On two formulations of the IF state representation theorem

Beloslav Riečan

Department of Mathematics
Faculty of Natural Sciences, Matej Bel University
Tajovského 40, 97401 Banská Bystrica, Slovakia

Abstract

There are two IF-state representation theorems, [2,4]. They represent IF-state by some classical Kolmogorovian probabilities. Of course, they must be equivalent, but the formulations correspond with the constructions of the probabilities.

Keywords: D-poset, Effect algebra, Multiplicative operation.
AMS Classification: 03G12, 03B5D.

1 Butnariu-Klement formulation

Recall the definition of IF-sets and some operations with them.

Definition 1. Let Ω be a nonempty set. An IF-subsets of Ω is a pair A of mappings $A=$ $\left(\mu_{A}, \nu_{A}\right), \mu_{A}: \Omega \rightarrow[0,1], \nu_{A}: \Omega \rightarrow[0,1]$ such that $\mu_{A}+\nu_{A} \leq 1_{\Omega}$. If A, B are IF-sets then we define

$$
\begin{aligned}
& A \oplus B=\left(\left(\mu_{A}+\mu_{B}\right) \wedge 1,\left(\nu_{A}+\nu_{B}-1\right) \vee 0\right), \\
& A \odot B=\left(\left(\mu_{A}+\mu_{B}-1\right) \vee 0,\left(\nu_{A}+\nu_{B}\right) \wedge 1\right),
\end{aligned}
$$

and

$$
A \leq B \Longleftrightarrow \mu_{A} \leq \mu_{A}, \nu_{A} \geq \nu_{B}
$$

The following terminology is probably inspired by the quantum theory. Therefore we speak about states instead of probabilities.

Definition 2. Start with a measurable space (Ω, \mathcal{S}), hence \mathcal{S} is a σ-algebra of subsets of Ω. An IF-event is such an IF-set $A=\left(\mu_{A}, \nu_{A}\right)$ that $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$ are \mathcal{S}-measurable. Let \mathcal{F} be the
family of all IF-events in Ω. A mapping $m: \mathcal{F} \rightarrow[0,1]$ is called an IF-state, if the following conditions are satisfied:
(i) $m\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1, m\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=0$;
(ii) $\left.A \odot B=\left(0_{\Omega}, 1_{\Omega}\right)\right) \Longrightarrow m(A \oplus B)=m(A)+m(B)$;
(iii) $A_{n} \nearrow A\left(\right.$ i.e. $\left.\mu_{A_{n}} \nearrow \mu_{A}, \nu_{A_{n}} \searrow \nu_{A}\right) \Longrightarrow m\left(A_{n}\right) \nearrow m(A)$.

Now we shall present the first solution of a problem of Radko Mesiar: find all IF-states on Ω.

Theorem 1. To each state $m: \mathcal{F} \rightarrow[0,1]$ there exist exactly one probability measure $P: \mathcal{S} \rightarrow[0,1]$ and exactly one $\alpha \in[0,1]$ such that

$$
m(A)=(1-\alpha) \int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega} \nu_{A} d P\right)
$$

for any $A \in \mathcal{F}$.
Proof. In [5] it was based on the Butnariu-Klement theorem ([1]): m can be found in the form $m(A)=f\left(\int_{\Omega} \mu_{A} d P, \int_{\Omega} \nu_{A} d P\right)$. If β, Q is another pair, then

$$
(1-\alpha) \int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega} \nu_{A} d P\right)=(1-\beta) \int_{\Omega} \mu_{A} d Q+\beta\left(1-\int_{\Omega} \nu_{A} d Q\right)
$$

Put $\mu_{A}=\nu_{A}=0_{\Omega}$. Then we obtain $\alpha=\beta$. If we put $\mu_{A}=\chi_{A}, \nu_{A}=0_{\Omega}$, then we obtain

$$
(1-\alpha) \int_{\Omega} \mu_{A} d P+\alpha=(1-\alpha) \int_{\Omega} \mu_{A} d Q+\alpha,
$$

hence if $\alpha \neq 1$ we obtain $P(A)=Q(A)$ for any $A \in \mathcal{S}$, hence $P=Q$. Let $\alpha=1$. Then again

$$
1-P(A)=1-\int \chi_{A} d P=1-\int \chi_{A} d Q=1-Q(A),
$$

for any $A \in \mathcal{S}$, hence $P=Q$.

2 Cignoli formulation

The proof without the Butnariu-Klement theorem has been presented in [2].

Theorem 2. To each state $m: \mathcal{F} \rightarrow[0,1]$ there are probability measures $P, Q: \mathcal{S} \rightarrow[0,1]$ and $\alpha \in[0,1]$ such that

$$
m(A)=\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right)
$$

for any $A=\left(\mu_{A} \cdot \nu_{A}\right) \in \mathcal{F}$.

Theorem 3. Theorem 2 follows from Theorem 1.

Proof. Put $Q=P$. Then

$$
m(A)=(1-\alpha) \int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega} \nu_{A} d P\right)=\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d P\right.
$$

Hence the proof.
Now we show that also Theorem 2 implies Theorem 1.

Theorem 4. Let $P, Q, R: \mathcal{S} \rightarrow[0,1]$ be probability measures. and $\alpha, \beta \in[0,1]$ such that

$$
\begin{aligned}
& (1-\beta) \int_{\Omega} \mu_{A} d R+\beta\left(1-\int_{\Omega} \nu_{A} d R\right)= \\
& =\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right.
\end{aligned}
$$

for any $A \in \mathcal{S}$. Then $\alpha=\beta$ and $P=Q=R$.
Proof. First put $\mu_{A}=0_{\Omega}, \nu_{A}=0_{\Omega}$. Then $\beta=\alpha$. Put now $\mu_{A}=0, \nu_{A}=\chi_{A}$. Then

$$
\alpha(1-R(A))=\alpha(1-Q(A)) .
$$

for any $A \in \mathcal{S}$. Therefore, if $\alpha \neq 0$, then $R=Q$. If $\alpha=0$ then $R(A)=P(A)$ for any $A \in \mathcal{S}$, hence $R=P$.

Now put $\mu_{A}=\chi_{A}, \nu_{A}=0_{\Omega}$. Then $(1-\alpha) R(A)+\alpha=P(A)+\alpha-\alpha Q(A)$.
If $\alpha \neq 0$ then $(1-\alpha) R(A)=P(A)-\alpha R(A)$, hence $R=P=Q)$.
If $\alpha=0$, then $R=P$, and Q can be arbitrary.

3 Grzegorzewski formulation

Consider a probability space (Ω, \mathcal{S}, P). Then in [3] the probability $P(A)$ of an event $A=$ (μ_{A}, ν_{A}) has been defined as a compact interval by the equality

$$
m(A)=\left[\int_{\Omega} \mu_{A} d P, 1-\int_{\Omega} \nu_{A} d P\right] .
$$

Let \mathcal{J} be the family of all compact intervals. Then the mapping $m: \mathcal{F} \rightarrow \mathcal{J}$ can be defined axiomatically similarly as in [4].

Definition 3. A mapping $m: \mathcal{F} \rightarrow \mathcal{J}$ is called an IF-probability, if the following conditions hold:
(i) $m\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=[1,1], m\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=[0,0]$;
(ii) $A \odot B=\left(0_{\Omega}, 1_{\Omega}\right) \Longrightarrow m(A \oplus B)=m(A)+m(B)$;
(iii) $A_{n} \nearrow A \Longrightarrow m\left(A_{n}\right) \nearrow m(A)$.
(Recall that $\left[\alpha_{n}, \beta_{n}\right] \nearrow[\alpha, \beta]$ means that $\alpha_{n} \nearrow \alpha, \beta_{n} \nearrow \beta$, but $A_{n}=\left(\mu_{A_{n}}, \nu_{A_{n}}\right) \nearrow A=$ $\left(\mu_{A}, \nu_{A}\right)$ means $\mu_{A_{n}} \nearrow \mu_{A}, \nu_{A_{n}} \searrow \nu_{A}$.)

Very well known is the following assertion.

Theorem 5. Let $m: \mathcal{F} \rightarrow \mathcal{J}$ be an IF-probability, $m(A)=\left[m^{b}(A), m^{\sharp}(A)\right], A \in \mathcal{F}$. Then $m^{b}: \mathcal{F} \rightarrow[0,1], m^{\sharp}: \mathcal{F} \rightarrow[0,1]$ are IF-states.

Of course, we know the general form of IF-states. Therefore the following theorem is evident.

Theorem 6. Let $m: \mathcal{F} \rightarrow \mathcal{J}$ be an IF-probability. Then there exist Kolmogorov probabilities $P^{b}: \mathcal{S} \rightarrow[0,1], P^{\sharp}: \mathcal{S} \rightarrow[0,1]$ and $\alpha^{b}, \alpha^{\sharp} \in[0,1]$ such that

$$
\begin{aligned}
& m^{b}(A)=\int_{\Omega} \mu_{A} d P^{b}+\alpha^{b}\left(1-\int_{\Omega} \nu_{A} d P^{b}\right), \\
& m^{\sharp}(A)=\int_{\Omega} \mu_{A} d P^{\sharp}+\alpha^{\sharp}\left(1-\int_{\Omega} \nu_{A} d P^{\sharp}\right),
\end{aligned}
$$

where $\alpha^{b} \leq \alpha^{\sharp}$ and $\alpha^{b}\left(1-P^{b}(A)\right) \leq \alpha^{\sharp}\left(1-P^{\sharp}(A)\right), A \in \mathcal{F}$.
Proof. We have

$$
\begin{aligned}
& m^{b}(A)=\int_{\Omega} \mu_{A} d P^{b}+\alpha^{b}\left(1-\int_{\Omega} \nu_{A} d P^{b}\right) \leq \\
& \leq m^{\sharp}(A)=\int_{\Omega} \mu_{A} d P^{\sharp}+\alpha^{\sharp}\left(1-\int_{\Omega} \nu_{A} d P^{\sharp}\right) .
\end{aligned}
$$

Put $\mu_{A}=\nu_{A}=0_{\Omega}$. Then we directly obtain $\alpha^{b} \leq \alpha^{\sharp}$. Moreover $\mu_{A}=o_{\Omega}, \nu_{A}=\chi_{A}$ implies

$$
\alpha^{b}\left(1-P^{b}(A)\right) \leq \alpha^{\sharp}\left(1-P^{\sharp}(A)\right)
$$

for any $A \in \mathcal{S}$.

References

[1] Butnariu, D. \& E. P. Klement (1993) Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer, Dordrecht.
[2] Ciungu, L. \& B. Riečan (2010) Representation theorem for probabilities on IFS-events. Information Sciences, 180, 793-798.
[3] Grzegorzewski, P.,\& E. Mrowka (2002) Probability of intuitionistic fuzzy events. In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski et al. eds.), 105-115.
[4] Riečan, B. (2003) A decsriptive definition of the probability on intuitionistic fuzzy sets. In: EUSFLAT 2003 (M. Wagenecht, R. Hampet, eds.), 263-266.
[5] Riečan, B. (2006) On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 152, 1485-1490.

