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Abstract: IF -sets were first time defined in the paper [1] and they represent the natural extension
of the theory of fuzzy sets. In the paper [6] there was proved that Lagrange theorem holds for
functions defined on IF -sets. Therefore it is natural question if it is possible to prove also Taylor’s
theorem for functions defined on IF -sets. To prove this theorem we defined polynomial function
and Taylor’s formula for functions defined on IF -sets. Then the Taylor’s theorem is proved.
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1 Introduction

By an IF -set we consider a pair A = (µA, νA) of functions µA, νA : Ω→ [0, 1] such that

µA + νA ≤ 1.

The function µA is called a membership function of A, νA a nonmembership function of A. If
(Ω,S) is a measurable space and µA, νA are S-measurable, then A is called an IF -event. Denote
by F the family of all IF -events.
In the paper [3] there was proved that we could construct such `-groupG that F can be embedded
into G. Consider the set A = (µA, νA), where µA, νA : Ω → R. Denote by G the set of all pairs
A = (µA, νA) and for any A,B ∈ G define the following operation

A+B = (µA + µB, νA + νB − 1)

and the relation
A ≤ B ⇐⇒ µA ≤ µB, νA ≥ νB.
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Then the triple G = (G,+,≤) is the mentioned `-group.
On the set G there are defined some more operations. For our studies we will need following of
them

A−B = (µA − µB, νA − νB + 1)

A.B = (µA.µB, νA + νB − νA.νB).

Evidently

c.A = (c.µA, 1− c.(1− νA)) , c ∈ R,
n∑

i=1

Ai =

(
n∑

i=1

µAi
,

n∑
i=1

(νAi
− 1) + 1

)
.

The element (0, 1) is a neutral element of the operation + and the element

−A = (−µA, 2− νA)

is an inverse element to the element A. If B > (0, 1), whereby A > B ⇔ µA > µB, νA < νB,
then

A

B
=

(
µA

µB

,
νA − νB
1− νB

)
.

In the paper [5] there was given the definition of the function f̄ on the family of all IF -sets in the
following form:
Let f be a real function. Let A = (µA, νA), B = (µB, νB), A ≤ B and [µA, µB] ∪ [νB, νA] ⊂
Domf. Then the function f̄ : [A,B]→ R2 is defined by

f̄(X) = (f(µX), 1− f(1− νX))

where X = (µX , νX) is called a variable.
For example for any natural number n it holds

Xn = ((µX)n, 1− (1− νX)n).

In this paper we will use this function in the shorter notation

Xn = (µn
X , 1− (1− νX)n).

In the paper [4] there was given the definition of the derivation of the function on the family of
all IF -sets in the following form

f̄ ′(X) = (f ′(µX), 1− f ′(1− νX)) .

It is easy to proved that for the n-th derivation it holds

f̄ (n)(X) =
(
f (n)(µX), 1− f (n)(1− νX)

)
.
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2 Polynomial function

To define the Taylor’s formula and to prove Taylor’s theorem we need first to express the definition
of the polynomial function. We will do it in this section.

Definition 2.1 Let n ∈ N , X = (µX , νX) be the variable and Ai ∈ R2, Ai = (µAi
, νAi

),
i = 0, 1, 2, . . . , n be the constants, An 6= (0, 1). Then

p̄n(X) = A0 + A1X + A2X
2 + . . .+ AnX

n

is called the polynomial function.

Theorem 2.2 Let X = (µX , νX) be the variable and p̄n be a polynomial function. Then it holds

p̄n((µX , νX)) = (µA0 + µA1µX + µA2µ
2
X + . . .+ µAnµ

n
X ,

νA0 + (νA1 − 1)(1− νX) + (νA2 − 1)(1− νX)2 + . . .+ (νAn − 1)(1− νX)n)

Proof:
From the definitions of the operations it follows

Xn = (µn
X , 1− (1− νX)n)

AXn = (µAµ
n
X , νA + (1− (1− νX)n)− νA(1− (1− νX)n)).

The second component could be modified by the following way

νA + (1− (1− νX)n)− νA(1− (1− νX)n)− 1 + 1 =

= νA(1− (1− (1− νX)n))− 1(1− (1− (1− νX)n)) + 1 =

= (νA − 1)(1− νX)n + 1.

Therefore
AXn = (µAµ

n
X , (νA − 1)(1− νX)n + 1).

Then we obtain

A0 = A0X
0 = (µA0µ

0
X , (νA0 − 1)(1− νX)0 + 1) =

= (µA0 , νA0) = B0

A1X
1 = (µA1µ

1
X , (νA1 − 1)(1− νX)1 + 1) = B1

A2X
2 = (µA2µ

2
X , (νA2 − 1)(1− νX)2 + 1) = B2

...

AnX
n = (µAnµ

n
X , (νAn − 1)(1− νX)n + 1) = Bn

Therefore

p̄n(X) =
n∑

i=0

Bi =
( n∑

i=0

µAi
µi
X ,

n∑
i=0

(
((νAi

− 1)(1− νX)i + 1)− 1
)

+ 1
)

=

36



=
( n∑

i=0

µAi
µi
X ,

n∑
i=0

(((νAi
− 1)(1− νX)i) + 1)

)
=

=
(
µA0 + µA1µX + µA2µ

2
X + . . .+ µAnµ

n
X ,

νA0 + (νA1 − 1)(1− νX) + (νA2 − 1)(1− νX)2 + . . .+ (νAn − 1)(1− νX)n
)
.

Remark 2.3 We could use also the approach that polynomial function is a special type of a func-
tion. Then

p̄n((µX , νX)) = (pn(µX), 1− pn(1− νx))

where
pn(µX) = µA0 + µA1µX + µA2µ

2
X + . . .+ µAnµ

n
X ,

and
1− pn(1− νX) = 1− [(1− νA0) + (1− νA1)(1− νX)+

+(1− νA2)(1− νX)2 + . . .+ (1− νAn)(1− νX)n] =

= νA0 + (νA1 − 1)(1− νX) + (νA2 − 1)(1− νX)2 + . . .+ (νAn − 1)(1− νX)n

3 Taylor’s formula and Taylor’s theorem

In the paper [6] there was proved that Lagrange mean value theorem could be established also on
the family of all IF -sets. Concretely if f̄ is continuous on [A,B] and differentiable on (A,B)

then there exists C ∈ (A,B) such that

f̄(B)− f̄(A) = (f(µB − µA), f(1− νA)− f(1− νB) + 1) =

= (f ′(µC)(µB − µA), f ′(1− νC)(νB − νA) + 1) = f̄ ′(C)(B − A).

Since this theorem holds we could answer the question if it possible to prove Taylor’s theorem on
the family of IF -sets. Let us start with the definition of Taylor’s formula.

Definition 3.1 Let n ∈ N , X = (µX , νX) be the variable and X0 = (µX0 , νX0), X0 ∈ R2 be
the fixed point. Let f̄(X) = (f(µX), 1 − f(1 − νX)) be a function defined on the family of all
IF -sets. Let the derivations f̄ (i)(X) = (f (i)(µX), 1 − f (i)(1 − νX)) exist for i = 1, 2, . . . , n.
Then the Taylor’s formula at the point X0 has the following form

T̄n(X) = f̄(X0) +
f̄ (1)(X0)

1!
(X −X0) +

f̄ (2)(X0)

2!
(X −X0)

2 + . . .+
f̄ (n)(X0)

n!
(X −X0)

n.

Theorem 3.2 Let the assumptions of the previous definition hold. Function T̄n is the Taylor’s
formula at the point X0 = (µX0 , νX0) if and only if for any X = (µX , νX) it holds

T̄n((µX , νX)) =
(
f(µX0) +

f (1)(µX0)

1!
(µX − µX0) + . . .+

f (n)(µX0)

n!
(µX − µX0)

n,

1− (f(1− νX0) +
f (1)(1− νX0)

1!
(νX0 − νX) + . . .+

f (n)(1− νX0)

n!
(νX0 − νX)n)

)
.
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Proof:
Since

Xn = (µn
X , 1− (1− νX)n)

X −X0 = (µX − µX0 , νX − νX0 + 1)

f̄ (n)(X0) = (f (n)(µX0), 1− f (n)(1− νX0))

cX = (cµX , 1− c(1− νX))

where c is any real number. Then

(X −X0)
n = ((µX − µX0)

n, 1− (1− (νX − νX0 + 1))n) =

= ((µX − µX0)
n, 1− (νX0 − νX)n)

and
f̄ (n)(X0)(X −X0)

n = (f (n)(µX0)(µX − µX0)
n,

1− f (n)(1− νX0) + 1− (νX0 − νX)n − ((1− f (n)(1− νX0))(1− (νX0 − νX)n))).

After the modification of the second part we obtain

1− f (n)(1− νX0) + 1− (νX0 − νX)n − ((1− f (n)(1− νX0))(1− (νX0 − νX)n))) =

= 1− f (n)(1− νX0) + 1− (νX0 − νX)n−

−1 + (νX0 − νX)n + f (n)(1− νX0)− f (n)(1− νX0)(νX0 − νX)n =

= 1− f (n)(1− νX0)(νX0 − νX)n.

Therefore

f̄ (n)(X0)(X −X0)
n = (f (n)(µX0)(µX − µX0)

n, 1− f (n)(1− νX0)(νX0 − νX)n).

Finally for any c ∈ R it holds

cf̄ (n)(X0)(X −X0)
n = (cf (n)(µX0)(µX − µX0)

n,

1− c(1− (1− f (n)(1− νX0)(νX0 − νX)n)))

hence

cf̄ (n)(X0)(X −X0)
n = (cf (n)(µX0)(µX − µX0)

n, 1− c(f (n)(1− νX0)(νX0 − νX)n)).

Put ci = 1
i!

for i = 1, 2, . . . , n then

f̄ (i)(X0)

i!
(X −X0)

i =

(
f (i)(µX0)

i!
(µX − µX0)

i, 1− f (i)(1− νX0)

i!
(νX0 − νX)i

)
is the i-th member of the Taylor’s formula. After the summation of all members of Taylor’s
formula we get

T̄n((µX , νX)) =
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=

(
n∑

i=0

f (i)(µX0)

i!
(µX − µX0)

i,
n∑

i=0

(
1− f (i)(1− νX0)

i!
(νX0 − νX)i − 1

)
+ 1

)
=

=

(
n∑

i=0

f (i)(µX0)

i!
(µX − µX0)

i,

n∑
i=0

(
−f

(i)(1− νX0)

i!
(νX0 − νX)i

)
+ 1

)
=

=
(
f(µX0) +

f (1)(µX0)

1!
(µX − µX0) + . . .+

f (n)(µX0)

n!
(µX − µX0)

n,

1−
(
f(1− νX0) +

f (1)(1− νX0)

1!
(νX0 − νX) + . . .+

f (n)(1− νX0)

n!
(νX0 − νX)n

))
.

Example 3.3 Let f̄(X) = sin(X) = (sin(µX), 1−sin(1−νX)) andX0 = (0, 1). Then 1−νX0 =

1− 1 = 0 and therefore

f(µX0) = f(1− νX0) = sin 0 = 0

f (1)(µX0) = f (1)(1− νX0) = cos 0 = 1

f (2)(µX0) = f (2)(1− νX0) = − sin 0 = 0

f (3)(µX0) = f (3)(1− νX0) = − cos 0 = −1
...

Then
T̄n((µX , νX)) =

=
( 1

1!
µX −

1

3!
µ3
X + . . .+

(−1)n

(2n+ 1)!
µ2n+1
X ,

1−
( 1

1!
(1− νX)− 1

3!
(1− νX)3 + . . .+

(−1)n

(2n+ 1)!
(1− νX)2n+1

))
.

Theorem 3.4 Let f̄ be a function that has continuous derivations f̄ (i), i = 0, 1, 2, . . . , n defined
on interval [X0, X], let there exists derivation f̄ (n+1) on interval (X0, X) and T̄n be the Taylor’s
formula appertaining to f̄ in the point X0. Then there exist such function R̄n and such C =

(µC , νC), C ∈ (X0, X) that it holds

f̄(X) = T̄n(X) + R̄n(X).

The function R̄n is usually called remainder and it could have following form

R̄n(X) =
f̄ (n+1)(C)

(n+ 1)!
(X −X0)

n+1

(Lagrange’s form).

Proof:
In the first step we will specify the remainder

R̄n(X) =
f̄ (n+1)(C)

(n+ 1)!
(X −X0)

n+1
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by using membership and nonmembership functions.

R̄n((µX , νX)) =

(
f (n+1)(µC)

(n+ 1)!
(µX − µX0)

n+1, 1− f (n+1)(1− νC)

(n+ 1)!
(νX0 − νX)n+1

)
.

It is also important not forget that if C ∈ (X0, X) then it holds

µX0 ≤ µC ≤ µX

and
νX0 ≥ νC ≥ νX .

Then from equality
f̄(X) = T̄n(X) + R̄n(X)

for membership function it follows

f(µX) = f(µX0) +
f (1)(µX0)

1!
(µX − µX0) + . . .+

+
f (n)(µX0)

n!
(µX − µX0)

n +
f (n+1)(µC)

(n+ 1)!
(µX − µX0)

n+1

and for nonmembership function it follows

f(1− νX) = f(1− νX0) +
f (1)(1− νX0)

1!
(νX0 − νX) + . . .+

+
f (n)(1− νX0)

n!
(νX0 − νX)n +

f (n+1)(1− νC)

(n+ 1)!
(νX0 − νX)n+1.

Since µX0 , µX , µC are the real numbers µX0 ≤ µC ≤ µX and in addition Lagrange’s theorem
holds then for membership function we get the formula which is equal with Taylor’s theorem in
classical analysis. Therefore also the proof of this part has the same steps as in real analysis.
On the other hand νX0 , νX , νC are also real numbers and it holds νX0 ≥ νC ≥ νX . This inequality
is the same as 1− νX0 ≤ 1− νC ≤ 1− νX . Denote 1− νX0 = y0, 1− νX = y and 1− νC = c.
Then

νX0 − νX = 1− νX − (1− νX0) = y − y0.

After substitution the values and rewriting the formula for nonmembership function we get

f(y) = f(y0) +
f (1)(y0)

1!
(y − y0) + . . .+

f (n)(y0)

n!
(y − y0)n +

f (n+1)(c)

(n+ 1)!
(y − y0)n+1

what is again the formula equal with formula in classical analysis. Therefore Taylor’s formula
holds also for the family of all IF -sets.

Acknowledgements

This paper was supported by Grant VEGA 1/0621/11.

40



References

[1] Atanassov, K. Intuitionistic Fuzzy Sets. Springer, Berlin, 1999.
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