𝐴(𝑥, 𝑞).

Conversely, let 𝐴(𝑥, 𝑞) = 𝐴(𝑦−1𝑥𝑦, 𝑞) then

𝜇𝐴(𝑥𝑦, 𝑞) = 𝜇𝐴(𝑥(𝑦𝑥)𝑥
−1, 𝑞) = 𝜇𝐴(𝑦𝑥, 𝑞)

and
𝜈𝐴(𝑥𝑦, 𝑞) = 𝜈𝐴(𝑥(𝑦𝑥)𝑥

−1, 𝑞) = 𝜈𝐴(𝑦𝑥, 𝑞)

and then

𝐴(𝑥𝑦, 𝑞) = (𝜇𝐴(𝑥𝑦, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞)) = (𝜇𝐴(𝑦𝑥, 𝑞), 𝜈𝐴(𝑦𝑥, 𝑞)) = 𝐴(𝑦𝑥, 𝑞).

Proposition 3.11. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺). If

𝐴(𝑥𝑦−1, 𝑞) = (0, 1),

then either
𝐴(𝑥, 𝑞) = (0, 1)

or
𝐴(𝑦, 𝑞) = (0, 1)

for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄.

Proof. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) then for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄 we obtain that

0 = 𝜇𝐴(𝑥𝑦
−1, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞))

and then either 𝜇𝐴(𝑥, 𝑞) = 0 or 𝜇𝐴(𝑦, 𝑞) = 0. Also

1 = 𝜈𝐴(𝑥𝑦
−1, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))

and then either 𝜈𝐴(𝑥, 𝑞) = 1 or 𝜇𝐴(𝑦, 𝑞) = 1. Therefore either

𝐴(𝑥, 𝑞) = (𝜇𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = (0, 1)

or
𝐴(𝑦, 𝑞) = (𝜇𝐴(𝑦, 𝑞), 𝜈𝐴(𝑥, 𝑞)) = (0, 1).
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Proposition 3.12. Let 𝐴 = (𝜇𝐴, 𝜈𝐴) ∈ 𝑄𝐼𝐹𝑆𝑁(𝐺) and 𝑥, 𝑦 ∈ 𝐺, 𝑞 ∈ 𝑄. If 𝑇 and 𝐶 be
idempotent and 𝐴(𝑥, 𝑞) ̸= 𝐴(𝑦, 𝑞), then

𝐴(𝑥𝑦, 𝑞) = (𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))).

Proof. Let 𝐴(𝑥, 𝑞) ⊃ 𝐴(𝑦, 𝑞) then 𝜇𝐴(𝑥, 𝑞) > 𝜇𝐴(𝑦, 𝑞) and 𝜈𝐴(𝑥, 𝑞) < 𝜈𝐴(𝑦, 𝑞).

As 𝜇𝐴(𝑥, 𝑞) > 𝜇𝐴(𝑦, 𝑞) for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄 so 𝜇𝐴(𝑥, 𝑞) > 𝜇𝐴(𝑥𝑦, 𝑞) and so

𝜇𝐴(𝑦, 𝑞) = 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞))

and
𝜇𝐴(𝑥𝑦, 𝑞) = 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑥𝑦, 𝑞)).

Now

𝜇𝐴(𝑥𝑦, 𝑞) ≥ 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞))

= 𝜇𝐴(𝑦, 𝑞)

= 𝜇𝐴(𝑥
−1𝑥𝑦, 𝑞)

≥ 𝑇 (𝜇𝐴(𝑥
−1, 𝑞), 𝜇𝐴(𝑥𝑦, 𝑞))

= 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑥𝑦, 𝑞))

= 𝜇𝐴(𝑥𝑦, 𝑞),

and so
𝜇𝐴(𝑥𝑦, 𝑞) = 𝜇𝐴(𝑦, 𝑞) = 𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)).

Also since 𝜈𝐴(𝑥, 𝑞) < 𝜈𝐴(𝑦, 𝑞) for all 𝑥, 𝑦 ∈ 𝐺 and 𝑞 ∈ 𝑄, so 𝜈𝐴(𝑥, 𝑞) < 𝜈𝐴(𝑥𝑦, 𝑞), and then

𝜈𝐴(𝑦, 𝑞) = 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))

and
𝜈𝐴(𝑥𝑦, 𝑞) = 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞)).

Now

𝜈𝐴(𝑥𝑦, 𝑞) ≤ 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))

= 𝜈𝐴(𝑦, 𝑞)

= 𝜈𝐴(𝑥
−1𝑥𝑦, 𝑞)

≤ 𝐶(𝜈𝐴(𝑥
−1, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞))

= 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞))

= 𝜈𝐴(𝑥𝑦, 𝑞),

and thus
𝜈𝐴(𝑥𝑦, 𝑞) = 𝜈𝐴(𝑦, 𝑞) = 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞)).

Therefore

𝐴(𝑥𝑦, 𝑞) = (𝜇𝐴(𝑥𝑦, 𝑞), 𝜈𝐴(𝑥𝑦, 𝑞)) = (𝑇 (𝜇𝐴(𝑥, 𝑞), 𝜇𝐴(𝑦, 𝑞)), 𝐶(𝜈𝐴(𝑥, 𝑞), 𝜈𝐴(𝑦, 𝑞))).
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