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1 Butnariu–Klement formulation

Recall the definition of IF-sets and some operations with them.

Definition 1. Let Ω be a nonempty set. An IF-subsets of Ω is a pair A of mappings A =

(µA, νA), µA : Ω → [0, 1], νA : Ω → [0, 1] such that µA + νA ≤ 1Ω. If A,B are IF-sets then we
define

A⊕B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0),

A�B = ((µA + µB − 1) ∨ 0, (νA + νB) ∧ 1),

and
A ≤ B ⇐⇒ µA ≤ µA, νA ≥ νB.

The following terminology is probably inspired by the quantum theory. Therefore we speak
about states instead of probabilities.

Definition 2. Start with a measurable space (Ω,S), hence S is a σ-algebra of subsets of Ω. An
IF-event is such an IF-set A = (µA, νA) that µA, νA : Ω→ [0, 1] are S-measurable. Let F be the
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family of all IF–events in Ω. A mapping m : F → [0, 1] is called an IF-state, if the following
conditions are satisfied:

(i) m((1Ω, 0Ω)) = 1,m((0Ω, 1Ω)) = 0;

(ii) A�B = (0Ω, 1Ω)) =⇒ m(A⊕B) = m(A) +m(B);

(iii) An ↗ A(i.e.µAn ↗ µA, νAn ↘ νA) =⇒ m(An)↗ m(A).

Now we shall present the first solution of a problem of Radko Mesiar: find all IF-states on Ω.

Theorem 1. To each state m : F → [0, 1] there exist exactly one probability measure
P : S → [0, 1] and exactly one α ∈ [0, 1] such that

m(A) = (1− α)

∫
Ω

µAdP + α(1−
∫
Ω

νAdP )

for any A ∈ F .

Proof. In [5] it was based on the Butnariu–Klement theorem ([1]): m can be found in the form
m(A) = f(

∫
Ω
µAdP,

∫
Ω
νAdP ). If β,Q is another pair, then

(1− α)

∫
Ω

µAdP + α(1−
∫
Ω

νAdP ) = (1− β)

∫
Ω

µAdQ+ β(1−
∫
Ω

νAdQ).

Put µA = νA = 0Ω. Then we obtain α = β. If we put µA = χA, νA = 0Ω, then we obtain

(1− α)

∫
Ω

µAdP + α = (1− α)

∫
Ω

µAdQ+ α,

hence if α 6= 1 we obtain P (A) = Q(A) for any A ∈ S, hence P = Q. Let α = 1. Then again

1− P (A) = 1−
∫
χAdP = 1−

∫
χAdQ = 1−Q(A),

for any A ∈ S, hence P = Q.

2 Cignoli formulation

The proof without the Butnariu–Klement theorem has been presented in [2].

Theorem 2. To each state m : F → [0, 1] there are probability measures P,Q : S → [0, 1] and
α ∈ [0, 1] such that

m(A) =

∫
Ω

µAdP + α(1−
∫
Ω

(µA + νA)dQ)

for any A = (µA.νA) ∈ F .

Theorem 3. Theorem 2 follows from Theorem 1.
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Proof. Put Q = P. Then

m(A) = (1− α)

∫
Ω

µAdP + α(1−
∫
Ω

νAdP ) =

∫
Ω

µAdP + α(1−
∫
Ω

(µA + νA)dP.

Hence the proof.

Now we show that also Theorem 2 implies Theorem 1.

Theorem 4. Let P,Q,R : S → [0, 1] be probability measures. and α, β ∈ [0, 1] such that

(1− β)

∫
Ω

µAdR + β(1−
∫
Ω

νAdR) =

=

∫
Ω

µAdP + α(1−
∫
Ω

(µA + νA)dQ.

for any A ∈ S. Then α = β and P = Q = R.

Proof. First put µA = 0Ω, νA = 0Ω. Then β = α. Put now µA = 0, νA = χA. Then

α(1−R(A)) = α(1−Q(A)).

for any A ∈ S. Therefore, if α 6= 0, then R = Q. If α = 0 then R(A) = P (A) for any A ∈ S,
hence R = P .

Now put µA = χA, νA = 0Ω. Then (1− α)R(A) + α = P (A) + α− αQ(A).

If α 6= 0 then (1− α)R(A) = P (A)− αR(A), hence R = P = Q).
If α = 0, then R = P , and Q can be arbitrary.

3 Grzegorzewski formulation

Consider a probability space (Ω,S, P ). Then in [3] the probability P (A) of an event A =

(µA, νA) has been defined as a compact interval by the equality

m(A) = [

∫
Ω

µAdP, 1−
∫
Ω

νAdP ].

Let J be the family of all compact intervals. Then the mapping m : F → J can be defined
axiomatically similarly as in [4].

Definition 3. A mapping m : F → J is called an IF-probability, if the following conditions
hold:

(i) m((1Ω, 0Ω)) = [1, 1],m((0Ω, 1Ω)) = [0, 0];

(ii) A�B = (0Ω, 1Ω) =⇒ m(A⊕B) = m(A) +m(B);

(iii) An ↗ A =⇒ m(An)↗ m(A).
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(Recall that [αn, βn] ↗ [α, β] means that αn ↗ α, βn ↗ β, but An = (µAn , νAn) ↗ A =

(µA, νA) means µAn ↗ µA, νAn ↘ νA.)

Very well known is the following assertion.

Theorem 5. Let m : F → J be an IF-probability, m(A) = [mb(A),m](A)], A ∈ F . Then
mb : F → [0, 1],m] : F → [0, 1] are IF-states.

Of course, we know the general form of IF-states. Therefore the following theorem is evident.

Theorem 6. Let m : F → J be an IF-probability. Then there exist Kolmogorov probabilities
P b : S → [0, 1], P ] : S → [0, 1] and αb, α] ∈ [0, 1] such that

mb(A) =

∫
Ω

µAdP
b + αb(1−

∫
Ω

νAdP
b),

m](A) =

∫
Ω

µAdP
] + α](1−

∫
Ω

νAdP
]),

where αb ≤ α] and αb(1− P b(A)) ≤ α](1− P ](A)), A ∈ F .

Proof. We have

mb(A) =

∫
Ω

µAdP
b + αb(1−

∫
Ω

νAdP
b) ≤

≤ m](A) =

∫
Ω

µAdP
] + α](1−

∫
Ω

νAdP
]).

Put µA = νA = 0Ω. Then we directly obtain αb ≤ α]. Moreover µA = oΩ, νA = χA implies

αb(1− P b(A)) ≤ α](1− P ](A))

for any A ∈ S.
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