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1 Introduction

In paper [5] we defined the almost uniform convergence for a sequence of intuitionistic fuzzy
observables (xn)

∞
1 and we proved a variation of Egorov’s theorem. We showed the connection

between almost everywhere convergence of random variables in Kolmogorov probability
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space and almost uniform convergence of intuitionistic fuzzy observables, too. Recall that the
intuitionistic fuzzy observable x is a mapping from Borel sets B(R) to the family of all IF-events
on (Ω,S) denoted by F . An intuitionistic fuzzy event is an intuitionistic fuzzy set A = (µA, νA)

such that µA, νA : Ω → [0, 1] are S-measurable and µA + νA ≤ 1Ω (see [2, 3, 9]). Remark that
in year 2023 we celebrated the 40-th anniversary of the invention of the concept and theory of
intuitionistic fuzzy sets by K. T. Atanassov in the paper [1]. In paper [4] we studied a more general
situation. We formulated three definitions of almost uniform convergence in the MV-algebra of
intutionistic fuzzy sets (M,⊕,⊙,¬, (0Ω, 1Ω), (1Ω, 0Ω)). In the third definition of almost uniform
convergence, we used a partial binary operation ⊖ defined by

A⊖B = ((µA − µB) ∨ 0Ω, (νA − νB + 1Ω) ∧ 1Ω)

for A = (µA, νA) ∈ M, B = (µB, νB) ∈ M and B ≤ A. As A ⊖ B = A ⊙ ¬B, then
MV-algebra of intuitionistic fuzzy sets (M,⊕,⊙,¬, (0Ω, 1Ω), (1Ω, 0Ω)) is a D-poset. Recall that
the binary operations ⊕ and ⊙ are given by

A⊕B =
(
(µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω

)
,

A⊙B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω)),

and an unary operation ¬ is given by the formula ¬A = (1Ω−µA, 1Ω−νA) for every A,B ∈ M.
Therefore, some procedures useful in probability theory on MV-algebras are applicable in a more
general structure, the so called D-poset. Recall that D-posets include not only MV-algebras, but
also orthomodular lattices.

In this contribution, we will study the D-poset of intuitionistic fuzzy sets and an almost
uniform convergence of observables in this structure. We will prove the connection between
almost everywhere convergence of random variables in the Kolmogorov probability space and
almost uniform convergence of observables, too. We are inspired by paper [8], where B. Riečan
formulated an almost uniform convergence for general D-posets. Remark that in a whole text we
use a notation “IF” in short as the phrase “intuitionistic fuzzy”.

2 D-poset of intuitionistic fuzzy sets

In this section, we study the basic notions from probability theory on D-poset of IF-sets. Recall
that the notion of D-poset was introduced by F. Chovanec and F. Kôpka, see the paper [7].

Definition 2.1 ( [7]). Let D be a partially ordered set with the greatest element 1D and with a
partial binary operation ⊖ such that b ⊖ a is defined if and only if a ≤ b and satisfying the
following conditions:

(i) if a ≤ b, then b⊖ a ≤ b and b⊖ (b⊖ a) = a;

(ii) if a ≤ b ≤ c, then b⊖ a ≤ c⊖ a and (c⊖ a)⊖ (c⊖ b) = b⊖ a;

A structure (D,≤,⊖, 1D) is called a poset with a difference, i.e., D-poset.
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Example 2.1. Let (Ω,S) be a measurable space, D be the family of all pairs A = (µA, νA),
where µA, νA : Ω → [0, 1] are S-measurable functions. Let ≤ be a partial ordering on D such
that A ≤ B if and only if µA ≤ µB, νA ≥ νB for each A,B ∈ D. A partial binary operation ⊖
defined by the formula

B⊖A = (µB − µA, νB − νA + 1Ω)

for each A = (µA, νA) ∈ D, B = (µB, νB) ∈ D, A ≤ B is a difference on D. The greatest
element in D is (1Ω, 0Ω). Then the system (D,≤,⊖, (1Ω, 0Ω)) is a D-poset.

Example 2.2 ([7]). Let X be a non-empty set and let F be the family of all real functions
f : X → [0, 1]. Let ≤ be a partial ordering on F such that f ≤ g if and only if f(t) ≤ g(t)

for each t ∈ X . Let ϕ : [0, 1] → [0,∞) be a strongly increasing continuous function such that
ϕ(0) = 0. A partial binary operation ⊖ defined by the formula

(g ⊖ f)(t) = ϕ−1
(
ϕ(g(t))− ϕ(f(t))

)
for each f, g ∈ F , f ≤ g, t ∈ X , is a difference on F . Then the system (F ,≤,⊖, 1X) is a
D-poset (i.e., an D-poset of fuzzy sets).

Remark 2.1. It is evident that the element 1D ⊖ 1D is the least element in a D-poset D, i.e.,
0D = 1D ⊖ 1D, see [10]. Therefore, (0Ω, 1Ω) is the least element in the D-poset D constructed in
Example 2.1. Really, (1Ω, 0Ω)⊖ (1Ω, 0Ω) = (0Ω, 1Ω).

Now we introduce the notion of a state and an observable in a D-poset (D,≤,⊖, (1Ω, 0Ω)),
constructed in Example 2.1.

Definition 2.2. Let (D,≤,⊖, (1Ω, 0Ω)) be the D-poset constructed in Example 2.1. A state on a
D-poset D is a mapping m : D → [0, 1] satisfying the following conditions:

(i) m((1Ω, 0Ω)) = 1;

(ii) if A,B ∈ D, A ≤ B, then m(B⊖A) = m(B)−m(A);

(iii) if A,Ai ∈ D, i ∈ N , Ai ↗ A, then m(Ai) ↗ m(A).

An n-dimensional observable on a D-poset D is a mapping x : B(Rn) → D satisfying the
following conditions:

(i) x(Rn) = (1Ω, 0Ω);

(ii) if A,B ∈ B(Rn), A ⊂ B, then x(A) ≤ x(B) and x(B \ A) = x(B)⊖ x(A);

(iii) if A,Ai ∈ B(Rn), i ∈ N , Ai ↗ A, then x(Ai) ↗ x(A).

When n = 1, we say that x is an observable.
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Since an observable x : B(R) → D corresponds to a random variable ξ : Ω → R, the joint
observable corresponds to a random vector T = (ξ, η). Similarly, the joint observable can be
defined as a morphism h : B(R2) → D. First, we need to define product operation on a D-poset
D of IF-sets. In paper [6], F. Kôpka introduced a meet function as a generalized product on
D-poset D. The meet function covers a product on the MV-algebras, on the D-posets and on the
effect algebras.

Definition 2.3. We say that a commutative and an associative binary operation • on a D-poset
(D,≤,⊖, (1Ω, 0Ω)) is product if it satisfying the following conditions for every A,B,C ∈ D:

(i) (1Ω, 0Ω) •A = A;

(ii) if A ≤ B, then C •A ≤ C •B and C • (B⊖A) = C •B⊖C •A.

Now we show an example of product operation on a D-poset (D,≤,⊖, (1Ω, 0Ω)) constructed
in Example 2.1.

Theorem 2.1. The operation ∗ defined by

A ∗B =
(
µA · µB, 1Ω − (1Ω − νA) · (1Ω − νB)

)
=

(
µA · µB, νA + νB − νA · νB

)
.

for each A = (µA, νA) ∈ D, B = (µB, νB) ∈ D is product operation on a D-poset D. There the
operation · is a classical multiplication.

Proof. Let A,B,C ∈ D. Evidently, the operation ∗ is commutative and associative. Moreover,

(i) (1Ω, 0Ω) ∗A = (1Ω · µA, 0Ω + νA − 0Ω · νA) = (µA, νA) = A.

(ii) If A ≤ B, i.e., µA ≤ µB and νA ≥ νB, then we have µC · µA ≤ µC · µB and

1Ω − (1Ω − νC) · (1Ω − νA) ≥ 1Ω − (1Ω − νC) · (1Ω − νB).

But

C ∗A =
(
µC · µA, 1Ω − (1Ω − νC) · (1Ω − νA)

)
= (1)

=
(
µC · µA, νC + νA − νC · νA

)
,

C ∗B =
(
µC · µB, 1Ω − (1Ω − νC) · (1Ω − νB)

)
= (2)

=
(
µC · µB, νC + νB − νC · νB

)
,

C ∗ (B⊖A) = (µC · µB − µC · µA, νB − νA − νC · νB + νC · νA + 1Ω), (3)

C ∗B⊖C ∗A = (µC · µB − µC · µA, νB − νA − νC · νB + νC · νA + 1Ω). (4)

Finally, we have C ∗A ≤ C ∗B by (1), (2) and C ∗ (B⊖A) = C ∗B⊖C ∗A by (3), (4).

Definition 2.4. Let x, y : B(R) → D be two observables of a D-poset (D,≤,⊖, (1Ω, 0Ω))

constructed in Example 2.1. The joint observable of the observables x, y is a mapping
h : B(R2) → D satisfying the following conditions:
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(i) h(R2) = (1Ω, 0Ω);

(ii) if A,B ∈ B(R2), A ⊂ B, then h(A) ≤ h(B) and h(B \ A) = h(B)⊖ h(A);

(iii) if A,Ai ∈ B(R2), i ∈ N , Ai ↗ A, then h(Ai) ↗ h(A).

(iv) h(C ×D) = x(C) ∗ y(D) for each C,D ∈ B(R).

Theorem 2.2. For each two observables x, y : B(R) → D there exists their joint observable.

Proof. Put x(A) = (x♭(A), 1 − x♯(A)), y(B) = (y♭(B), 1 − y♯(B)) for each A ∈ B(R). Then
x♭, x♯, y♭, y♯ : B(R) → T are observables, where T is the family of all S-measurable functions
from Ω to [0,1]. We want to construct h(K) = (h♭(K), 1− h♯(K)).

Fix ω ∈ Ω and put µ(A) = x♭(A)(ω), ν(B) = y♭(B)(ω). It is not difficult to prove that
µ, ν : B(R) → [0, 1] are probability measures. Let µ × ν : B(R2) → [0, 1] be the product of
measures and define h♭(K)(ω) = µ× ν(K). Then h♭ : B(R2) → T .

If C,D ∈ B(R), then h♭(C×D)(ω) = µ×ν(C×D) = µ(C) ·ν(D) = x♭(C)(ω) ·y♭(D)(ω),
hence h♭(C × D) = x♭(C) · y♭(D). Similarly, h♯ : B(R2) → T can be constructed so that
h♯(C ×D) = x♯(C) · y♯(D).

Put h(A) = (h♭(A), 1− h♯(A)), for A ∈ B(R2). By Theorem 2.1 we have

x(C) ∗ y(D) = (x♭(C), 1− x♯(C)) ∗ (y♭(D), 1− y♯(D)) =

= (x♭(C) · y♭(D), 1− x♯(C) · y♯(D)) =

= (h♭(C ×D), 1− h♯(C ×D)) = h(C ×D).

for each C,D ∈ B(R).

The following theorem makes a statement about the finite compatibility of a sequence of
observables in the D-poset of intuitionistic fuzzy sets.

Theorem 2.3. Let (D,≤,⊖, (1Ω, 0Ω)) be the D-poset constructed in Example 2.1. Then each
sequence (xn)

∞
1 of observables is finitely compatible in the following sense:

For every finite, non-empty set J ⊂ N there exists a mapping hJ : B(R|J |) → D such that the
following conditions hold:

(i) hJ(R
|J |) = (1Ω, 0Ω);

(ii) if A,B ∈ B(R|J |), A ⊂ B, then hJ(A) ≤ hJ(B) and hJ(B \ A) = hJ(B)⊖ hJ(A);

(iii) if A,Ai ∈ B(R|J |), i ∈ N , Ai ↗ A, then hJ(Ai) ↗ hJ(A).

(iv) if J1 ⊂ J2, then hJ2

(
π−1
J2, J1

(A)
)
= hJ1(A) for each A ∈ B(R|J1|), where πJ2, J1 : R|J2| →

R|J1| is the projection;

(v) if J = {t1, . . . , tk} and A1, . . . , Ak ∈ B(R), then

hJ(A1 × · · · × Ak) = xt1(A1) ∗ · · · ∗ xtk(Ak).
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Proof. Using Theorem 2.2 to each n ∈ N , there exists the mapping hn : B(Rn) → D called a
joint observable such that the conditions (i), (ii), (iii) hold and for each A1, . . . , Ak ∈ B(R)

hn(A1 × · · · × Ak) = x1(A1) ∗ · · · ∗ xn(An).

If J = {t1, . . . , tk}, then put hJ = htk ◦ π−1
I, J , where I = {1, . . . , tk}.

Now we define the notion of compatibility of observables in the D-poset (D,≤,⊖, (1Ω, 0Ω)).

Definition 2.5. Let (D,≤,⊖, (1Ω, 0Ω)) be the D-poset constructed in Example 2.1. We say that
a sequence (xn)

∞
1 of observables on D-poset D is compatible, if there exists an observable

x : B(R) → D and a sequence (fn)
∞
1 of Borel measurable functions fn : R → R such that

xn = x ◦ f−1
n

for each n ∈ N .

3 Almost uniform convergence in D-poset of IF-sets

In this section, we will study an almost uniform convergence in D-poset (D,≤,⊖, (1Ω, 0Ω))

constructed in Example 2.1. Every such MV-algebra M with a partial binary operation ⊖ given
by formula the b ⊖ a = b ⊙ ¬a is a D-poset (see [10]). We will try to apply the results for
MV-algebras to more general structures.

Now we formulate two definitions of almost uniform convergence for observables in D-poset
of IF-sets.

Definition 3.1. Let (D,≤,⊖, (1Ω, 0Ω)) be the D-poset constructed in Example 2.1 and m be a
state on D-poset D. We say that the sequence (yn)

∞
1 of the observables converges m-almost

uniformly to 0, if

∀α > 0 ∃A ∈ D : m(A) > 1− α,

∀β > 0 ∃ k ∈ N ∀n ≥ k : A ≤ yn
(
(−β, β)

)
.

Definition 3.2. Let (D,≤,⊖, (1Ω, 0Ω)) be the D-poset constructed in Example 2.1 and m be a
state on D-poset D. We say that the sequence (yn)

∞
1 of the observables converges m-almost

uniformly to 0, if

∀α > 0 ∃B ∈ D : m(B) > 1− α,

∀β > 0 ∃ k ∈ N ∀n ≥ k ∃Cn ∈ D, m(Cn) < α, Cn ≤ Cn+1 ≤ B : B⊖Cn ≤ yn
(
(−β, β)

)
.

In the following two theorems, we work with an almost everywhere and an almost uniform
convergence of random variables. We used Egorov’s theorem for random variables: Let (Ω,S, P )

be a probability space and (ξn)
∞
1 be a sequence of random variables. If a sequence (ξn)

∞
1

converges P -almost everywhere to 0, then the sequence (ξn)
∞
1 converges almost uniformly to 0.

Remark that the sequence of random variables (ξn)
∞
1 converges to 0 almost uniformly on A, if

for every α > 0 there exists a measurable set A such that P (A) > 1 − α and such that for every
β > 0 there exists k such that A ⊂ {t ∈ Ω : |ξn(t)| < β} for every n ≥ k.
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Theorem 3.1. Let (D,≤,⊖, (1Ω, 0Ω)) be the D-poset constructed in Example 2.1 and m be a
state on D-poset D. Let (yn)∞1 be a sequence of compatible observables in D-poset D, i.e.,
yn = y ◦ f−1

n , where fn : R → R are Borel measurable functions. If a sequence (fn)
∞
1 of

Borel functions converges my-almost everywhere to 0, then the sequence (yn)
∞
1 of observables

converges m-almost uniformly to 0.

Proof. Remark that my : B(R) → [0, 1] defined by my(A) = m
(
y(A)

)
is a probability measure.

Since the sequence (fn)
∞
1 of Borel functions converges my-almost everywhere to 0, then by

Egorov’s theorem the sequence (fn)
∞
1 converges my-almost uniformly to 0. It means that for

every α > 0 there exists a set A ∈ B(R) such that my(A) > 1− α and such that for every β > 0

there exists k such that A ⊂ f−1
n

(
(−β, β)

)
for every n ≥ k.

Put A = y(A). Then m(A) = m
(
y(A)

)
= my(A) > 1− α and for n ≥ k we have

A = y(A) ≤ y ◦ f−1
n

(
(−β, β)

)
= yn

(
(−β, β)

)
.

Therefore, the sequence (yn)
∞
1 of compatible observables in the D-poset D converges m-almost

uniformly to 0.

We can define a function of several observables in D-poset (D,≤,⊖, (1Ω, 0Ω)) with the help
of a joint observable.

Definition 3.3. Let (D,≤,⊖, (1Ω, 0Ω)) be the D-poset constructed in Example 2.1. Let x1, . . . , xn :

B(R) → D be observables, hn their joint observable and gn : Rn → R a Borel measurable
function. Then the observable gn(x1, . . . , xn) : B(R) → D is defined by the formula

gn(x1, . . . , xn)(A) = hn

(
g−1
n (A)

)
.

for each A ∈ B(R).

Now we explain the Kolmogorov probability space (RN , σ(C), P ), where RN is a space of all
sequences (ti)∞1 of real numbers. As a cylinder we understand a set C ⊂ RN given by

C = {(ti)∞1 ∈ RN : (t1, . . . , tn) ∈ A},

where n ∈ N and A ∈ B(Rn). By C we denote the family of all cylinders in RN and by σ(C)
the corresponding σ-algebra generated by C. Such a cylinder C can be expressed in the form
C = π−1

n (A), where a mapping πn : RN → Rn is the n-th coordinate random vector given by
πn

(
(ti)

∞
1

)
= (t1, . . . , tn), then

C = {π−1
n (A) | n ∈ N,A ∈ B(Rn)}.

Therefore, there exists exactly one probability measure P : σ(C) → [0, 1] such that

P (π−1
n (A)) = Pn(A) = m

(
hn(A)

)
for each A ∈ B(Rn), where hn : B(R) → D is a joint observable of observables x1, . . . , xn on
D-poset D. Hence, we can define the random variable ξn : RN → R with respect to σ(C) by
ξn((ti)

∞
1 ) = tn. Next we show two proofs of the following theorem, using both definitions of

almost uniform convergence on D-poset of IF-sets D.
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Theorem 3.2. Let (xi)
∞
1 be a sequence of observables in the D-poset (D,≤,⊖, (1Ω, 0Ω)) with

product ∗ and m be a state. Let (ξn)∞1 be the sequence of corresponding random variables defined
on Kolmogorov probability space (RN , σ(C), P ). Let (gn)∞1 be a sequence of Borel measurable
functions, gn : Rn → R. If the sequence

(
gn(ξ1, . . . , ξn)

)∞
1

converges P -almost everywhere to 0,
then the sequence

(
gn(x1, . . . , xn)

)∞
1

converges m-almost uniformly to 0.

First Proof. Let hn : B(Rn) → D be the joint observable of x1, . . . , xn and πn : RN → Rn

be the n-th coordinate random vector defined by πn

(
(ti)

∞
1

)
= (t1, . . . , tn). Hence the observable

yn = gn(x1, . . . , xn) : B(R) → D is given by yn = hn ◦ g−1
n and the random variable

ηn = gn(ξ1, . . . , ξn) : R
N → R is defined by ηn = gn ◦ πn.

Let the sequence (ηn)
∞
1 converges P -almost everywhere to 0. By the Egorov’s theorem

the sequence (ηn)
∞
1 converges P -almost uniformly to 0 in the Kolmogorov probability space

(RN , σ(C), P ). Then, by definition, for every α > 0 there exists A ∈ σ(C) such that
P (A) > 1 − α and such that for every β > 0 there exists k such that A ⊂ η−1

n

(
(−β, β)

)
for

every n ≥ k. Since A ∈ σ(C), then there exist n ∈ N and B ∈ B(Rn) such that A = π−1
n (B).

But A ⊂ η−1
n

(
(−β, β)

)
. Therefore,

π−1
n (B) ⊂ {(ti)∞1 ∈ RN : (t1, . . . , tn) ∈ g−1

n

(
(−β, β)

)
};

i.e.,
π−1
n (B) ⊂ π−1

n

(
g−1
n

(
(−β, β)

))
.

Put A = hn(B). Then,

m(A) = m
(
hn(B)

)
= P

(
π−1
n (B)

)
= P (A) > 1− α

and

π−1
n (B) ⊂ π−1

n

(
g−1
n

(
(−β, β)

))
,

hn

(
π−1
n (B)

)
≤ hn

(
π−1
n

(
g−1
n

(
(−β, β)

)))
,

hn(B) ≤ hn

(
g−1
n

(
(−β, β)

))
,

A ≤ yn
(
(−β, β)

)
.

Hence, the sequence (yn)
∞
1 converges m-almost uniformly to 0 in the D-poset D. This

completes the first proof. □

Second Proof. Let hn : B(Rn) → D be the joint observable of x1, . . . , xn and πn : RN → Rn

be the n-th coordinate random vector defined by πn

(
(ti)

∞
1

)
= (t1, . . . , tn). Hence the observable

yn = gn(x1, . . . , xn) : B(R) → D is given by yn = hn ◦ g−1
n and the random variable ηn =

gn(ξ1, . . . , ξn) : R
N → R is defined by ηn = gn ◦ πn.

Let the sequence (ηn)
∞
1 converges P -almost everywhere to 0. By the Egorov’s theorem

the sequence (ηn)
∞
1 converges P -almost uniformly to 0 in the Kolmogorov probability space

(RN , σ(C), P ). Then, by definition, for every α > 0 there exists A ∈ σ(C) such that P (A) > 1−α
2

and such that for every β > 0 there exists k such that A ⊂ η−1
n

(
(−β, β)

)
for every n ≥ k. By the

approximation theorem there exists B ∈ σ(C) such that P (A△B) < α
2

. Evidently,
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P (B) ≥ P (A)− P (A \B) > 1− α

2
− α

2
= 1− α.

Fix n and put
Bn = {(tj)∞1 ∈ B : ∃i, i ≤ n,

∣∣ηi((tj)∞1 )
∣∣ ≥ β}.

Since B,Bn ∈ σ(C), then there exist n ∈ N and C,Cn ∈ B(Rn) such that B = π−1
n (C),

Bn = π−1
n (Cn). As B \Bn ⊂ η−1

n

(
(−β, β)

)
, then we have

π−1
n (C) \ π−1

n (Cn) ⊂ {(tj)∞1 ∈ RN : (t1, . . . , tn) ∈ g−1
n

(
(−β, β)

)
}

i.e.,
π−1
n (C) \ π−1

n (Cn) ⊂ π−1
n

(
g−1
n

(
(−β, β)

))
.

Put B = hn(C), Cn = hn(Cn). Then,

m(B) = m
(
hn(C)

)
= P

(
π−1
n (C)

)
= P (B) > 1− α

and
m(Cn) = m

(
hn(Cn)

)
= P

(
π−1
n (Cn)

)
= P (Bn) ≤ P (B \ A) < α.

Denote

Cn = hn(Cn) = hn+1

(
π−1
n+1,n(Cn)

)
,

Cn+1 = hn+1(Cn+1) = hn+1

(
π−1
n+1,n+1(Cn+1)

)
,

B = hn(C) = hn+1

(
π−1
n+1,n(C)

)
.

Then
Bn ⊂ Bn+1 ⊂ B

π−1
n (Cn) ⊂ π−1

n+1(Cn+1) ⊂ π−1
n (C),

π−1
n+1

(
π−1
n+1,n(Cn)

)
⊂ π−1

n+1

(
π−1
n+1,n+1(Cn+1)

)
⊂ π−1

n+1

(
π−1
n+1,n(C)

)
,

π−1
n+1,n(Cn) ⊂ π−1

n+1,n+1(Cn+1) ⊂ π−1
n+1,n(C),

hn+1

(
π−1
n+1,n(Cn)

)
≤ hn+1

(
π−1
n+1,n+1(Cn+1)

)
≤ hn+1

(
π−1
n+1,n(C)

)
,

hn(Cn) ≤ hn+1(Cn+1) ≤ hn(C),

Cn ≤ Cn+1 ≤ B

and

B \Bn ⊂ η−1
n

(
(−β, β)

)
,

π−1
n (C) \ π−1

n (Cn) ⊂ π−1
n

(
g−1
n

(
(−β, β)

))
,

hn

(
π−1
n (C) \ π−1

n (Cn)
)

≤ hn

(
π−1
n

(
g−1
n

(
(−β, β)

)))
,

hn

(
π−1
n (C)

)
⊖ hn

(
π−1
n (Cn)

)
≤ hn

(
π−1
n

(
g−1
n

(
(−β, β)

)))
,

hn(C)⊖ hn(Cn) ≤ hn

(
g−1
n

(
(−β, β)

))
,

B⊖Cn ≤ yn
(
(−β, β)

)
.

Hence, the sequence (yn)
∞
1 converges m-almost uniformly to 0 in D-poset D. □
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4 Conclusion

The paper is concerned in the probability theory on the D-poset (D,≤,⊖, (1Ω, 0Ω)) constructed
in Example 2.1. We defined product operation and a joint observable on D-poset D and proved
its existence. We formulated two definitions of m-almost uniformly convergence for a sequence
of observables in the D-poset D. We showed the connection between an almost everywhere
convergence of random variables in Kolmogorov probability space and an almost uniformly
convergence of observables in D-poset D.
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